

Dual INT-A-PAK Low Profile "Half Bridge" (Standard Speed IGBT), 400 A

PRIMARY CHARACTERISTICS						
V _{CES}	600 V					
I _C DC at T _C = 114 °C	400 A					
V _{CE(on)} (typical) at 400 A, 25 °C	1.14 V					
Speed	DC to 1 kHz					
Package	Dual INT-A-PAK low profile					
Circuit configuration	Half bridge					

FEATURES

- TrenchStop IGBT technology
- · Standard: optimized for hard switching speed

- Low V_{CE(on)}
- Square RBSOA
- Gen 4 FRED Pt[®] dices technology
- · Industry standard package
- Al₂O₃ DBC
- UL approved file E78996

- · Designed for industrial level
- · Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

BENEFITS

- · Increased operating efficiency
- · Performance optimized as output inverter stage for TIG welding machines
- Direct mounting on heatsink
- Very low junction to case thermal resistance

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector current	I _C ⁽¹⁾	T _C = 25 °C	711		
Continuous collector current	IC (1)	T _C = 80 °C	532		
Pulsed collector current	I _{CM}	$T_C = 175 ^{\circ}\text{C}, t_p = 6 \text{ms}, V_{GE} = 15 \text{V}$	1100] ,	
Clamped inductive load current	I _{LM}		900	A	
Diode continuous forward current	I _F	T _C = 25 °C	260		
		T _C = 80 °C	192		
Gate to emitter voltage	V_{GE}		± 20	V	
Marrian and discipation (IODT)	P _D	T _C = 25 °C	1364	W	
Maximum power dissipation (IGBT)		T _C = 80 °C	864		
Marrian and Albaria ation (Diada)	Б	T _C = 25 °C	441	14/	
Maximum power dissipation (Diode)	P _D	T _C = 80 °C	279	W	
RMS isolation voltage	V _{ISOL}	Any terminal to case (V _{RMS} t = 1 s, T _J = 25 °C)	3500	V	

Note

⁽¹⁾ Maximum continuous collector current must be limited to 500 A to do not exceed the maximum temperature of terminals

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Collector to emitter breakdown voltage	V _{BR(CES)}	$V_{GE} = 0 \text{ V}, I_{C} = 1.2 \text{ mA}$	600	-	-		
Collector to emitter voltage	V _{CE(on)}	$V_{GE} = 15 \text{ V}, I_{C} = 400 \text{ A}$	-	1.14	1.40	V	
Collector to enlitter voltage		V _{GE} = 15 V, I _C = 400 A, T _J = 125 °C	-	1.13	-		
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}$, $I_C = 6$ mA	3.8	4.7	6.3		
Collector to emitter leakage current	I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}$	-	0.002	0.3	mA	
Collector to enlitter leakage current		$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$	-	1.1	-	IIIA	
Diode forward voltage drop	V_{FM}	I _{FM} = 400 A	-	1.65	2.26	V	
blode forward voltage drop		I _{FM} = 400 A, T _J = 125 °C	-	1.58	-	7 V	
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V	-	-	± 200	nA	

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Q_g		-	2791	-	
Gate-to-emitter charge (turn-on)	Q _{ge}	$I_C = 75 \text{ A}, V_{CC} = 520 \text{ V}, V_{GE} = 15 \text{ V}$	-	428	-	nC
Gate-to-collector charge (turn-on)	Q _{gc}		-	711	-	
Turn-on switching loss	E _{on}		-	2.5	-	
Turn-off switching loss	E _{off}	I_C = 400 A, V_{CC} = 300 V, V_{GE} = 15 V, R_q = 1.5 Ω, L = 500 μH, T_J = 25 °C	-	20.7	-	
Total switching loss	E _{tot}	Γις = 1.0 32, Ε = 000 μΓι, Γις = 20 0	-	23.2	-	
Turn-on switching loss	E _{on}		-	2.2	-	- mJ
Turn-off switching loss	E _{off}		-	27.6	-	
Total switching loss	E _{tot}		-	29.8	-	
Turn-on delay time	t _{d(on)}	I_C = 400 A, V_{CC} = 300 V, V_{GE} = 15 V, R_g = 1.5 Ω, L = 500 μH, T_J = 125 °C	-	24	-	
Rise time	t _r	Πg = 1.3 s2, L = 300 μΠ, Πg = 123 Ο	-	104	-	1
Turn-off delay time	t _{d(off)}		-	506	-	ns
Fall time	t _f		-	167	-	1
Reverse bias safe operating area	RBSOA	$\begin{array}{l} T_{J} = 175 \ ^{\circ}\text{C}, \ I_{C} = 900 \ \text{A}, \ V_{CC} = 300 \ \text{V}, \\ V_{p} = 600 \ \text{V}, \ R_{g} = 27 \ \Omega, \\ V_{GE} = 15 \ \text{V} \ \text{to} \ -5 \ \text{V}, \ L = 500 \ \mu\text{H} \end{array} \qquad \qquad \text{Fullsquare}$				
Diode reverse recovery time	t _{rr}		-	152	-	ns
Diode peak reverse current	I _{rr}	$I_F = 50 \text{ A}, dI_F/dt = 500 \text{ A/}\mu\text{s},$ $V_{CC} = 200 \text{ V}, T_A = 25 \text{ °C}$	-	24	-	Α
Diode recovery charge	Q _{rr}	V(() - 200 V, 1) - 20 O	-	1.82	-	μC
Diode reverse recovery time	t _{rr}		-	200	-	ns
Diode peak reverse current	I _{rr}	$I_F = 50 \text{ A}, dI_F/dt = 500 \text{ A/}\mu\text{s},$ $V_{CC} = 200 \text{ V}, T_A = 125 ^{\circ}\text{C}$	-	39	-	Α
Diode recovery charge	Q _{rr}	VCC = 200 V, 1J = 120 O	-	3.94	-	μC

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNITS
Operating junction and storage temperature range		T _J , T _{Stg}	-40	-	175	°C
Junction to case per leg Diode		R _{thJC}	-	-	0.11	
			-	-	0.34	°C/W
Case to sink per module		R _{thCS}	-	0.05	-	
Mounting torque	case to heatsink: M6 screw		4	-	6	Nm
	case to terminal 1, 2, 3: M5 screw		2	-	5	INIII
Weight			-	270	-	g

