
 

CAN Bus with CircuitPython: Using the

canio module

Created by Jeff Epler

 

https://learn.adafruit.com/using-canio-circuitpython

Last updated on 2023-08-29 04:33:26 PM EDT

©Adafruit Industries Page 1 of 17



3

5

6

10

12

15

Table of Contents

Overview

• CAN basics

• Compatible boards

CircuitPython Docs

Wiring

• Feather STM32F405 Express & External Transceiver

• ESP32S2 Metro & External Transceiver

• Feather M4 CAN

• Mix and Match

Send and Receive

Reliable Transmission

Code Walkthrough

©Adafruit Industries Page 2 of 17



Overview 

In this guide you'll learn how to use CircuitPython's canio  module to send and

receive data between two supported boards, such as the Feather M4 CAN.

Are you new to using CircuitPython? No worries, there is a full getting started guide

here ().

Adafruit suggests using the Mu editor to edit your code and have an interactive REPL

in CircuitPython. You can learn about Mu and installation in this tutorial ().

CAN basics

According to Wikipedia,

A Controller Area Network (CAN bus) is a robust vehicle bus () standard

designed to allow microcontrollers () and devices to communicate with

each other's applications without a host computer (). It is a message-based

 

To use canio you need CircuitPython 6.0 or newer and a supported board. Check 

the list of supported modules on the downloads page to make sure canio is 

available. 

©Adafruit Industries Page 3 of 17

https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://en.wikipedia.org/wiki/Vehicle_bus
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Host_computer
https://en.wikipedia.org/wiki/Message-based_protocol


protocol (), designed originally for multiplex () electrical wiring within

automobiles to save on copper, but can also be used in many other

contexts.

The Controller Area Network is standardized as ISO 11898.

A CAN bus consists of 2 or more devices hooked together with a pair of wires, called

H and L. Generally the devices will also share a common GND as well. We'll show

networks with just 2 devices, but you can certainly have more. When you have a

larger number of devices, you may have to modify the "bus termination resistors"

according to the requirements of the CAN specification.

A CAN packet consists of an ID (a 11 or 29 bit number; 29 bit IDs are "extended IDs")

which allows devices to listen only for message IDs they are interested in; a "Remote

Transmission Request" (RTR) flag which allows one device to request data from

another device; and (if it is not a Remote Transmission Request), a data payload of 0

to 8 bytes.

The whole packet is protected against corruption by a CRC (sometimes called a

checksum). This means that while packets can sometimes go missing due to garbled

transmission, almost all data transmission errors are caught and the invalid data

discarded.

Since CAN does not include a way to be sure the intended recipient device has

actually received a message, you may find it necessary to implement your own

"reliable" transmission method by having the receiving device acknowledge that it has

received a packet by sending a packet back. There are other ways of tackling

potential lost packets; for instance, if you are a sensor you could just send your

sensor data 10 times a second and not care whether just a few packets are lost. The

right thing to do depends on your application.

Compatible boards

Multiple Adafruit boards such as Feathers and Metros have a CAN bus peripheral. The

Feather M4 CAN is the most convenient, as it also includes a CAN transceiver. Other

boards need an external CAN transceiver. Supported boards include:

Feather M4 CAN Express

Feather STM32F405 Express (requires an external CAN transceiver)

Metro ESP32-S2 Express (requires an external CAN transceiver)

• 

• 

• 

©Adafruit Industries Page 4 of 17

https://en.wikipedia.org/wiki/Message-based_protocol
https://en.wikipedia.org/wiki/Multiplexing


1 x CAN Bus Module Transceiver TJA1050 

5V Can Bus Transceiver modules (pack of 5)

https://www.amazon.com/gp/product/

B07W4VZ2F2 

Adafruit Feather STM32F405 Express 

ST takes flight in this Feather board. The

new STM32F405 Feather (video) that we

designed runs CircuitPython at a

blistering 168MHz –...

https://www.adafruit.com/product/4382 

Adafruit Metro ESP32-S2 

What's Metro shaped and has an ESP32-

S2 WiFi module? What has a STEMMA QT

connector for I2C devices, and a Lipoly

charger circuit? What has your favorite

Espressif WiFi...

https://www.adafruit.com/product/4775 

CircuitPython Docs 

CircuitPython Docs () 

©Adafruit Industries Page 5 of 17

https://www.adafruit.com/product/4382
https://www.adafruit.com/product/4382
https://www.adafruit.com/product/4775
https://www.adafruit.com/product/4775
https://www.amazon.com/gp/product/B07W4VZ2F2
https://www.amazon.com/gp/product/B07W4VZ2F2
https://www.amazon.com/gp/product/B07W4VZ2F2
https://circuitpython.readthedocs.io/en/latest/shared-bindings/canio/index.html


Wiring 

Feather STM32F405 Express & External Transceiver

The Feather STM32F405 has a built in CAN peripheral, but it requires an external

transceiver.

Wiring is reasonably straightforward, but you need to take note of the following:

Whether the transceiver needs 5V (more common) or 3.3V (less common) on its

power input pin. On my transceiver, 5V is required, and comes from the USB pin

on the Feather

Whether the TX and RX pins refer to the microcontroller's point of view or the

transceiver point of view. On my transceiver, TX and RX refer to the transceiver's

point of view.

Whether there is an enable pin, and whether to set it True  or False  

On an STM32F405 Feather, the pin marked D9 is the CAN TX (data FROM feather

INTO transceiver); the pin marked D10 is the CAN RX (data INTO Feather FROM

transceiver) pin.

Here's how to wire up two STM32 Feathers:

Feather 1 ↔ Transceiver 1 ↔ Transceiver 2 ↔ Feather 2

 

• 

• 

• 

©Adafruit Industries Page 6 of 17



After reviewing the CAN breakout board I used, I made the following connections

between each Feather and its Transceiver:

Feather USB to Transceiver VCC 

Feather D9 to Transceiver TX 

Feather D10 to Transceiver RX 

Feather GND to Transceiver GND 

Make the following connections between the two transceivers:

H to H 

L to L 

Finally, we need a common GND between the two nodes on the network. If they are

not already sharing a GND (for instance, plugged into the same USB hub or USB

power bank, or connecting to a GND rail on a breadboard),

either connect GND from Feather 1 to Feather 2

or connect GND from Transceiver 1 to Transceiver 2

ESP32S2 Metro & External Transceiver

The ESP32S2 has a built in CAN-compatible peripheral (called TWAI in the

documentation from Espressif). You can choose any two pins to act as the RX and TX

pins, but when it comes to the sample code you'll need to change  board.CAN_RX

and board.CAN_TX  to the pins you wired up. I arbitrarily chose IO05  and IO06 .

 

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 7 of 17



Wiring is reasonably straightforward, but you need to take note of the following:

Whether the transceiver needs 5V (more common) or 3.3V (less common) on its

power input pin. On my transceiver, 5V is required, and comes from the V
HI

 pin

on the Metro

Whether the TX and RX pins refer to the microcontroller's point of view or the

transceiver's point of view. On my transceiver, TX and RX refer to the

microcontroller's point of view.

Whether there is an enable pin, and whether to set it True  or False  

Here's how to wire up two Metro ESP32S2 Express board:

Metro 1 ↔ Transceiver 1 ↔ Transceiver 2 ↔ Metro 2

In the code samples, change the setup line for the CAN object according to the pins

you chose, e.g.,:

can = canio.CAN(rx=board.IO6, tx=board.IO5, baudrate=250_000,

auto_restart=True)

After reviewing the CAN breakout board I used, I made the following connections

between each Feather and its Transceiver:

 

Metro V
HI

 to Transceiver VCC 

Metro IO5 to Transceiver TX 

Metro IO6 to Transceiver RX 

Metro GND to Transceiver GND 

Make the following connections between

the two transceivers:

H to H 

L to L 

Finally, we need a common GND between the two nodes on the network. If they are

not already sharing a GND (for instance, plugged into the same USB hub or USB

power bank, or connecting to a GND rail on a breadboard),

either connect GND from Metro 1 to Metro 2

or connect GND from Transceiver 1 to Transceiver 2

• 

• 

• 

• 

• 

©Adafruit Industries Page 8 of 17

https://learn.adafruit.com//assets/96813
https://learn.adafruit.com//assets/96813


Feather M4 CAN

 

 

Because the transceiver is included, wiring

a CAN bus is simple:

Connect H to H 

Connect L to L 

Connect GND to GND (other ways of

providing a common GND are also

acceptable, such as powering both

devices from the same computer or USB

power bank)

In the case of the Feather M4 CAN, just insert wires into each screw terminal and then

tighten the screw.

Make sure that H goes to H and L to L; Otherwise, the devices will not be able to

communicate.

Mix and Match

Want to make a network out of different boards?  Knock yourself out. Just wire each

side as above, then connect the H, L, and GND wires between the nodes in the

network. For example, you could wire

Metro ESP32S2 ↔ Transceiver 1 ↔ Transceiver 2 ↔ Feather STM32F405

or

Feather STM32F405 ↔ Transceiver ↔ Feather CAN

©Adafruit Industries Page 9 of 17

https://learn.adafruit.com//assets/96754
https://learn.adafruit.com//assets/96754
https://learn.adafruit.com//assets/96755
https://learn.adafruit.com//assets/96755


In principle, you can put more than two nodes on a network by connecting all the H

wires together and all the L wires together. However, you also need to understand

and may need to modify the "termination resistance" of the bus—that's beyond the

scope of this guide (and indeed your humble author's experience)

Send and Receive 

This demo shows how to set up one Feather M4 CAN as a sender and another as a

receiver. They will print messages on the serial terminal (REPL) to show what is going

on.

Before trying this demo, make sure you have the right version of CircuitPython, that i

mport canio succeeds, and that you've wired the two Feathers together as shown on

the Wiring page.

First, we'll set up the listening (receiving) node. Put the text below in that device's cod

e.py and open up the serial terminal. When the program restarts, it will display "No

messsage received within timeout" until our second device is up and running.

# SPDX-FileCopyrightText: 2020 Jeff Epler for Adafruit Industries

#

# SPDX-License-Identifier: MIT

import struct

import board

import canio

import digitalio

# If the CAN transceiver has a standby pin, bring it out of standby mode

if hasattr(board, 'CAN_STANDBY'):

    standby = digitalio.DigitalInOut(board.CAN_STANDBY)

    standby.switch_to_output(False)

# If the CAN transceiver is powered by a boost converter, turn on its supply

if hasattr(board, 'BOOST_ENABLE'):

    boost_enable = digitalio.DigitalInOut(board.BOOST_ENABLE)

    boost_enable.switch_to_output(True)

# Use this line if your board has dedicated CAN pins. (Feather M4 CAN and Feather 

STM32F405)

can = canio.CAN(rx=board.CAN_RX, tx=board.CAN_TX, baudrate=250_000, 

auto_restart=True)

# On ESP32S2 most pins can be used for CAN.  Uncomment the following line to use 

IO5 and IO6

#can = canio.CAN(rx=board.IO6, tx=board.IO5, baudrate=250_000, auto_restart=True)

listener = can.listen(matches=[canio.Match(0x408)], timeout=.9)

old_bus_state = None

old_count = -1

while True:

    bus_state = can.state

    if bus_state != old_bus_state:

        print(f"Bus state changed to {bus_state}")

        old_bus_state = bus_state

©Adafruit Industries Page 10 of 17



    message = listener.receive()

    if message is None:

        print("No messsage received within timeout")

        continue

    data = message.data

    if len(data) != 8:

        print(f"Unusual message length {len(data)}")

        continue

    count, now_ms = struct.unpack("<II", data)

    gap = count - old_count

    old_count = count

    print(f"received message: count={count} now_ms={now_ms}")

    if gap != 1:

        print(f"gap: {gap}")

Next, set up the transmitting (sending) node. Put the text below in that device's code.p

y and open up a second serial terminal. Once both programs are running, you should

see the sender and receiver printing the same information.

# SPDX-FileCopyrightText: 2020 Jeff Epler for Adafruit Industries

#

# SPDX-License-Identifier: MIT

import struct

import time

import board

import canio

import digitalio

# If the CAN transceiver has a standby pin, bring it out of standby mode

if hasattr(board, 'CAN_STANDBY'):

    standby = digitalio.DigitalInOut(board.CAN_STANDBY)

    standby.switch_to_output(False)

# If the CAN transceiver is powered by a boost converter, turn on its supply

if hasattr(board, 'BOOST_ENABLE'):

    boost_enable = digitalio.DigitalInOut(board.BOOST_ENABLE)

    boost_enable.switch_to_output(True)

# Use this line if your board has dedicated CAN pins. (Feather M4 CAN and Feather 

STM32F405)

can = canio.CAN(rx=board.CAN_RX, tx=board.CAN_TX, baudrate=250_000, 

auto_restart=True)

# On ESP32S2 most pins can be used for CAN.  Uncomment the following line to use 

IO5 and IO6

#can = canio.CAN(rx=board.IO6, tx=board.IO5, baudrate=250_000, auto_restart=True)

old_bus_state = None

count = 0

while True:

    bus_state = can.state

    if bus_state != old_bus_state:

        print(f"Bus state changed to {bus_state}")

        old_bus_state = bus_state

    now_ms = (time.monotonic_ns() // 1_000_000) & 0xffffffff

    print(f"Sending message: count={count} now_ms={now_ms}")

    message = canio.Message(id=0x408, data=struct.pack("<II", count, now_ms))

    can.send(message)

©Adafruit Industries Page 11 of 17



    time.sleep(.5)

    count += 1

In this case, the data being transmitted is a packet counter which starts at 0 and

counts up 1 for each transmitted packet; and a timestamp which counts up by 1000

each second. These are sent as 4 byte values, for a total of 8 bytes—the maximum for

a packet on the CAN bus.

If there are problems affecting the bus (such as a disconnected wire) then various

error information will also be displayed. However, after fixing the wiring the devices

should automatically recover and begin communicating again.

Typical output from sender:

code.py output:

Bus state changed to canio.BusState.ERROR_ACTIVE

Sending message: count=0 now_ms=372429

Sending message: count=1 now_ms=372929

Sending message: count=2 now_ms=373429

Sending message: count=3 now_ms=373929

Typical output from receiver:

code.py output:

Bus state changed to canio.BusState.ERROR_ACTIVE

received message: count=0 now_ms=372429

received message: count=1 now_ms=372929

received message: count=2 now_ms=373429

received message: count=3 now_ms=373929

Reliable Transmission 

This demo shows one of the possible ways you can verify that the intended node has

received a message.

Before trying this demo, make sure you have the right version of CircuitPython, that i

mport canio succeeds, and that you've wired the two Feathers together as shown on

the Wiring page.

First, we'll set up the listening (receiving) node. Put the text below in that device's cod

e.py and open up the serial terminal. When the program restarts, it will display "No

messsage received within timeout" until our second device is up and running.

# SPDX-FileCopyrightText: 2020 Jeff Epler for Adafruit Industries

#

# SPDX-License-Identifier: MIT

import struct

©Adafruit Industries Page 12 of 17



import board

import canio

import digitalio

# If the CAN transceiver has a standby pin, bring it out of standby mode

if hasattr(board, 'CAN_STANDBY'):

    standby = digitalio.DigitalInOut(board.CAN_STANDBY)

    standby.switch_to_output(False)

# If the CAN transceiver is powered by a boost converter, turn on its supply

if hasattr(board, 'BOOST_ENABLE'):

    boost_enable = digitalio.DigitalInOut(board.BOOST_ENABLE)

    boost_enable.switch_to_output(True)

# Use this line if your board has dedicated CAN pins. (Feather M4 CAN and Feather 

STM32F405)

can = canio.CAN(rx=board.CAN_RX, tx=board.CAN_TX, baudrate=250_000, 

auto_restart=True)

