High Voltage, High Current Darlington Transistor Arrays

The seven NPN Darlington connected transistors in these arrays are well suited for driving lamps, relays, or printer hammers in a variety of industrial and consumer applications. Their high breakdown voltage and internal suppression diodes insure freedom from problems associated with inductive loads. Peak inrush currents to 500 mA permit them to drive incandescent lamps.

The ULx2003A with a 2.7 k Ω series input resistor is well suited for systems utilizing a 5.0 V TTL or CMOS Logic.

Features

• These are Pb-Free Devices

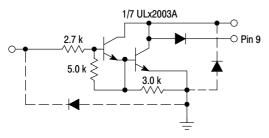


Figure 1. Representative Schematic Diagram

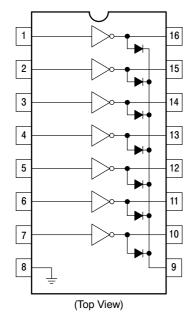
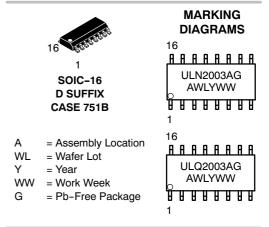



Figure 2. Pin Connections

ON Semiconductor®

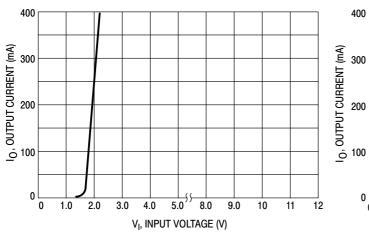
http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping [†]
ULN2003ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
ULQ2003ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

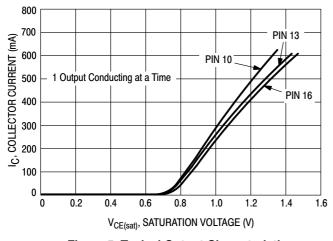
MAXIMUM RATINGS ($T_A = 25^{\circ}C$, and rating apply to any one device in the package, unless otherwise noted.)


Rating	Symbol	Value	Unit
Output Voltage	V _O	50	V
Input Voltage	VI	30	V
Collector Current - Continuous	I _C	500	mA
Base Current - Continuous	Ι _Β	25	mA
Operating Ambient Temperature Range ULN2003A ULQ2003A	T _A	-20 to +85 -40 to +85	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature	TJ	150	°C
Thermal Resistance, Junction-to-Ambient Case 751B, D Suffix	$R_{ heta JA}$	100	°C/W
Thermal Resistance, Junction-to-Case Case 751B, D Suffix	$R_{ heta JC}$	20	°C/W
Electrostatic Discharge Sensitivity (ESD) Human Body Model (HBM) Machine Model (MM) Charged Device Model (CDM)	ESD	2000 400 1500	٧

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS (T_A = 25°C, unless otherwise noted)

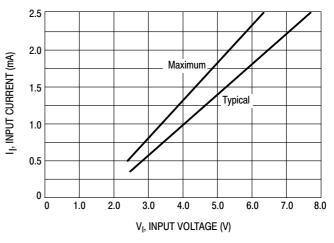
Characteristic	Symbol	Min	Тур	Max	Unit
Output Leakage Current $(V_O = 50 \text{ V}, T_A = +85^{\circ}\text{C})$ $(V_O = 50 \text{ V}, T_A = +25^{\circ}\text{C})$	I _{CEX}	- -	- -	100 50	μΑ
Collector–Emitter Saturation Voltage (I_C = 350 mA, I_B = 500 μ A) (I_C = 200 mA, I_B = 350 μ A) (I_C = 100 mA, I_B = 250 μ A)	V _{CE(sat)}	- - -	1.1 0.95 0.85	1.6 1.3 1.1	V
Input Current - On Condition (V _I = 3.85 V)	I _{I(on)}	-	0.93	1.35	mA
Input Voltage – On Condition $ (V_{CE}=2.0 \text{ V, } I_{C}=200 \text{ mA}) $ $ (V_{CE}=2.0 \text{ V, } I_{C}=250 \text{ mA}) $ $ (V_{CE}=2.0 \text{ V, } I_{C}=300 \text{ mA}) $	V _{I(on)}	- - -	- - -	2.4 2.7 3.0	V
Input Current – Off Condition ($I_C = 500 \mu A, T_A = 85^{\circ}C$)	I _{I(off)}	50	100	-	μΑ
DC Current Gain ($V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}$)	h _{FE}	1000	-	-	-
Input Capacitance	C _I	-	15	30	pF
Turn-On Delay Time (50% E _I to 50% E _O)	t _{on}	-	0.25	1.0	μs
Turn-Off Delay Time (50% E _I to 50% E _O)	t _{off}	_	0.25	1.0	μs
Clamp Diode Leakage Current $T_A = +25^{\circ}C$ $(V_R = 50 \text{ V})$ $T_A = +85^{\circ}C$	I _R	-	-	50 100	μΑ
Clamp Diode Forward Voltage (I _F = 350 mA)	V _F	_	1.5	2.0	V


TYPICAL PERFORMANCE CURVES – $T_A = 25^{\circ}C$

400 (VE) 300 200 0 50 100 150 200 250 300 350 400 II, INPUT CURRENT (μA)

Figure 3. Output Current versus Input Voltage

Figure 4. Output Current versus Input Current



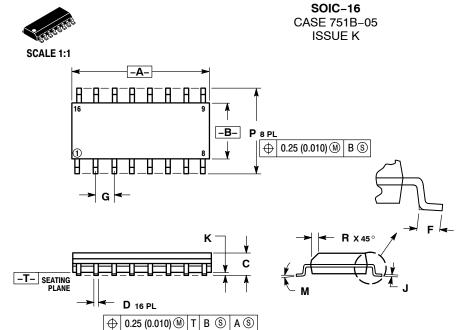

Figure 5. Typical Output Characteristics

Figure 6. Input Characteristics

Figure 7. Maximum Collector Current versus Duty Cycle (and Number of Drivers in Use)

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
7	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
PIN 1.		PIN 1.		PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE	#1	
2.			ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4		
8.	COLLECTOR			8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE		CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4		
11.	NO CONNECTION	11.		11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER		CATHODE	12.		12.			
13.	BASE		CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	SOI DEDING	FOOTPRINT
14.			NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDERING	FOOTFRINT
15.	EMITTER		ANODE	15.	EMITTER, #4	15.	BASE, #1	8	ЗX
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1	- 6	.40 ────
								-	-
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12 <
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				,
2.	DRAIN. #1		CATHODE	2.	COMMON DRAIN (OUTPUT)		. 🗀 1	16
3.	DRAIN, #2		CATHODE	3.	COMMON DRAIN (OUTPUT			,	'' 🖳
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	,			
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT)	16	5X T	
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT		0.5		' <u> </u>
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPUT		0.0		
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH `	,			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPUT)			
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT	ń			
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPUT	ń			
13.	GATE, #2	13.	ANODE	13.	GATE N-CH	,			
14.	SOURCE, #2	14.	ANODE	14.	COMMON DRAIN (OUTPUT)			↓ PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPUT				<u>+-+</u> -
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH			<u> </u>	
	•							□ ₈	9 + - + -
								 =	,
									DIMENSIONS AND INSERTEDS
									DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16		PAGE 1 OF 1		

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales