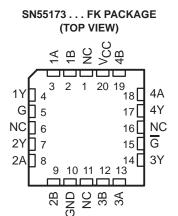
CNIEE 172

SLLS144E - OCTOBER 1980 - REVISED APRIL 2000


IDACKACE

- Meet or Exceed the Requirements of TIA/EIA-422-B, TIA/EIA-423-B, and TIA/EIA-485-A and ITU Recommendations V.10, V.11, X.26, and X.27
- Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Input Voltage Range of -12 V to 12 V
- Input Sensitivity ... ±200 mV
- Input Hysteresis . . . 50 mV Typ
- High Input Impedance . . . 12 kΩ Min
- Operate From Single 5-V Supply
- Low Power Requirements
- Pin-to-Pin Replacement for AM26LS32

description

The SN55173, SN65173, and SN75173 are monolithic quadruple differential line receivers with 3-state outputs. They are designed to meet requirements of TIA/EIA-422-B, the TIA/EIA-423-B, TIA/EIA-485-A, and several ITU recommendations. The standards are for balanced multipoint bus transmission at rates up to 10 megabits per second. The four receivers share two OR enable inputs, one active when high, the other active when low. These devices feature high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ±200 mV over a common-mode input voltage range of –12 V to 12 V. Fail-safe design specifies that if the inputs are open circuited, the outputs are always high. The SN65173 and SN75173 are designed for optimum performance when used with the SN75172 or SN75174 quad differential line drivers.

SN551/	3J	PAC	KAGE								
SN65173, SN75	173	D OF	R N PACKAGE								
,	TOP VI										
L	$- \mathbf{\nabla}$										
1B 🛛	1	16	V _{CC}								
1A [2	15	4B								
1Y [3	14	4A								
G [4	13	4Y								
2Y [5	12	G								
2A [6	11	3Y								
2B 🛛	7	10	3A								
GND 🛛	8	9	3B								
l											

NC-No internal connection

THE SN55173 IS NOT RECOMMENDED FOR NEW DESIGNS.

The SN55173 is characterized over the full military temperature range of -55° C to 125° C. The SN65173 is characterized for operation from -40° C to 85° C. The SN75173 is characterized for operation from 0° C to 70° C.

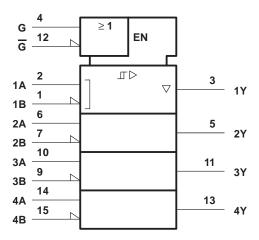
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2000, Texas Instruments Incorporated

SLLS144E - OCTOBER 1980 - REVISED APRIL 2000

AVAILABLE OPTIONS											
	PACKAGED DEVICES										
TA	PLASTIC SMALL OUTLINE (D)	PLASTIC CHIP CARRIER (FK)	CERAMIC DIP (J)	PLASTIC DIP (N)							
0°C to 70°C	SN75173D	—	—	SN75173N							
-40°C to 85°C	SN65173D	_	—	SN65173N							
–55°C to 125°C	—	SN55173FK	SN55173J	—							

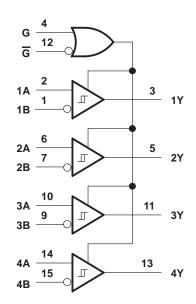

The D package is available taped and reeled. Add the suffix R to the device type (e.g., SN75173DR).

FUNCTION TABLE

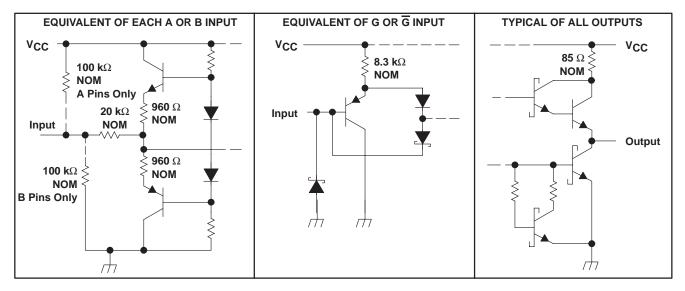
(each receiver)										
DIFFERENTIAL	ENA	BLES	OUTPUT							
A–B	G	G	Y							
	Н	Х	Н							
$V_{ID} \ge 0.2 V$	Х	L	Н							
	Н	Х	?							
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	Х	L	?							
	Н	Х	L							
$V_{ID} \leq -0.2 V$	Х	L	L							
Х	L	Н	Z							
Open circuit	Х	L	Н							
	Н	Х	Н							

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

logic symbol †



 \dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, and N packages.