# On ESP32S2 most pins can be used for CAN.  Uncomment the following line to use 

IO5 and IO6

#can = canio.CAN(rx=board.IO6, tx=board.IO5, baudrate=250_000, auto_restart=True)

listener = can.listen(matches=[canio.Match(0x408)], timeout=.9)

old_bus_state = None

old_count = -1

while True:

    bus_state = can.state

    if bus_state != old_bus_state:

        print(f"Bus state changed to {bus_state}")

        old_bus_state = bus_state

    message = listener.receive()

    if message is None:

        print("No messsage received within timeout")

        continue

    data = message.data

    if len(data) != 8:

        print(f"Unusual message length {len(data)}")

        continue

    count, now_ms = struct.unpack("<II", data)

    gap = count - old_count

    old_count = count

    print(f"received message: id={message.id:x} count={count} now_ms={now_ms}")

    if gap != 1:

        print(f"gap: {gap}")

    print("Sending ACK")

    can.send(canio.Message(id=0x409, data=struct.pack("<I", count)))

Next, set up the transmitting (sending) node. Put the text below in that device's code.p

y and open up a second serial terminal. Once both programs are running, you should

see the sender and receiver printing the same information.

# SPDX-FileCopyrightText: 2020 Jeff Epler for Adafruit Industries

#

# SPDX-License-Identifier: MIT

import struct

import time

import board

©Adafruit Industries Page 13 of 17



import canio

import digitalio

# If the CAN transceiver has a standby pin, bring it out of standby mode

if hasattr(board, 'CAN_STANDBY'):

    standby = digitalio.DigitalInOut(board.CAN_STANDBY)

    standby.switch_to_output(False)

# If the CAN transceiver is powered by a boost converter, turn on its supply

if hasattr(board, 'BOOST_ENABLE'):

    boost_enable = digitalio.DigitalInOut(board.BOOST_ENABLE)

    boost_enable.switch_to_output(True)

# Use this line if your board has dedicated CAN pins. (Feather M4 CAN and Feather 

STM32F405)

can = canio.CAN(rx=board.CAN_RX, tx=board.CAN_TX, baudrate=250_000, 

auto_restart=True)

# On ESP32S2 most pins can be used for CAN.  Uncomment the following line to use 

IO5 and IO6

#can = canio.CAN(rx=board.IO6, tx=board.IO5, baudrate=250_000, auto_restart=True)

listener = can.listen(matches=[canio.Match(0x409)], timeout=.1)

old_bus_state = None

count = 0

while True:

    bus_state = can.state

    if bus_state != old_bus_state:

        print(f"Bus state changed to {bus_state}")

        old_bus_state = bus_state

    now_ms = (time.monotonic_ns() // 1_000_000) & 0xffffffff

    print(f"Sending message: count={count} now_ms={now_ms}")

    message = canio.Message(id=0x408, data=struct.pack("<II", count, now_ms))

    while True:

        can.send(message)

        message_in = listener.receive()

        if message_in is None:

            print("No ACK received within timeout")

            continue

        data = message_in.data

        if len(data) != 4:

            print(f"Unusual message length {len(data)}")

            continue

        ack_count = struct.unpack("<I", data)[0]

        if ack_count == count:

            print("Received ACK")

            break

        print(f"Received incorrect ACK: {ack_count} should be {count}")

    time.sleep(.5)

    count += 1

In this case, the data being transmitted is a packet counter which starts at 0 and

counts up 1 for each transmitted packet; and a timestamp which counts up by 1000

each second. These are sent as 4 byte values, for a total of 8 bytes—the maximum for

a packet on the CAN bus.

©Adafruit Industries Page 14 of 17



When the receiver receives an acknowledgement packet (an ACK), it sends back one

of its own, containing just the 4 byte count value. A different message ID (0x409) is

also used.

The sender waits for the ACK. If it is not received shortly, then it re-sends the original

message and waits for the ACK again. In this way, the sender knows the receiver has

received each message.

Typical output on sending node:

code.py output:

Bus state changed to canio.BusState.ERROR_ACTIVE

Sending message: count=0 now_ms=123231

Received ACK

Sending message: count=1 now_ms=123733

Received ACK

Sending message: count=2 now_ms=124235

Received ACK

Typical output on receiving node:

code.py output:

Bus state changed to canio.BusState.ERROR_ACTIVE

No messsage received within timeout

received message: id=408 count=0 now_ms=123231

Sending ACK

received message: id=408 count=1 now_ms=123733

Sending ACK

received message: id=408 count=2 now_ms=124235

Sending ACK

Code Walkthrough 

The various programs share a lot of code, so let's look at what the building blocks are.

Begin by importing the modules that are needed by our code:

import struct

import time

import board

import canio

import digitalio

Create the necessary digital pin settings needed to enable the CAN Transceiver chip:

# If the CAN transceiver has a standby pin, bring it out of standby mode

if hasattr(board, 'CAN_STANDBY'):

    standby = digitalio.DigitalInOut(board.CAN_STANDBY)

    standby.switch_to_output(False)

# If the CAN transceiver is powered by a boost converter, turn on its supply

©Adafruit Industries Page 15 of 17



if hasattr(board, 'BOOST_ENABLE'):

    boost_enable = digitalio.DigitalInOut(board.BOOST_ENABLE)

    boost_enable.switch_to_output(True)

Create the CAN bus object. Note that all devices on the same bus need to agree on

the baudrate!

can = canio.CAN(rx=board.CAN_RX, tx=board.CAN_TX, baudrate=250_000, 

auto_restart=True)

Construct a listener object. This listener will ONLY receive messages sent to the ID 

0x408 . If no matches=  was specified, it would receive all messages. The timeout=

governs how long the listener will wait for a message. A Match  object can also

specify an optional mask to allow a range of related IDs to be received—see the full

documentation for more details.

listener = can.listen(matches=[canio.Match(0x408)], timeout=.1)

Now we're ready for the main loop of our program:

while True:

    ...

The CAN object's state monitors the health of the bus. The confusingly-named ERROR

_ACTIVE  state actually indicates that all is well. A node that is ERROR_PASSIVE  will

not transmit messages, and one that is BUS_OFF  will neither transmit messages nor

acknowledge messages from other nodes. Because we specified auto_restart=Tru

e  when we created our CAN object, our node will automatically restart itself a short

time after entering the BUS_OFF  state.

bus_state = can.state

if bus_state != old_bus_state:

    print(f"Bus state changed to {bus_state}")

    old_bus_state = bus_state

Create and send a message. In this case, we use the struct  module to pack our

integer data into a sequence of 8 bytes. Messages can range from 0 to 8 bytes of

data.

message = canio.Message(id=0x408, data=struct.pack("&lt;II", count, now_ms))

can.send(message)

Receive a message. One of several things can happen, and we need to deal with

them:

If no message is received before the timeout, message will be None• 

©Adafruit Industries Page 16 of 17



If we were listening for more than one message ID, we would want to look at me

ssage.id  and make decisions based on it.

A message could come in, but not have the expected structure. Here, if the

message is not the expected 8 bytes long, we ignore it

If the message has the expected length, we can take the individual pieces of

data out using struct.unpack , and act on them.

message = listener.receive()

if message is None:

    print("No messsage received within timeout")

    continue

data = message.data

if len(data) != 8:

    print(f"Unusual message length {len(data)}")

    continue

    

count, now_ms = struct.unpack("&lt;II", data)

print(f"received message: count={count} now_ms={now_ms}")

• 

• 

• 

©Adafruit Industries Page 17 of 17


	CAN Bus with CircuitPython: Using the canio module
	Table of Contents
	Overview
	CircuitPython Docs
	Wiring
	Send and Receive
	Reliable Transmission
	Code Walkthrough


	Overview
	CAN basics
	Compatible boards

	CircuitPython Docs
	Wiring
	Feather STM32F405 Express & External Transceiver
	ESP32S2 Metro & External Transceiver
	Feather M4 CAN
	Mix and Match

	Send and Receive
	Reliable Transmission
	Code Walkthrough