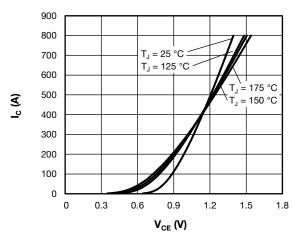


Fig. 1 - Typical Q1 to Q2 IGBT Output Characteristics, $V_{GE} = 15 \text{ V}$

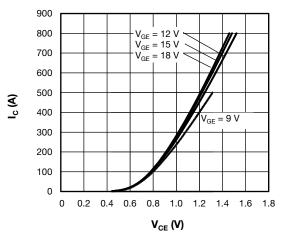


Fig. 2 - Typical Q1 to Q2 IGBT Output Characteristics, T_J = 125 °C

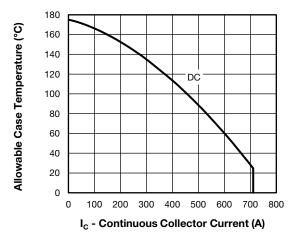


Fig. 3 - Maximum Q1 to Q2 IGBT Continuous Collector Current vs. Case Temperature

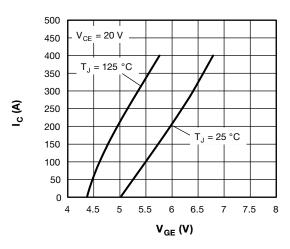


Fig. 4 - Typical Q1 to Q2 IGBT Transfer Characteristics

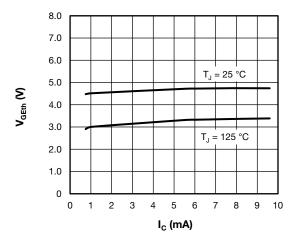


Fig. 5 - Typical Q1 to Q2 IGBT Gate Threshold Voltage

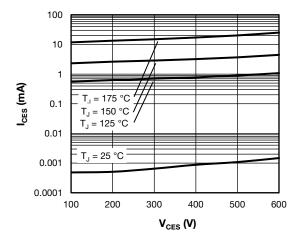


Fig. 6 - Typical Q1 to Q2 IGBT Zero Gate Voltage Collector Current

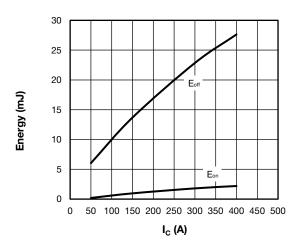


Fig. 7 - Typical Q1 to Q2 IGBT Energy Loss vs. I_C (with D1 to D2 Antiparallel Diode) T_J = 125 °C, V_{CC} = 300 V, R_g = 1.5 $\Omega,$ V_{GE} = +15 V /-15 V, L = 500 μH

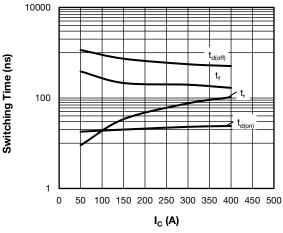


Fig. 8 - Typical Q1 to Q2 IGBT Switching Time vs. I_C (with D1 to D2 Antiparallel Diode)

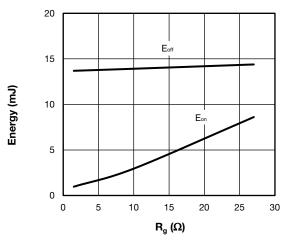


Fig. 9 - Typical Q1 to Q2 IGBT Energy Loss vs. $\rm R_g$ (with D1 to D2 Antiparallel Diode)

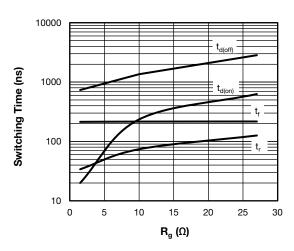


Fig. 10 - Typical Q1 to Q2 IGBT Switching Time vs. R_g (with D1 to D2 Antiparallel Diode) T_J = 125 °C, V_{CC} = 300 V, I_C = 400 A, V_{GE} = +15 V/-15 V, L = 500 μH

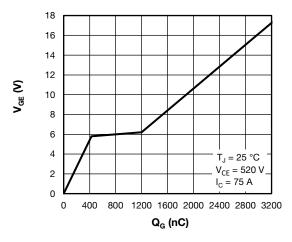


Fig. 11 - Typical Q1 to Q2 IGBT Gate Charge vs. Gate to Emitter Voltage

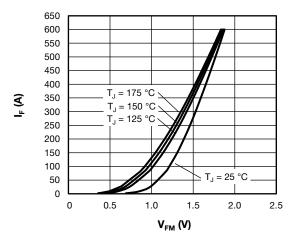


Fig. 12 - Typical D1 to D2 Antiparallel Diode Forward Characteristics

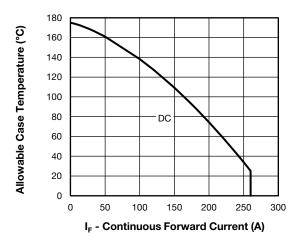


Fig. 13 - Maximum D1 to D2 Antiparallel Diode Continuous Forward Current vs. Case Temperature

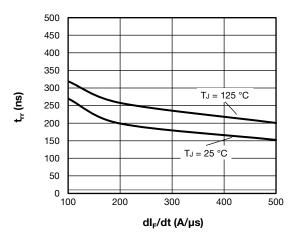


Fig. 14 - Typical D1 to D2 Antiparallel Diode Reverse Recovery Time vs. dl_Fdt

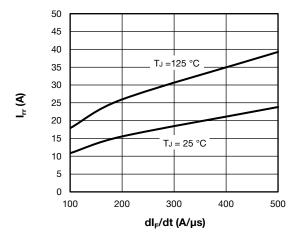


Fig. 15 - Typical D1 to D2 Antiparallel Diode Reverse Recovery Current vs. dI_Fdt, V_{rr} = 200 V, I_F = 50 A

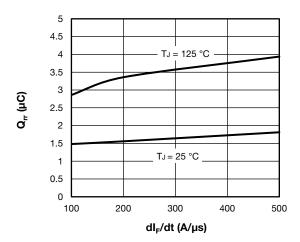


Fig. 16 - Typical D1 to D2 Antiparallel Diode Reverse Recovery Charge vs. dl_Fdt, V_{rr} = 200 V, I_F = 50 A

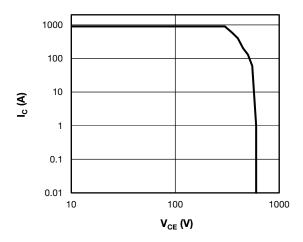


Fig. 17 - Q1 to Q2 IGBT Reverse BIAS SOA T_J = 175 °C, I_C = 900 A, R_g = 27 Ω , V_{GE} = +15 V / -5 V, V_{CC} = 300 V, V_p = 600 V

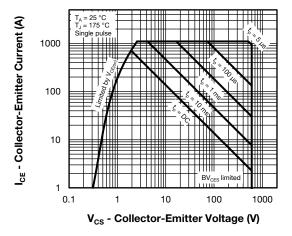


Fig. 18 - Q1 to Q2 IGBT Safe Operating Area

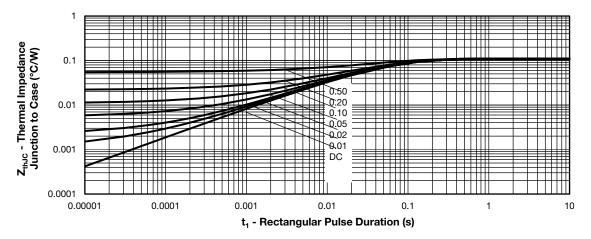


Fig. 19 - Maximum Thermal Impedance Z_{thJC} Characteristics - (Q1 to Q2 IGBT)

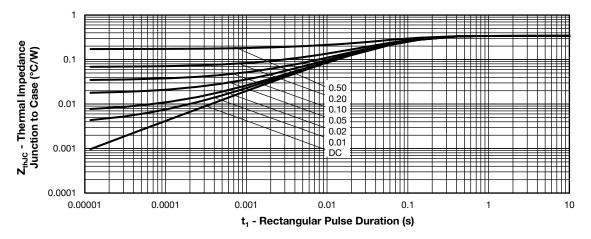
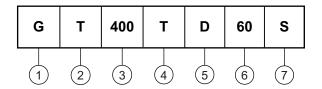



Fig. 20 - Maximum Thermal Impedance Z_{thJC} Characteristics - (D1 to D2 Antiparallel Diode)

ORDERING INFORMATION TABLE

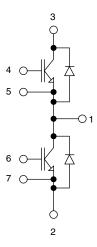
Device code

Insulated gate bipolar transistor (IGBT)

2 - T = Trench IGBT technology

3 - Current rating (400 = 400 A)

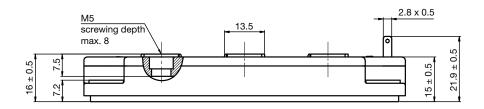
4 - Circuit configuration (T = half-bridge)

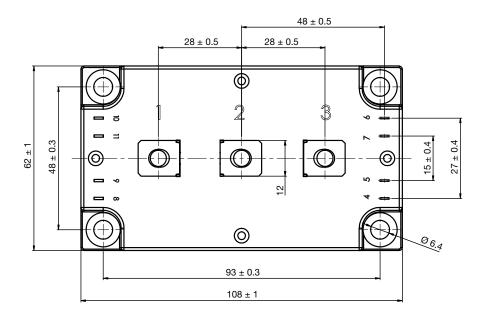

- Package indicator (D = dual INT-A-PAK low profile)

6 - Voltage rating (60 = 600 V)

Speed / type (S = standard speed IGBT)

CIRCUIT CONFIGURATION




LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95435			

Dual INT-A-PAK Low Profile

DIMENSIONS in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.