SLLS144E - OCTOBER 1980 - REVISED APRIL 2000

logic diagram (positive logic)

Pin numbers shown are for the D, J, and N packages.

schematics of inputs and outputs

SLLS144E – OCTOBER 1980 – REVISED APRIL 2000

bsolute maximum ratings over operating free-air temperature range (unless otherwise noted) [†]
Supply voltage, V _{CC} (see Note 1)
Input voltage (V _I or B inputs)
Differential input voltage, V _{ID} (see Note 2) ±25 V
Enable input voltage, V _I
Low-level output current, I _{OL}
Package thermal impedance, θ _{JA} (see Note 3): D package
N package
Continuous total dissipation
Case temperature for 60 seconds, T _C : FK package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package
Storage temperature range, T _{stg} 65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

- 2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
FK	1375 mW	11 mW/°C	880 mW	275 mW
J	1375 mW	11 mW/°C	880 mW	275 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
	SN55173	4.5	5	5.5	V
Differential input voltage, VID High-level enable-input voltage, VIH Low-level enable-input voltage, VIL	SN65173, SN75173	4.75	5	5.25	V
Common-mode input voltage, VIC				±12	V
Differential input voltage, VID				±12	V
High-level enable-input voltage, VIH		2			V
Low-level enable-input voltage, VIL				0.8	V
High-level output current, I _{OH}				-400	μΑ
Low-level output current, IOL				16	mA
	SN55173			125	
Operating free-air temperature, TA	SN65173			85	°C
	SN75173	0		70	

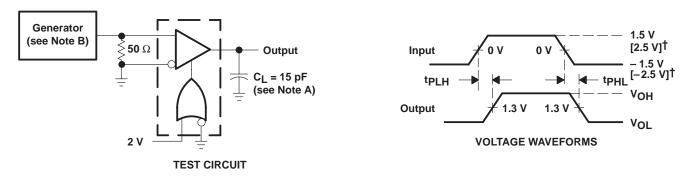
SLLS144E - OCTOBER 1980 - REVISED APRIL 2000

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature

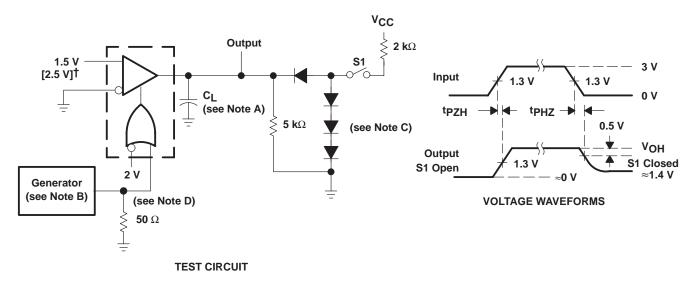
	PARAMETER	TES	T CONDITIONS		MIN	TYP [†]	MAX	UNIT
V_{IT+}	Positive-going input threshold voltage	V _O = 2.7 V,	$I_{O} = -0.4 \text{ mA}$				0.2	V
V_{IT-}	Negative-going input threshold voltage	$V_{O} = 0.5 V,$	l _O = 16 mA		-0.2‡			V
V _{hys}	Hysteresis (V _{IT+} – V _{IT} _)	See Figure 4				50		mV
VIK	Enable-input clamp voltage	lj = – 18 mA					-1.5	V
				SN55173	2.5			V
∨он	High-level output voltage	V _{ID} = 200 mV,	I _{OH} = -400 μA	SN65173, SN75173	2.7			V
\/	OI Low-level output voltage	$\lambda = 200 \text{m}$	See Figure 1	I _{OL} = 8 mA			0.45 0.5	M
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV},$		I _{OL} = 16 mA				v
I _{OZ}	High-impedance-state output current	$V_{O} = 0.4 \text{ V to } 2.4 \text{ V}$					±20	μΑ
1.		Other input at 0.1/	See Note 3	V _I = 12 V			1	mA
1	Line input current	Other input at 0 V,	See Note S	$V_{I} = -7 V$			-0.8	ША
IIH	High-level enable-input current	V _{IH} = 2.7 V					20	μΑ
Ι _{ΙL}	Low-level enable-input current	V _{IL} = 0.4 V					-100	μΑ
ri	Input resistance				12			kΩ
los	Short-circuit output current				-15		-85	mA
ICC	Supply current	Outputs disabled					70	mA

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold voltage levels only.

NOTE 3: Refer to TIA/EIA-422-B and TIA/EIA-423-B for exact conditions.


switching characteristics, V_{CC} = 5 V, T_A = 25° C

	PARAMETER	TEST CO	MIN	TYP	MAX	UNIT	
tPLH	Propagation delay time, low-to-high-level output	$V_{ID} = -1.5 \text{ V}$ to 1.5 V,			20	35	ns
^t PHL	Propagation delay time, high-to-low-level output	C _L = 15 pF,	See Figure 1		22	35	ns
^t PZH	Output enable time to high level	C _L = 15 pF,	See Figure 2		17	22	ns
tPZL	Output enable time to low level	C _L = 15 pF,	See Figure 3		20	25	ns
^t PHZ	Output disable time from high level	C _L = 5 pF,	See Figure 2		21	30	ns
t _{PLZ}	Output disable time from low level	C _L = 5 pF,	See Figure 3		30	40	ns

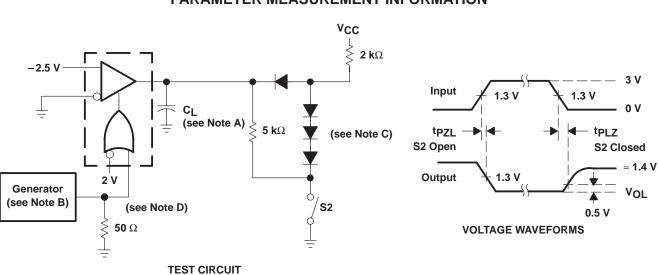

SLLS144E - OCTOBER 1980 - REVISED APRIL 2000

PARAMETER MEASUREMENT INFORMATION

[†] Voltage for the SN55173 only.

- NOTES: A. CL includes probe and jig capacitance.
 - B. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_f \le 6$ ns, $t_f \le 6$ ns, $Z_O = 50 \Omega$.

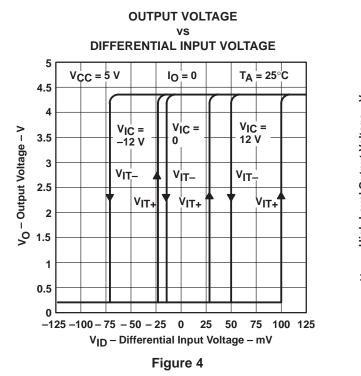
Figure 1. tPLH, tPHL Test Circuit and Voltage Waveforms


[†] Voltage for the SN55173 only.

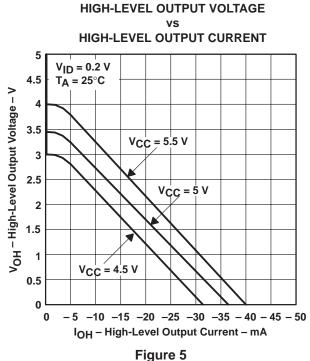
- NOTES: A. CL includes probe and jig capacitance.
 - B. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_{f} \le 6$ ns, $t_{f} \le 6$ ns, $t_{f} \le 6$ ns, $t_{f} \le 6$ ns, $t_{f} \le 6$ ns, the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_{f} \le 6$ ns, the following characteristics: PRR = 1 MHz, duty cycle = 50%, the following characteristics: PRR = 1 MHz, duty cycle = 50%, the following characteristics: PRR = 1 MHz, duty cycle = 50%, the following characteristics: PRR = 1 MHz, duty cycle = 50\%, the following characteristics: PRR =
 - C. All diodes are 1N916, or equivalent.
 - D. To test the active-low enable \overline{G} , ground G and apply an inverted input waveform to \overline{G} .

Figure 2. t_{PHZ}, t_{PZH} Test Circuit and Voltage Waveforms

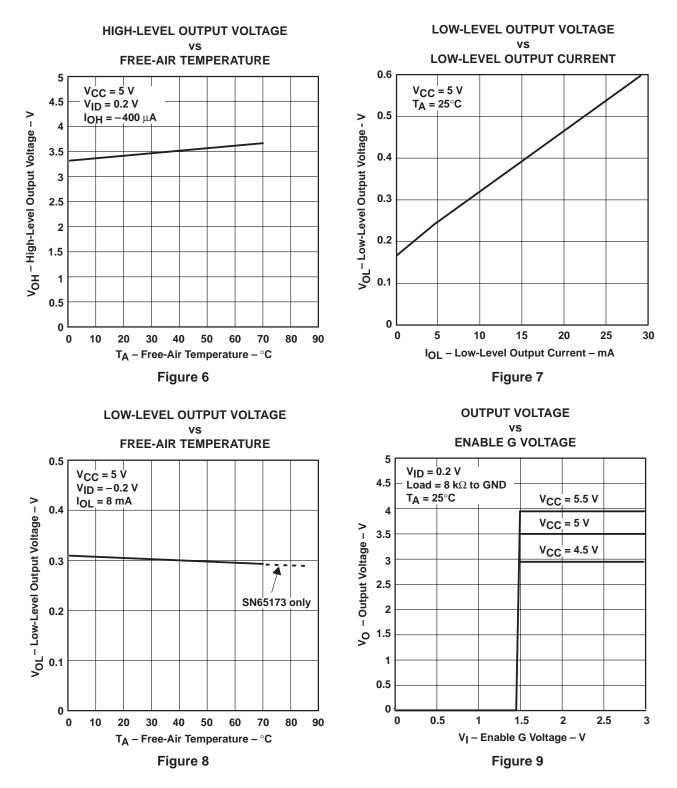
SLLS144E - OCTOBER 1980 - REVISED APRIL 2000


PARAMETER MEASUREMENT INFORMATION

- NOTES: A. CL includes probe and jig capacitance.
 - B. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_f \le 6$ ns, $t_f \le 6$ ns, $Z_O = 50 \Omega$.
 - C. All diodes are 1N916, or equivalent.
 - D. To test the active-low enable \overline{G} , ground G and apply an inverted input waveform to \overline{G} .

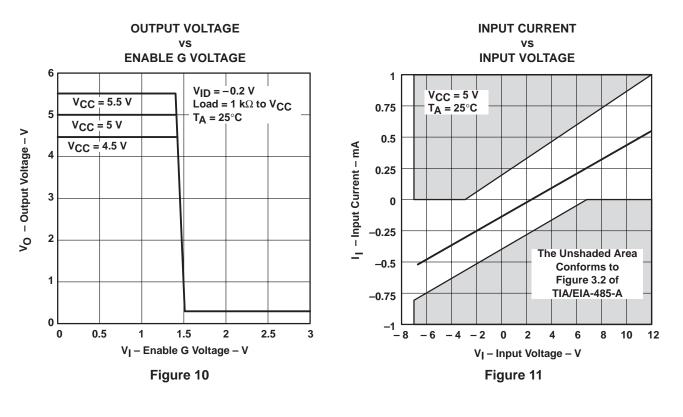

Figure 3. t_{PZL}, t_{PLZ} Test Circuit and Voltage Waveforms

SLLS144E - OCTOBER 1980 - REVISED APRIL 2000



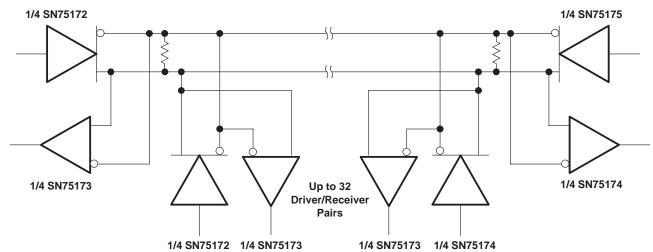
[†]Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

SLLS144E - OCTOBER 1980 - REVISED APRIL 2000



TYPICAL CHARACTERISTICS[†]

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.



SLLS144E - OCTOBER 1980 - REVISED APRIL 2000

TYPICAL CHARACTERISTICS

NOTE A: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

Figure 12. Typical Application Circuit

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
01/554701		0010		40		New Dello	(6)		FF 1- 40F	01554701	
SN55173J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN55173J	Samples
SN75173D	LIFEBUY	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75173	
SN75173DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75173	Samples
SN75173N	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN75173N	Samples
SN75173NSR	LIFEBUY	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75173	
SNJ55173J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ55173J	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

www.ti.com

PACKAGE OPTION ADDENDUM

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

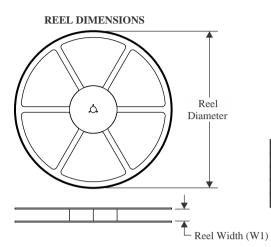
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

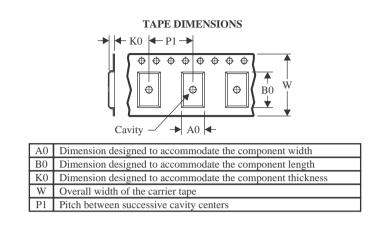
OTHER QUALIFIED VERSIONS OF SN55173, SN75173 :

• Catalog : SN75173

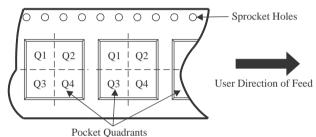
• Military : SN55173

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

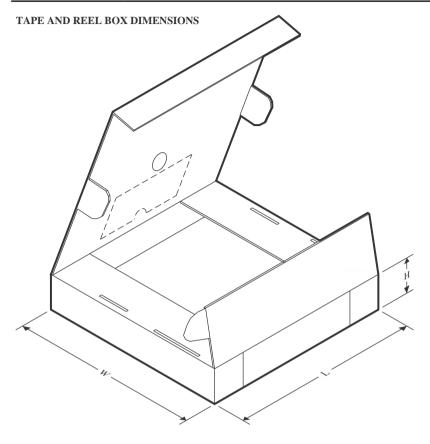


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

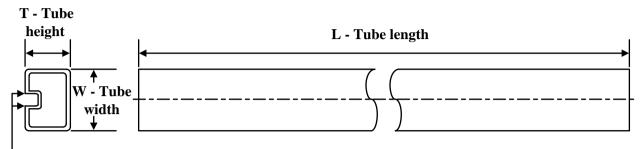

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75173DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN75173NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Jun-2022

*All dimensions are nominal


Device	Package Type	ckage Type Package Drawing Pins SPQ Length (mm)		Width (mm)	Height (mm)		
SN75173DR	SOIC	D	16	2500	340.5	336.1	32.0
SN75173NSR	SO	NS	16	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

3-Jun-2022

TUBE

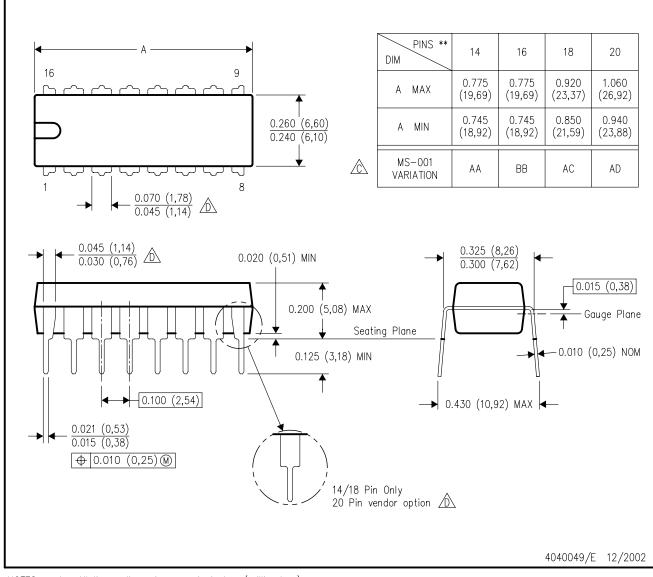
- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN75173D	D	SOIC	16	40	507	8	3940	4.32
SN75173N	N	PDIP	16	25	506	13.97	11230	4.32
SN75173N	N	PDIP	16	25	506	13.97	11230	4.32

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

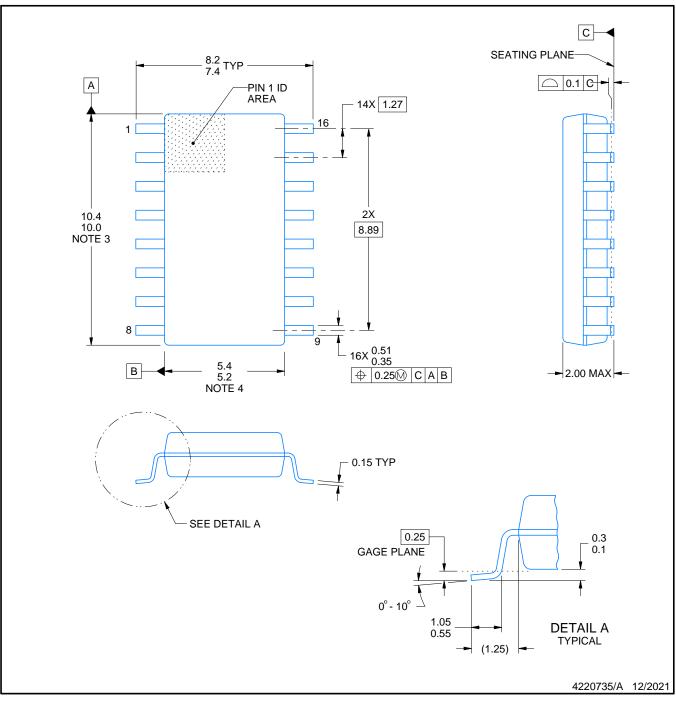
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


NS0016A

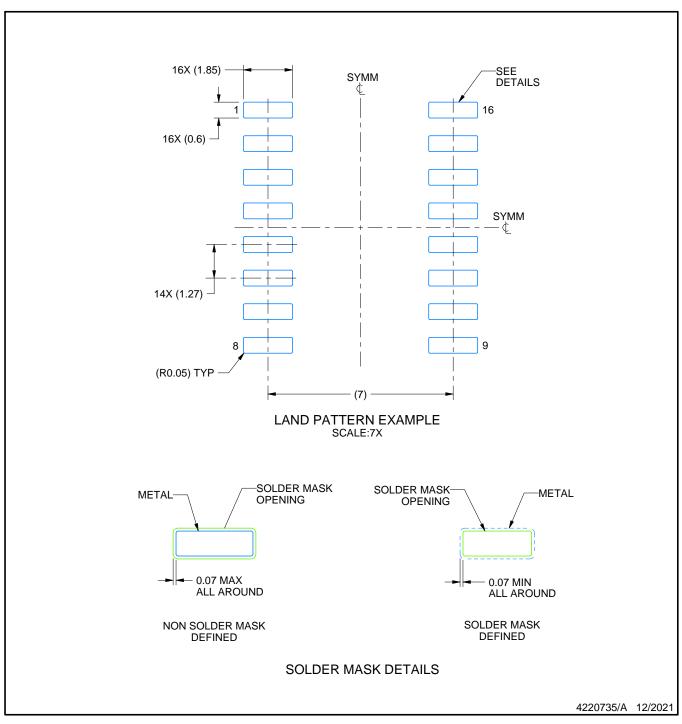
PACKAGE OUTLINE

SOP - 2.00 mm max height

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.



NS0016A

EXAMPLE BOARD LAYOUT

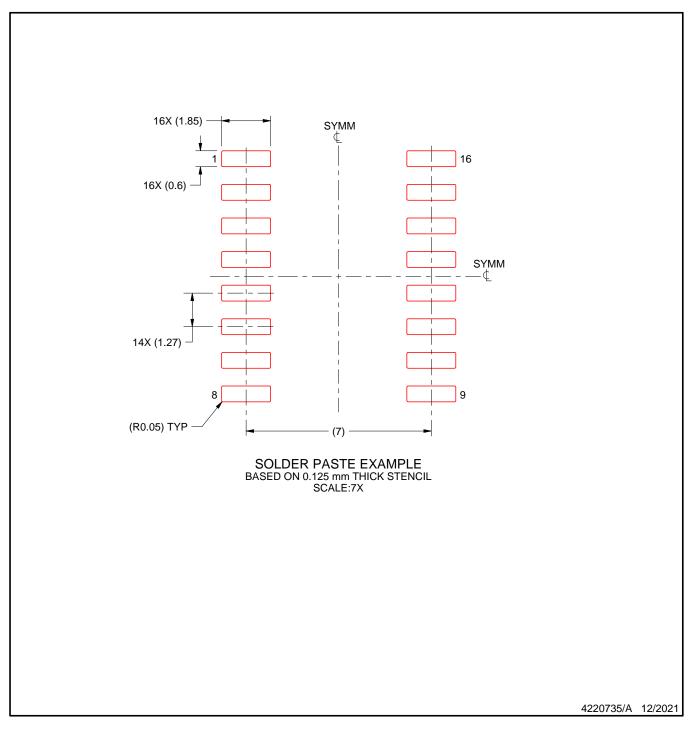
SOP - 2.00 mm max height

SOP

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



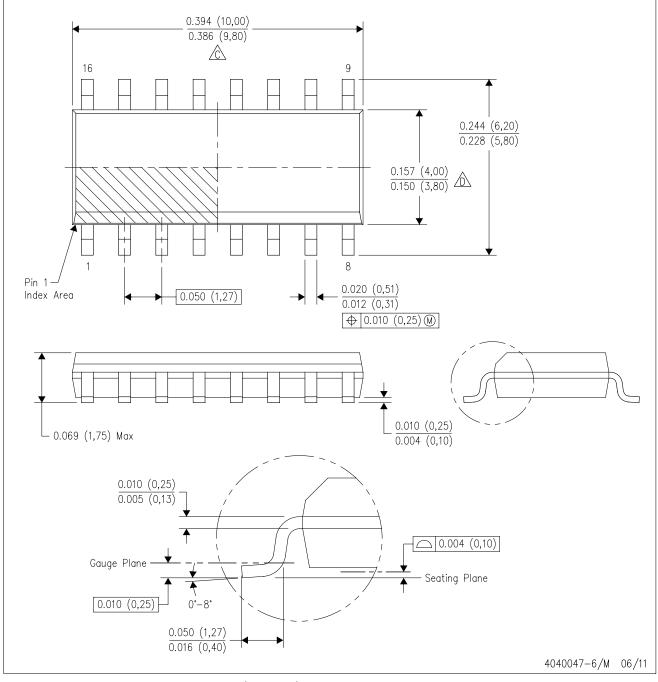
NS0016A

EXAMPLE STENCIL DESIGN

SOP - 2.00 mm max height

SOP

NOTES: (continued)


7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated