

Sample &

Buy

SMJ320C6203

SGUS033A-FEBRUARY 2002-REVISED MAY 2016

SMJ320C6203 Fixed-Point Digital Signal Processor

Features 1

- High-Performance Fixed-Point Digital Signal Processor (DSP) SMJ320C62x[™]
 - 5-ns Instruction Cycle Time
 - 200-MHz Clock Rate
 - Eight 32-Bit Instructions/Cycle
 - 1600 Million Instructions per Second (MIPS)
- 429-Pin Ball Grid Array (BGA) Package (GLP Suffix)
- VelociTI[™] Advanced Very-Long-Instruction-Word • (VLIW) C62x[™] DSP Core
 - Eight Highly-Independent Functional Units:
 - Six Arithmetic Logic Units (ALUs) (32-/40-Bit)
 - Two 16-Bit Multipliers (32-Bit Result)
 - Load-Store Architecture With 32 32-Bit General-Purpose Registers
 - Instruction Packing Reduces Code Size
 - All Instructions Conditional
- Instruction Set Features
 - Byte-Addressable (8-, 16-, 32-Bit Data)
 - 8-Bit Overflow Protection
 - Saturation
 - Bit-Field Extract, Set, Clear
 - Bit-Counting
 - Normalization
- 7Mb On-Chip SRAM
 - 3Mb Internal Program/Cache (96K 32-Bit _ Instructions)
 - 4Mb Dual-Access Internal Data (512KB)
 - Organized as Two 256KB Blocks for Improved Concurrency
- Flexible Phase-Locked-Loop (PLL) Clock Generator
- 32-Bit External Memory Interface (EMIF)
 - Glueless Interface to Synchronous Memories: SDRAM or SBSRAM
 - Glueless Interface to Asynchronous Memories: SRAM and EPROM
 - 52MB Addressable External Memory Space
- Four-Channel Bootloading Direct-Memory-Access (DMA) Controller With an Auxiliary Channel
- 32-Bit Expansion Bus Glueless/Low-Glue Interface to Popular PCI Bridge Chips
 - Glueless/Low-Glue Interface to Popular

Synchronous or Asynchronous Microprocessor Buses

- Master/Slave Functionality
- Glueless Interface to Synchronous FIFOs and Asynchronous Peripherals
- **Three Multichannel Buffered Serial Ports** (McBSPs)
 - Direct Interface to T1/E1, MVIP, SCSA _ Framers
 - ST-Bus-Switching Compatible
 - Up to 256 Channels Each
 - AC97-Compatible
 - Serial-Peripheral Interface (SPI) Compatible (Motorola[®])
- Two 32-Bit General-Purpose Timers
- IEEE-1149.1 (JTAG⁽²⁾) Boundary-Scan-Compatible
- 0.15-µm/5-Level Metal Process
 - CMOS Technology
- 3.3-V I/Os, 1.5-V Internal

2 Description

The SMJ320C6203 device is part of the SMJ320C62x fixed-point DSP generation in the SMJ320C6000 DSP platform. The C62x DSP devices are based on the high-performance, advanced VelociTI VLIW architecture developed by TI, making these DSPs an excellent choice for multichannel and multifunction applications.

The SMJ320C62x DSP offers cost-effective solutions to high-performance DSP-programming challenges. The SMJ320C6203 has a performance capability of up to 1600 MIPS at a clock rate of 200 MHz. The C6203 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 generalpurpose registers of 32-bit word length and eight highly-independent functional units.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SMJ320C6203	(:E(:B(-A (429)	27.00 mm × 27.00 mm × 2.26 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

IEEE Standard 1149.1-1990 Standard-Test-Access Port and (2)Boundary Scan Architecture.

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1	Features 1
2	Description 1
3	Revision History
4	Description (continued) 4
5	Characteristics of the C6203 DSP 4
6	Pin Configuration and Functions 5
7	Specifications
	7.1 Absolute Maximum Ratings 12
	7.2 Recommended Operating Conditions 12
	7.3 Thermal Information 12
	7.4 Electrical Characteristics
	7.5 Timing Requirements for CLKIN (PLL Used)
	7.6 Timing Requirements for CLKIN [PLL Bypassed (x1)]
	7.7 Timing Requirements for XCLKIN
	7.8 Timing Requirements for Asynchronous Memory
	Cycles
	7.9 Timing Requirements for Synchronous-Burst SRAM Cycles
	7.10 Timing Requirements for Synchronous DRAM
	Cycles 14
	7.11 Timing Requirements for the HOLD/HOLDA Cycles
	7.12 Timing Requirements for Reset
	7.13 Timing Requirements for Interrupt Response
	Cycles 15
	7.14 Timing Requirements for Synchronous FIFO Interface
	7.15 Timing Requirements for Asynchronous Peripheral
	Cycles
	Master 16
	7.17 Timing Requirements With C62x as Bus Master 16
	7.18 Timing Requirements With External Device as Asynchronous Bus Master
	7.19 Timing Requirements for Expansion Bus Arbitration (Internal Arbiter Enabled)
	7.20 Timing Requirements for McBSP 17
	7.21 Timing Requirements for FSR when GSYNC = 1. 17
	7.22 Timing Requirements for McBSP as SPI Master or
	Slave: CLKSTP = 10b, CLKXP = 0
	Slave: CLKSTP = 11b, CLKXP = 0 18
	7.24 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1
	7.25 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1
	7.26 Timing Requirements for Timer Inputs 18
	7.27 Timing Requirements for JTAG Test Port
	7.28 Switching Characteristics for CLKOUT2
	7.29 Switching Characteristics for XFCLK
	Characteristics
	7.31 Switching Characteristics for Synchronous-Burst SRAM Cycles
	7.32 Switching Characteristics for Synchronous DRAM

	Cycles 21
	7.33 Switching Characteristics for the HOLD/HOLDA
	Cycles
	7.34 Switching Characteristics for Reset
	7.35 Switching Characteristics for Interrupt Response
	Cycles 22
	7.36 Switching Characteristics for Synchronous FIFO Interface
	7.37 Switching Characteristics for Asynchronous
	Peripheral Cycles
	7.38 Switching Characteristics With External Device as
	Bus Master
	7.39 Switching Characteristics With C62x as Bus Master
	7.40 Switching Characteristics With External Device as
	Asynchronous Bus Master
	7.41 Switching Characteristics for Expansion Bus
	Arbitration (Internal Arbiter Enabled) 24
	7.42 Switching Characteristics for Expansion Bus Arbitration (Internal Arbiter Disabled)
	7.43 Switching Characteristics for McBSP
	7.44 Switching Characteristics for McBSP as SPI Master
	or Slave
	7.45 Switching Characteristics for McBSP as SPI Master
	or Slave: ČLKSTP = 11b, CLKXP = 0
	7.46 Switching Characteristics for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1
	7.47 Switching Characteristics for McBSP as SPI Master
	or Slave: CLKSTP = 11b, CLKXP = 1 27
	7.48 Switching Characteristics for DMAC Outputs 28
	7.49 Switching Characteristics for Timer Outputs
	7.50 Switching Characteristics for Power-Down Outputs
	7.51 Switching Characteristics for JTAG Test Port 28
8	Parameter Measurement Information
-	8.1 Signal Transition Levels
	8.2 Timing Parameters and Board Routing Analysis 30
9	Detailed Description
	9.1 Functional Block Diagram 51
	9.2 Feature Description 52
	9.3 Register Maps 59
10	Application and Implementation
	10.1 Typical Application65
11	Power Supply Recommendations
	11.1 Power-Supply Sequencing
	11.2 System-Level Design Considerations
12	11.3 Power-Supply Design Considerations
12	Device and Documentation Support
	12.1 Device Support
	12.3 Community Resources
	12.4 Trademarks
	12.5 Electrostatic Discharge Caution 69
	12.6 Glossary 69
13	Mechanical, Packaging, and Orderable
	Information

Copyright © 2002–2016, Texas Instruments Incorporated

3 Revision History

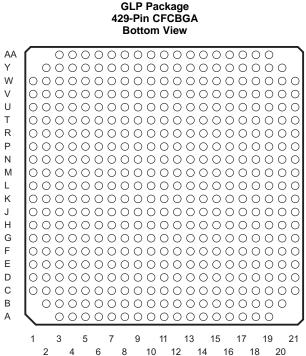
C	hanges from Original (February 2002) to Revision A	Page
•	Added Feature Description section, Application and Implementation section, Power Supply Recommendations section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Updated minimum values in Timing Requirements for Synchronous-Burst SRAM Cycles	14
•	Updated minimum values in Switching Characteristics for Synchronous-Burst SRAM Cycles	21
•	Updated minimum values in Switching Characteristics for Synchronous DRAM Cycles	21
•	Updated maximum values in Switching Characteristics With External Device as Bus Master	23
•	Updated maximum values in Switching Characteristics With C62x as Bus Master	24

4 **Description (continued)**

The eight functional units provide six ALUs for a high degree of parallelism and two 16-bit multipliers for a 32-bit result. The C6203 can produce two multiply-accumulates (MACs) per cycle for a total of 400 million MACs per second (MMACS). The C6203 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The C6203 device program memory consists of two blocks, with a 256KB block configured as memory-mapped program space, and the other 128KB block user-configurable as cache or memory-mapped program space. Data memory for the C6203 consists of two 256KB blocks of RAM.

The C6203 device has a powerful and diverse set of peripherals. The peripheral set includes three McBSPs, two general-purpose timers, a 32-bit expansion bus that offers ease of interface to synchronous or asynchronous industry-standard host bus protocols, and a glueless 32-bit EMIF capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals.

The C62x devices have a complete set of development tools that includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows[®] debugger interface for visibility into source code execution.


5 Characteristics of the C6203 DSP

This table shows significant features of the device, including the capacity of on-chip RAM, the peripherals, execution time, and package type with pin count. This data sheet focuses on the functionality of the SMJ320C6203 device. For more details on the C6000[™] DSP part numbering, see Figure 56.

	C6203	
	EMIF	✓
	DMA	4-channel with throughput enhancements
Peripherals	Expansion bus	✓
	McBSPs	3
	32-bit timers	2
	Size (bytes)	384K
Internal program memory	Organization	Block 0: 256KB mapped program Block 1: 128KB cache/mapped program
CPU ID + CPU rev ID	Control Status register (CSR.[31:16])	0x0003
Frequency	MHz	200
Cycle time	ns	5 ns (6203-200)
Valtara	Core (V)	1.5
Voltage	I/O (V)	3.3
PLL options	CLKIN frequency multiplier [bypass (x1), x4, x6, x7, x8, x9, x10, and x11]	Bypass (x1), x4, x6, x7, x8, x9, x10, and x11
BGA package 27 x 27 mm		GLP
Process technology	μm	0.15 µm
Product status	Product preview (PP), advance information (AI), production data (PD)	PD

6 Pin Configuration and Functions

0 0 10 12 14 10 1

Signal Descriptions

olginal Descriptions				
SIGNAL NAME	PIN NO.	TYPE ⁽¹⁾	DESCRIPTION	
CLOCK/PLL				
CLKIN	D10	I	Clock input	
CLKOUT1	Y17	0	Clock output at full device speed	
CLKOUT2	Y16	0	Clock output at half of device speed; used for synchronous memory interface	
CLKMODE0	C12	I	Clock mode selects; selects what multiply factors of the	
CLKMODE1	G10	I	input clock frequency the CPU frequency equals. For more details on the CLKMODE pins and the PLL	
CLKMODE2	G12	I	multiply factors for the C6203 device, see Clock PLL	
PLLV ⁽²⁾	B11	A ⁽³⁾	PLL analog V _{CC} connection for the low-pass filter	
PLLG ⁽²⁾	A11	A ⁽³⁾	PLL analog GND connection for the low-pass filter	
PLLF ⁽²⁾	G11	A ⁽³⁾	PLL low-pass filter connection to external components and a bypass capacitor	
JTAG EMULATIO	N			
TMS	W5	I	JTAG test-port mode select (features an internal pullup)	
TDO	R8	O/Z	JTAG test-port data out	
TDI	W4	I	JTAG test-port data in (features an internal pullup)	
ТСК	V5	I	JTAG test-port clock	
TRST	R7	I	JTAG test-port reset (features an internal pulldown)	
EMU1	Τ7	I/O/Z	Emulation pin 1, pullup with a dedicated 20-k Ω resistor	
EMU0	Y5	I/O/Z	Emulation pin 0, pullup with a dedicated 20-k Ω resistor	

(1) I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground

(2) PLLV, PLLG, and PLLF are not part of external voltage supply or ground. See *Clock PLL* for information on how to connect these pins.
 (3) A = Analog signal (PLL filter)

For emulation and normal operation, pull up EMU1 and EMU0 with a dedicated 20-k Ω resistor. For boundary scan, pull down EMU1 and EMU0 with a dedicated 20-k Ω resistor.

SMJ320C6203 SGUS033A-FEBRUARY 2002-REVISED MAY 2016

www.ti.com

NSTRUMENTS

EXAS

Signal Descriptions (continued)

SIGNAL NAME	PIN NO.	TYPE ⁽¹⁾	DESCRIPTION			
RESET AND INTER	RESET AND INTERRUPTS					
RESET	J4	Ι	Device reset			
NMI	К2	Ι	Nonmaskable interrupt Edge-driven (rising edge)			
EXT_INT7	R4		External interrupts			
EXT_INT6	P6		Edge-driven			
EXT_INT5	T2	I	Polarity independently selected via the External			
EXT_INT4	Т3		Interrupt Polarity register bits (EXTPOL.[3:0])			
IACK	R2	0	Interrupt acknowledge for all active interrupts serviced by the CPU			
INUM3	P4		Active interrupt identification number			
INUM2	P1	0	Valid during IACK for all active interrupts (not just			
INUM1	P2	0	external)Encoding order follows the interrupt-service fetch-			
INUM0	N6		packet ordering			
POWER-DOWN ST	TATUS					
PD	V3	0	Power-down modes 2 or 3 (active if high)			
EXPANSION BUS						
XCLKIN	C9	Ι	Expansion bus synchronous host interface clock input			
XFCLK	B9	0	Expansion bus FIFO interface clock output			

Copyright © 2002–2016, Texas Instruments Incorporated

Signal Descriptions (continued)

		criptions (co	
SIGNAL NAME	PIN NO.	TYPE ⁽¹⁾	DESCRIPTION
XD31	D11		
XD30	B13		
XD29	F12		
XD28	C13		
XD27	D12		
XD26	A14		
XD25	B14		
XD24	F13		
XD23	B15		Expansion bus data
XD22	C15		Used for transfer of data, address, and control
XD21	D13		Also controls initialization of DSP modes and average bus at report
XD20	B16		expansion bus at reset Note: For more information on pin control and boot
XD19	B17		configuration fields, see TMS320C6000 Peripherals
XD18	D14		Reference Guide (SPRU190) XD[30:16] - XCE[3:0] memory type
XD17	F15		XD13 – XBLAST polarity
XD16	C17		XD12 – XW/R polarity XD11 – Asynchronous or synchronous host operation
XD15	G14	I/O/Z	XD10 – Arbitration mode (internal or external) XD9 – FIFO
XD14	D17		mode XD8 - Little endian/big endian
XD13	C18		XD7 - SCRT select
XD12	E18		XD[4:0] - Boot mode
XD11	D18		All other expansion bus data pins not listed should be pulled down.
XD10	G15		For proper operation, XD7 must be pulled down with a 10-
XD9	D19		$k\Omega$ resistor. The board design should be wired such that a pullup or pulldown resistor can be used on XD7 for future applications.
XD8	F16		
XD7	F19		
XD6	E20		
XD5	G16		
XD4	H19		
XD3	G20		
XD2	J18		
XD1	H20		
XD0	H21		
XCE3	D3		
XCE2	G6		Expansion bus I/O port memory space enables
XCE1	00	O/Z	Enabled by bits 28, 29, and 30 of the word address
XCE0	E4		Only one asserted during any I/O port data access
XBE3/XA5	F6		
XBE3/XA3	F7		Expansion bus multiplexed byte-enable control/address
XBE2/XA4 XBE1/XA3		I/O/Z	 signals Act as byte-enable for host-port operation
XBE1/XA3 XBE0/XA2	B5 C7		 Act as address for I/O port operation
XOE		0/7	Evenencian hus I/O part output anable
XRE	B7	0/Z	Expansion bus I/O port output-enable
	B8	O/Z	Expansion bus I/O port read-enable
XWE/XWAIT	D7	O/Z	Expansion bus I/O port write-enable and host-port wait signals
XCS	D8	I	Expansion bus host-port chip-select input
XAS	G9	I/O/Z	Expansion bus host-port address strobe
XCNTL	A9	I	Expansion bus host control. XCNTL selects between expansion bus address or data register.

Copyright © 2002–2016, Texas Instruments Incorporated

SMJ320C6203 SGUS033A-FEBRUARY 2002-REVISED MAY 2016

NSTRUMENTS

EXAS

www.ti.com

SIGNAL NAME	PIN NO.	TYPE ⁽¹⁾	DESCRIPTION
XW/R	F9	I/O/Z	Expansion bus host-port write/read-enable. XW/R polarity is selected at reset.
XRDY	F4	I/O/Z	Expansion bus host-port ready (active low) and I/O port ready (active high)
XBLAST	C5	I/O/Z	Expansion bus host-port burst last-polarity selected at reset
XBOFF	C10	I	Expansion bus back off
XHOLD	C4	I/O/Z	Expansion bus hold request
XHOLDA	D6	I/O/Z	Expansion bus hold acknowledge
EMIF - CONTROL	SIGNALS COMMON TO ALL TYPES OF MEN	IORY	
CE3	V18		
CE2	W18		Memory space enables
CE1	T15	O/Z	 Enabled by bits 24 and 25 of the word address Only one asserted during any external data access
CE0	U18		Only one asserted during any external data access
BE3	R15		Byte-enable control
BE2	V19		• Decoded from the two lowest bits of the internal
BE1	U20	O/Z	addressByte-write enables for most types of memory
BE0	V16		 Can be directly connected to SDRAM read and write mask signal (SDQM)
EMIF - ADDRESS			
EA21	K18		
EA20	K16		
EA19	J20		
EA18	K19		
EA17	J21		
EA16	K20		
EA15	M19		
EA14	L16		
EA13	K21		
EA12	M18	0/7	Enternal address (constanting)
EA11	L21	O/Z	External address (word address)
EA10	N18		
EA9	M20		
EA8	M16		
EA7	R18		
EA6	M21		
EA5	N21	1	
EA4	N16		
EA3	P20		
EA2	T18		

Signal Descri		•
PIN NO.	TYPE ⁽¹⁾	DESCRIPTION
		1
Y6		
Т8		
Y7		
Y8		
V7		
Т9		
AA8		
V8		
Y9		
AA9		
V9		
T10		
Y10	I/O/Z	External data
W9		
V10		
T11		
AA10		
W10		
W12		
Y11		
Y12		
T12		
AA13		
R12		
V13		
Y13		
Y14		
T13		
Y15	I/O/Z	External data
V14		
ONOUS MEMORY CONTROL		1
T20	O/Z	Asynchronous memory read-enable
P16	O/Z	Asynchronous memory output-enable
R20	O/Z	Asynchronous memory write-enable
R16	I	Asynchronous memory ready input
	O/Z	SDRAM address 10 (separate for deactivate command)
V17	O/Z	SDRAM column-address strobe/SBSRAM address strobe
W17		SDRAM row-address strobe/SBSRAM output-enable
W15	O/Z	SDRAM write-enable/SBSRAM write-enable
	<u> </u>	
T19	I	Hold request from the host
		Hold-request-acknowledge to the host
	Y7 Y8 V7 T9 AA8 V8 Y9 AA9 Y9 AA9 Y10 Y10 W9 V10 T11 AA10 W10 W12 Y11 Y12 T12 AA13 R12 Y13 Y14 T13 Y14 T13 Y14 ONOUS MEMORY CONTROL T20 P16 R20 R16 NOUS DRAM (SDRAM)/SYNCHRONOUS BUR T14 V17 W17 W17 W15 TRATION	V6 Y6 T8 Y7 Y8 V7 T9 AA8 V8 Y9 AA9 V9 T10 Y10 T11 AA10 W10 W12 Y11 Y12 T12 AA13 R12 V13 Y14 T13 Y14 T13 Y14 T12 AA13 R12 ONOUS MEMORY CONTROL T20 O/Z R13 V14 ONUS DRAM (SDRAM)/SYNCHRONOUS BURST SRAM (T14 O/Z W17 O/Z W17 O/Z W17 O/Z W17 O/Z W17 O/Z

SMJ320C6203 SGUS033A-FEBRUARY 2002-REVISED MAY 2016

www.ti.com

NSTRUMENTS

EXAS

	Signal Descr		,
SIGNAL NAME	PIN NO.	TYPE ⁽¹⁾	DESCRIPTION
TIMER 0			
TOUT0	F2	0	Timer 0 or general-purpose output
TINP0	E2	I	Timer 0 or general-purpose input
TIMER 1		Т	1
TOUT1	G4	0	Timer 1 or general-purpose output
TINP1	H6	I	Timer 1 or general-purpose input
DMA ACTION CO	MPLETE STATUS	T	
DMAC3	R6		
DMAC2	U2	0	DMA action complete
DMAC1	Т6	Ŭ	
DMAC0	V4		
MULTICHANNEL	BUFFERED SERIAL PORT 0 (McBSP0)	- <u>n</u>	
CLKS0	K6	I	External clock source (as opposed to internal)
CLKR0	L1	I/O/Z	Receive clock
CLKX0	КЗ	I/O/Z	Transmit clock
DR0	M1	I	Receive data
DX0	L6	O/Z	Transmit data
FSR0	L2	I/O/Z	Receive frame sync
FSX0	L3	I/O/Z	Transmit frame sync
MULTICHANNEL	BUFFERED SERIAL PORT 1 (McBSP1)		
CLKS1	G2	I	External clock source (as opposed to internal)
CLKR1	H2	I/O/Z	Receive clock
CLKX1	H4	I/O/Z	Transmit clock
DR1	J2	I	Receive data
DX1	H3	O/Z	Transmit data
FSR1	J6	I/O/Z	Receive frame sync
FSX1	J1	I/O/Z	Transmit frame sync
MULTICHANNEL	BUFFERED SERIAL PORT 2 (McBSP2)	-	
CLKS2	L4	I	External clock source (as opposed to internal)
CLKR2	M2	I/O/Z	Receive clock
CLKX2	N4	I/O/Z	Transmit clock
DR2	P3	I	Receive data
DX2	N2	O/Z	Transmit data
FSR2	M6	I/O/Z	Receive frame sync
FSX2	N1	I/O/Z	Transmit frame sync
RESERVED FOR	TEST		· ·
RSV0	К1	I	Reserved for testing, pullup with a dedicated 20-k Ω resistor
RSV1	F3	I	Reserved for testing, pullup with a dedicated 20-k Ω resistor
RSV2	A10	I	Reserved for testing, pullup with a dedicated 20-k Ω resistor
RSV3	F11	0	Reserved (leave unconnected, do not connect to power or ground)
RSV4	D9	0	Reserved (leave unconnected, do not connect to power or ground)
	R11	_	
N/C	R9	_	No connect
	W7	_	1

SMJ320C6203

SGUS033A-FEBRUARY 2002-REVISED MAY 2016

SIGNAL NAME	PIN NO.	TYPE ⁽¹⁾	DESCRIPTION
		111.6.	DESCRIPTION
SUPPLY VOLTAG	ie pins		
DV _{DD} - 3.3 V	C8, C14, E3 , E19, H9 , H11, H13, J3, J8, J10, J12, J14, J19, K7, K9, K11, K13, K15, L8, L10, L12, L14, M7, M9, M11, M13, M15, N3, N8, N10, N12, N14, N19, P9, P11, P13, U3, U19, W8, W14, A3, A5, A7, A12, A13, A16, A18, B2, B4, B6, B10, B12, B19, C1, C3, C20, D2, D15, D16, D21, E1, E6, E8, E10, E12, E14, E16	S	3.3-V supply voltage (I/O)
CV _{DD} - 1.5 V	F5, F8, F10, F14, F17, F20, F21, G1, G7, G8, G13, G18, H5, H16, H17, H18, K4, K5, K17, L18, L19, L20, M3, M4, M5, M17, N20, P5, P17, P18, P19, R10, R14, R21, T1, T5, T17, U4, U6, U8, U10, U12, U14, U16, U21, V1, V11, V12, V15, V20, W2, W13, W19, W21, Y3, Y18, Y20, AA4, AA6, AA11, AA12, AA15, AA17, AA19	S	1.5-V supply voltage (core)
GROUND PINS			
VSS	A4, A6, A8, A15, A17, A19, B3, B18, B20, C2, C6, C11, C16, C19, C21, D1, D5, D20, E5, E7, E9, E11, E13, E15, E17, E21, F1, F18, G3, G5, G17, G19, G21, H1, H7, H8, H10, H12, H14, H15, J5, J7, J9, J11, J13, J15, J16, J17, K8, K10, K12, K14, L5, L7, L9, L11, L13, L15, L17, M8, M10, M12, M14, N5, N7, N9, N11, N13, N15, N17, P7, P8, P10, P12, P14, P15, P21, R1, R3, R5, R17, R19, T4, T21, U1, U5, U7, U9, U11, U13, U15, U17, V2, V21, W1, W3, W6, W11, W16, W20, Y2, Y4, Y19, AA3, AA5, AA7, AA14, AA16, AA18	GND	Ground pins

TEXAS INSTRUMENTS

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

					MIN	MAX	UNIT
	Quantu valta sa	CV _{DD} ⁽²)		-0.3	1.8	V
	Supply voltage	DV _{DD} ⁽²)		-0.3	4	V
	Input voltage				-0.3	4	V
	Output voltage				-0.3	4	V
T _C	Operating case temperature		-55	125	°C		
	Temperature cycle (10	000-cycle perfo	rmance)		-55	125	°C
T _{stg}	Storage temperature				-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to V_{SS} .

7.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
CV_{DD}	Supply voltage, core	1.43	1.5	1.57	V
DV_DD	Supply voltage, I/O	3.14	3.3	3.46	V
V _{SS}	Supply ground	0	0	0	V
V _{IH}	High-level input voltage ⁽¹⁾			2	V
V _{IL}	Low-level input voltage ⁽²⁾			0.8	V
I _{OH}	High-level output current			-8	mA
I _{OL}	Low-level output current			8	mA
T _C	Operating case temperature	-55		125	°C

(1) V_{IH} is not production tested for: CLKMO<u>DE [2</u>:0], CLKIN, XCLKIN, XCS.

(2) V_{IL} is not production tested for: CLKIN, TRST.

7.3 Thermal Information

		SMJ320C6203		
	THERMAL METRIC ⁽¹⁾	GLP (CFCBGA)	UNIT	
			529 PINS	
$R_{\theta JA}$	R _{0JA} Junction-to-ambient thermal resistance			°C/W
R _{0JC(top)}	top) Junction-to-case (top) thermal resistance, measured to top of the package lid		7.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance, measured by soldering a thermocouple to one of the middle traces on the board at the edge of the package		6.2	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance, measured to botto	om of solder ball	3.0	°C/W
		150 fpm	11.8	
R _{0JMA}	Junction-to-moving air thermal resistance	250 fpm	11.1	°C/W
	500 fpm		10.2	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.4 Electrical Characteristics

over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TY	P MAX	UNIT
V _{OH}	High-level output voltage ⁽¹⁾	$DV_{DD} = MIN, I_{OH} = MAX$	2.	4	V
V _{OL}	Low-level output voltage ⁽¹⁾	$DV_{DD} = MIN, I_{OL} = MAX$	0.	6	V
li -	Input current ⁽²⁾	$V_{I} = V_{SS}$ to DV_{DD}	±1	0	μA
I _{OZ}	Off-state output current ⁽³⁾	$V_{O} = DV_{DD} \text{ or } 0 \text{ V}$	±1	0	μA
I _{DD2V}	Supply current, CPU + CPU memory access ⁽⁴⁾	CV _{DD} = NOM, CPU clock = 200 MHz	34	0	mA
I _{DD2V}	Supply current, peripherals ⁽⁴⁾	CV_{DD} = NOM, CPU clock = 200 MHz	23	5	mA
I _{DD3V}	Supply current, I/O pins ⁽⁴⁾	CV_{DD} = NOM, CPU clock = 200 MHz	4	5	mA
Ci	Input capacitance			12	pF
Co	Output capacitance			15	pF

(1) V_{OH} and V_{OL} are not production tested for: CLKOUT1, <u>EMU0</u>, and EMU1.

(2) TMS and TDI are not included due to internal pullups. TRST is not included due to internal pulldown.

(3) TDO is not production tested.

(4) Measured with average activity (50% high power/ 50% low power). For more details on CPU, peripheral, and I/O activity, see the TMS320C6000 Power Consumption Summary application report (SPRA486).

7.5 Timing Requirements for CLKIN (PLL Used)

see Figure 5⁽¹⁾⁽²⁾⁽³⁾

NO.		MIN MAX	UNIT
1	t _{c(CLKIN)} Cycle time, CLKIN	5 × M	ns
2	t _{w(CLKINH)} Pulse duration, CLKIN high	⁽⁴⁾ 0.45C	ns
3	t _{w(CLKINL)} Pulse duration, CLKIN low	⁽⁴⁾ 0.45C	ns
4	t _{t(CLKIN)} Transition time, CLKIN	⁽⁴⁾ 0.5	ns

(1) The reference points for the rise and fall transitions are measured at V_{IL} MAX and V_{IH} MIN.

(2) M = The PLL multiplier factor (x4, x6, x7, x8, x9, x10, or x11).

(3) C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns.

(4) This parameter is not production tested.

7.6 Timing Requirements for CLKIN [PLL Bypassed (x1)]

see Figure 5⁽¹⁾⁽²⁾

NO.			MIN	MAX	UNIT
1	t _{c(CLKIN)}	Cycle time, CLKIN	5		ns
2	t _{w(CLKINH)}	Pulse duration, CLKIN high	⁽³⁾ 0.45C		ns
3	t _{w(CLKINL)}	Pulse duration, CLKIN low	⁽³⁾ 0.45C		ns
4	t _{t(CLKIN)}	Transition time, CLKIN		⁽³⁾ 0.6	ns

(1) The reference points for the rise and fall transitions are measured at V_{IL} MAX and V_{IH} MIN.

(2) C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns. The maximum CLKIN cycle time in PLL bypass mode (x1) is 200 MHz.

(3) This parameter is not production tested.

7.7 Timing Requirements for XCLKIN

see Figure 6⁽¹⁾

NO.		MIN MAX	UNIT
1	t _{c(XCLKIN)} Cycle time, XCLKIN	4P	ns
2	t _{w(XCLKINH)} Pulse duration, XCLKIN high	⁽²⁾ 1.8P	ns
3	t _{w(XCLKINL)} Pulse duration, XCLKIN low	⁽²⁾ 1.8P	ns

(1) P = 1 / CPU clock frequency in ns.

(2) This parameter is not production tested.

ISTRUMENTS

EXAS

7.8 Timing Requirements for Asynchronous Memory Cycles

see Fig	see Figure 9 through Figure 12 ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾					
NO.			MIN	MAX	UNIT	
3	t _{su(EDV-AREH)}	Setup time, EDx valid before ARE high	1		ns	
4	t _{h(AREH-EDV)}	Hold time, EDx valid after ARE high	4.9		ns	
6	t _{su(ARDYH-AREL)}	Setup time, ARDY high before ARE low	-[(RST - 3) × P - 6]		ns	
7	t _{h(AREL-ARDYH)}	Hold time, ARDY high after ARE low	(RST - 3) × P + 2		ns	
9	t _{su(ARDYL-AREL)}	Setup time, ARDY low before ARE low	-[(RST - 3) × P - 6]		ns	
10	t _{h(AREL-ARDYL)}	Hold time, ARDY low after ARE low	(RST - 3) × P + 2		ns	
11	t _{w(ARDYH)}	Pulse duration, ARDY high	⁽⁵⁾ 2P		ns	
15	t _{su(ARDYH-AWEL)}	Setup time, ARDY high before AWE low	-[(WST - 3) × P - 6]		ns	
16	t _{h(AWEL-ARDYH)}	Hold time, ARDY high after AWE low	(WST - 3) × P + 2		ns	
18	t _{su(ARDYL-AWEL)}	Setup time, ARDY low before AWE low	-[(WST - 3) × P - 6]		ns	
19	t _{h(AWEL-ARDYL)}	Hold time, ARDY low after AWE low	(WST - 3) × P + 2		ns	

(1) To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. If ARDY does meet setup or hold time, it may be recognized in the current cycle or the next cycle. Thus, ARDY can be an asynchronous input.

(2) RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are programmed by the EMIF CE space control registers.

(3) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(4) The sum of RS and RST (or WS and WST) must be a minimum of 4 to use ARDY input to extend strobe width.

(5) This parameter is not production tested.

7.9 Timing Requirements for Synchronous-Burst SRAM Cycles

see Figure 13

NO.		MIN MAX	UNIT
7	t _{su(EDV-CKO2H)} Setup time, read EDx valid before CLKOUT2 high	2.9	ns
8	t _{h(CKO2H-EDV)} Hold time, read EDx valid after CLKOUT2 high	2.3	ns

7.10 Timing Requirements for Synchronous DRAM Cycles

see Figure 15

NC	0.			MIN	MAX	UNIT
7	7	t _{su(EDV-CKO2H)}	Setup time, read EDx valid before CLKOUT2 high	1.3		ns
8	3	t _{h(CKO2H-EDV)}	Hold time, read EDx valid after CLKOUT2 high	2.9		ns

7.11 Timing Requirements for the HOLD/HOLDA Cycles

see Figure 21 (1)

NO.		MIN MAX	UNIT
3	t _{oh(HOLDAL-HOLDL)} Output hold time, HOLD low after HOLDA low	⁽²⁾ P	ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns

(2) This parameter is not production tested.

7.12 Timing Requirements for Reset

see Figure 22⁽¹⁾

NO.			MIN	MAX	UNIT
1	t _{w(RST)}	Duration of the RESET pulse (PLL stable) ⁽²⁾	⁽³⁾ 10P		ns
		Duration of the RESET pulse (PLL needs to sync up) ⁽⁴⁾	⁽³⁾ 250		μs
10	t _{su(XD)}	Setup time, XD configuration bits valid before RESET high ⁽⁵⁾	⁽³⁾ 5P		ns
11	t _{h(XD)}	Hold time, XD configuration bits valid after RESET high ⁽⁵⁾	⁽³⁾ 5P		ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) This parameter applies to CLKMODE x1 when CLKIN is stable, and applies to CLKMODE x4, x6, x7, x8, x9, x10, and x11 when CLKIN and PLL are stable.

(3) This parameter is not production tested.

(4) This parameter applies to CLKMODE x4, x6, x7, x8, x9, x10, and x11 only. (It does not apply to CLKMODE x1.) The RESET signal is not connected internally to the clock PLL circuit. However, the PLL may need up to 250 µs to stabilize following device power-up or after the PLL configuration has been changed. During that time, RESET must be asserted to ensure proper device operation. See Clock PLL for PLL lock times.

(5) XD[31:0] are the boot configuration pins during device reset.

7.13 Timing Requirements for Interrupt Response Cycles

see Figure 23⁽¹⁾

NO.		MIN MAX	UNIT
2	t _{w(ILOW)} Duration of the interrupt pulse low	⁽²⁾ 2P	ns
3	t _{w(IHIGH)} Duration of the interrupt pulse high	⁽²⁾ 2P	ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) This parameter is not production tested.

7.14 Timing Requirements for Synchronous FIFO Interface

see Figure 24 through Figure 26

NO.			MIN MAX	UNIT
5	t _{su(XDV-XFCKH)} Se	etup time, read XDx valid before XFCLK high	3	ns
6	t _{h(XFCKH-XDV)} He	old time, read XDx valid after XFCLK high	2.5	ns

7.15 Timing Requirements for Asynchronous Peripheral Cycles

see Figure 27 through Figure 30⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾

NO.			MIN	MAX	UNIT
3	t _{su(XDV-XREH)}	Setup time, XDx valid before XRE high	4.5		ns
4	t _{h(XREH-XDV)}	Hold time, XDx valid after XRE high	2.5		ns
6	t _{su(XRDYH-XREL)}	Setup time, XRDY high before XRE low	-[(RST - 3) × P - 6]		ns
7	t _{h(XREL-XRDYH)}	Hold time, XRDY high after XRE low	(RST - 3) × P + 2		ns
9	t _{su(XRDYL-XREL)}	Setup time, XRDY low before XRE low	-[(RST - 3) × P - 6]		ns
10	t _{h(XREL-XRDYL)}	Hold time, XRDY low after XRE low	(RST - 3) × P + 2		ns
11	t _{w(XRDYH)}	Pulse duration, XRDY high	⁽⁵⁾ 2P		ns
15	t _{su(XRDYH-XWEL)}	Setup time, XRDY high before XWE low	-[(WST - 3) × P - 6]		ns
16	t _{h(XWEL-XRDYH)}	Hold time, XRDY high after \overline{XWE} low	(WST - 3) × P + 2		ns
18	t _{su(XRDYL-XWEL)}	Setup time, XRDY low before XWE low	-[(WST - 3) × P - 6]		ns
19	t _{h(XWEL-XRDYL)}	Hold time, XRDY low after XWE low	(WST - 3) × P + 2		ns

(1) To ensure data setup time, simply program the strobe width wide enough. XRDY is internally synchronized. If XRDY does meet setup or hold time, it may be recognized in the current cycle or the next cycle. Thus, XRDY can be an asynchronous input.

(2) RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are programmed by the expansion bus XCE space control registers.

(3) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(4) The sum of RS and RST (or WS and WST) must be a minimum of 4 to use XRDY input to extend strobe width.

(5) This parameter is not production tested.

STRUMENTS

EXAS

7.16 Timing Requirements With External Device as Bus Master

see Figure 31 and Figure 32

NO.			MIN	MAX	UNIT
1	t _{su(XCSV-XCKIH)}	Setup time, XCS valid before XCLKIN high	3.5		ns
2	t _{h(XCKIH-XCS)}	Hold time, XCS valid after XCLKIN high	2.8		ns
3	t _{su(XAS-XCKIH)}	Setup time, XAS valid before XCLKIN high	3.5		ns
4	t _{h(XCKIH-XAS)}	Hold time, XAS valid after XCLKIN high	2.8		ns
5	t _{su(XCTL-XCKIH)}	Setup time, XCNTL valid before XCLKIN high	3.5		ns
6	t _{h(XCKIH-XCTL)}	Hold time, XCNTL valid after XCLKIN high	2.8		ns
7	t _{su(XWR-XCKIH)}	Setup time, XW/R valid before XCLKIN high ⁽¹⁾	3.5		ns
8	t _{h(XCKIH-XWR)}	Hold time, XW/R valid after XCLKIN high ⁽¹⁾	2.8		ns
9	t _{su(XBLTV-XCKIH)}	Setup time, XBLAST valid before XCLKIN high ⁽²⁾	3.5		ns
10	t _{h(XCKIH-XBLTV)}	Hold time, XBLAST valid after XCLKIN high ⁽²⁾	2.8		ns
16	t _{su(XBEV-XCKIH)}	Setup time, $\overline{\text{XBE}[3:0]}$ /XA[5:2] valid before XCLKIN high $^{(3)}$	3.5		ns
17	t _{h(XCKIH-XBEV)}	Hold time, $\overline{XBE[3:0]}/XA[5:2]$ valid after XCLKIN high ⁽³⁾	2.8		ns
18	t _{su(XD-XCKIH)}	Setup time, XDx valid before XCLKIN high	3.5		ns
19	t _{h(XCKIH-XD)}	Hold time, XDx valid after XCLKIN high	2.8		ns

(1) XW/R input/output polarity selected at boot

(2)

 $\frac{\text{XBLAST}}{\text{XBE[3:0]}/\text{XA[5:2]}} \text{ operate as byte-enables } \overline{\text{XBE[3:0]}} \text{ during host-port accesses.}$ (3)

7.17 Timing Requirements With C62x as Bus Master

see Figure 33 through Figure 35

NO.			MIN	MAX	UNIT
9	t _{su(XDV-XCKIH)}	Setup time, XDx valid before XCLKIN high	3.5		ns
10	t _{h(XCKIH-XDV)}	Hold time, XDx valid after XCLKIN high	2.8		ns
11	t _{su(XRY-XCKIH)}	Setup time, XRDY valid before XCLKIN high ⁽¹⁾	3.5		ns
12	t _{h(XCKIH-XRY)}	Hold time, XRDY valid after XCLKIN high ⁽¹⁾	2.8		ns
14	t _{su(XBFF-XCKIH)}	Setup time, XBOFF valid before XCLKIN high	3.5		ns
15	t _{h(XCKIH-XBFF)}	Hold time, XBOFF valid after XCLKIN high	2.8		ns

(1) XRDY operates as active-low ready input/output during host-port accesses.

7.18 Timing Requirements With External Device as Asynchronous Bus Master

see Figure 36 and Figure 37 $^{\rm (1)}$

NO.			MIN	MAX	UNIT
1	t _{w(XCSL)}	Pulse duration, XCS low	4P		ns
2	t _{w(XCSH)}	Pulse duration, XCS high	4P		ns
3	t _{su(XSEL-XCSL)}	Setup time, expansion bus select signals $^{(2)}$ valid before $\overline{\text{XCS}}$ low	1		ns
4	t _{h(XCSL-XSEL)}	Hold time, expansion bus select signals $^{(2)}$ valid after $\overline{\text{XCS}}$ low	3.4		ns
10	t _{h(XRYL-XCSL)}	Hold time, XCS low after XRDY low	⁽³⁾ P + 1.5		ns
11	t _{su(XBEV-XCSH)}	Setup time, $\overline{\text{XBE}[3:0]}/\text{XA}[5:2]$ valid before $\overline{\text{XCS}}$ high ⁽⁴⁾	1		ns
12	t _{h(XCSH-XBEV)}	Hold time, $\overline{\text{XBE}[3:0]}/\text{XA}[5:2]$ valid after $\overline{\text{XCS}}$ high ⁽⁴⁾	3		ns
13	t _{su(XDV-XCSH)}	Setup time, XDx valid before $\overline{\text{XCS}}$ high	1		ns
14	t _{h(XCSH-XDV)}	Hold time, XDx valid after $\overline{\text{XCS}}$ high	3		ns

(1) Expansion bus select signals include XCNTL and XR/W.

P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. (2)

(3) This parameter is not production tested.

(4) XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.

7.19 Timing Requirements for Expansion Bus Arbitration (Internal Arbiter Enabled)

see Figure 38⁽¹⁾

NO.			MIN MA	X UNIT
3	t _{oh(XHDAH-XHDH)}	Output hold time, XHOLD high after XHOLDA high	⁽²⁾ P	ns
			ł	

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) This parameter is not production tested.

7.20 Timing Requirements for McBSP

see Figure 40⁽¹⁾⁽²⁾

NO.				MIN	MAX	UNIT
2	t _{c(CKRX)}	Cycle time, CLKR/X	CLKR/X ext	2P ⁽³⁾		ns
3	t _{w(CKRX)}	Pulse duration, CLKR/X high or CLKR/X low	CLKR/X ext	⁽⁴⁾ P - 1 ⁽⁵⁾		ns
			CLKR int	9		
5	t _{su(FRH-CKRL)}	Setup time, external FSR high before CLKR low	CLKR ext	2		ns
			CLKR int	6		
6	t _{h(CKRL-FRH)}	Hold time, external FSR high after CLKR low	CLKR ext	4		ns
			CLKR int	8		
7	t _{su(DRV-CKRL)}	Setup time, DR valid before CLKR low	CLKR ext	0.5		ns
			CLKR int	3		
8	t _{h(CKRL-DRV)}	Hold time, DR valid after CLKR low	CLKR ext	5		ns
			CLKX int	9		
10	t _{su(FXH-CKXL)}	Setup time, external FSX high before CLKX low	CLKX ext	2		ns
			CLKX int	6		
11	t _{h(CKXL-FXH)}	Hold time, external FSX high after CLKX low	CLKX ext	4		ns

(1) CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

(2) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(3) The maximum bit rate for the C6203 device is 100 Mbps or CPU / 2 (the slower of the two). Take care to ensure that the AC timings specified in this data sheet are met. The maximum bit rate for McBSP-to-McBSP communications is 100 MHz; therefore, the minimum CLKR / X clock cycle is either twice the CPU cycle time (2P), or 10 ns (100 MHz), whichever value is larger. For example, when running parts at 200 MHz (P = 5 ns), use 10 ns as the minimum CLKR/X clock cycle (by setting the appropriate CLKGDV ratio or external clock source). When running parts at 100 MHz (P = 10 ns), use 2P = 20 ns (50 MHz) as the minimum CLKR/X clock cycle. The maximum bit rate for McBSP-to-McBSP communications applies when the serial port is a master of the clock and frame syncs (with CLKR connected to CLKX, FSR connected to FSX, CLKXM = FSXM = 1, and CLKRM = FSRM = 0) in data delay 1 or 2 mode (R/XDATDLY = 01b or 10b) and the other device the McBSP communicates to is a slave.

(4) This parameter is not production tested.

(5) The minimum CLKR/X pulse duration is either (P − 1) or 4 ns, whichever is larger. For example, when running parts at 200 MHz (P = 5 ns), use 4 ns as the minimum CLKR/X pulse duration. When running parts at 100 MHz (P = 10 ns), use (P − 1) = 9 ns as the minimum CLKR/X pulse duration.

7.21 Timing Requirements for FSR when GSYNC = 1

see Figure 41

NO.			MIN MAX	UNIT
1	t _{su(FRH-CKSH)}	Setup time, FSR high before CLKS high	(1)4	ns
2	t _{h(CKSH-FRH)}	Hold time, FSR high after CLKS high	(1)4	ns

(1) This parameter is not production tested.

TRUMENTS

7.22 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0

see Figure 42⁽¹⁾⁽²⁾

NO.	. M.		MASTER	ł	SLAVE		UNIT
			MIN	MAX	MIN	MAX	UNIT
4	t _{su(DRV-CKXL)}	Setup time, DR valid before CLKX low	⁽³⁾ 12		⁽³⁾ 2 – 3P		ns
5	t _{h(CKXL-DRV)}	Hold time, DR valid after CLKX low	⁽³⁾ 4		⁽³⁾ 5 + 6P		ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

(3) This parameter is not production tested.

7.23 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0

see Figure 43⁽¹⁾⁽²⁾

NO.			MASTER		SLAVE		UNIT
			MIN	MAX	MIN	MAX	
4	t _{su(DRV-CKXH)}	Setup time, DR valid before CLKX high	⁽³⁾ 12		⁽³⁾ 2 – 3P		ns
5	t _{h(CKXH-DRV)}	Hold time, DR valid after CLKX high	⁽³⁾ 4		⁽³⁾ 5 + 6P		ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

(3) This parameter is not production tested.

7.24 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1

see Figure 44⁽¹⁾⁽²⁾

NO.	NO.		MASTER		SLAVE		UNIT
			MIN	MAX	MIN	MAX	
4	t _{su(DRV-CKXH)}	Setup time, DR valid before CLKX high	⁽³⁾ 12		⁽³⁾ 2 – 3P		ns
5	t _{h(CKXH-DRV)}	Hold time, DR valid after CLKX high	⁽³⁾ 4		⁽³⁾ 5 + 6P		ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

(3) This parameter is not production tested.

7.25 Timing Requirements for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1

see Figure 45⁽¹⁾⁽²⁾

NO.			MAST	MASTER		SLAVE	
			MIN	MAX	MIN	MAX	
4	t _{su(DRV-CKXL)}	Setup time, DR valid before CLKX low	⁽³⁾ 12		⁽³⁾ 2 – 3P		ns
5	t _{h(CKXL-DRV)}	Hold time, DR valid after CLKX low	⁽³⁾ 4		⁽³⁾ 5 + 6P		ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

(3) This parameter is not production tested.

7.26 Timing Requirements for Timer Inputs

see Figure 47⁽¹⁾

NO.		MIN MAX	UNIT
1	t _{w(TINPH)} Pulse duration, TINP high	⁽²⁾ 2P	ns
2	t _{w(TINPL)} Pulse duration, TINP low	⁽²⁾ 2P	ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns

(2) This parameter is not production tested.

7.27 Timing Requirements for JTAG Test Port

see	Fic	nire	<u>4</u> 9
266	ΓIÇ	Juie	49

www.ti.com

NO.			MIN MAX	UNIT
1	t _{c(TCK)}	Cycle time, TCK	⁽¹⁾ 35	ns
3	t _{su(TDIV-TCKH)}	Setup time, TDI/TMS/TRST valid before TCK high	⁽¹⁾ 11	ns
4	t _{h(TCKH-TDIV)}	Hold time, TDI/TMS/TRST valid after TCK high	(1)g	ns

(1) This parameter is not production tested.

STRUMENTS

EXAS

7.28 Switching Characteristics for CLKOUT2

over recommended operating conditions for CLKOUT2⁽¹⁾⁽²⁾ (see Figure 7)

NO.		PARAMETER	MIN	MAX	UNIT
1	t _{c(CKO2)}	Cycle time, CLKOUT2	⁽³⁾ 2P - 0.7	⁽³⁾ 2P + 0.7	ns
2	t _{w(CKO2H)}	Pulse duration, CLKOUT2 high	⁽³⁾ P - 0.7	⁽³⁾ P + 0.7	ns
3	t _{w(CKO2L)}	Pulse duration, CLKOUT2 low	⁽³⁾ P - 0.7	⁽³⁾ P + 0.7	ns

(1) P = 1 / CPU clock frequency in ns.

(2) The reference points for the rise and fall transitions are measured at V_{OL} MAX and V_{OH} MIN.

(3) This parameter is not production tested.

7.29 Switching Characteristics for XFCLK

over recommended operating conditions for XFCLK⁽¹⁾⁽²⁾ (see Figure 8)

NO.	PARAMETER	MIN	MAX	UNIT
1	t _{c(XFCK)} Cycle time, XFCLK	⁽³⁾ D × P - 0.7	$^{(3)}$ D × P + 0.7	ns
2	t _{w(XFCKH)} Pulse duration, XFCLK high	⁽³⁾ (D/2) × P - 0.7	⁽³⁾ (D/2) × P + 0.7	ns
3	t _{w(XFCKL)} Pulse duration, XFCLK low	⁽³⁾ (D/2) × P - 0.7	⁽³⁾ (D/2) × P + 0.7	ns

(1) P = 1 / CPU clock frequency in ns.

(2) D = 8, 6, 4, or 2; FIFO clock divide ratio, user-programmable

(3) This parameter is not production tested.

7.30 Asynchronous Memory Timing Switching Characteristics

over recommended operating conditions for asynchronous memory cycles⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾ (see Figure 9 through Figure 12)

NO.	PARAMETER		MIN	ТҮР	MAX	UNIT
1	t _{osu(SELV-AREL)}	Output setup time, select signals valid to ARE low	RS × P - 2			ns
2	t _{oh(AREH-SELIV)}	Output hold time, ARE high to select signals invalid	⁽⁵⁾ RH × P – 2			ns
5	t _{w(AREL)}	Pulse duration, ARE low		RST × P		ns
8	t _{d(ARDYH-AREH)}	Delay time, ARDY high to ARE high	⁽⁵⁾ 3P		⁽⁵⁾ 4P + 5	ns
12	t _{osu(SELV-AWEL)}	Output setup time, select signals valid to AWE low		WS × P - 3		ns
13	t _{oh(AWEH-SELIV)}	Output hold time, \overline{AWE} high to select signals invalid		⁽⁵⁾ WH × P - 2		ns
14	t _{w(AWEL)}	Pulse duration, AWE low		WST × P		ns
17	t _{d(ARDYH-AWEH)}	Delay time, ARDY high to AWE high	⁽⁵⁾ 3P		⁽⁵⁾ 4P + 5	ns

(1) RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are programmed by the EMIF CE space control registers.

(2) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(3) The sum of RS and RST (or WS and WST) must be a minimum of 4 to use ARDY input to extend strobe width.

(4) Select signals include: CEx, BE[3:0], EA[21:2], AOE; and for writes, include ED[31:0], with the exception that CEx can stay active for an additional 7P ns following the end of the cycle.

(5) This parameter is not production tested.

7.31 Switching Characteristics for Synchronous-Burst SRAM Cycles

over recommended operating conditions for synchronous-burst SRAM cycles⁽¹⁾⁽²⁾ (see Figure 13 and Figure 14)

NO.		PARAMETER	MIN	MAX	UNIT
1	t _{osu(CEV-CKO2H)}	Output setup time, CEx valid before CLKOUT2 high	P - 1.7		ns
2	t _{oh(CKO2H-CEV)}	Output hold time, CEx valid after CLKOUT2 high	⁽³⁾ P - 4		ns
3	t _{osu(BEV-CKO2H)}	Output setup time, BEx valid before CLKOUT2 high	P - 1.7		ns
4	t _{oh(CKO2H-BEIV)}	Output hold time, BEx invalid after CLKOUT2 high	⁽³⁾ P - 4		ns
5	t _{osu(EAV-CKO2H)}	Output setup time, EAx valid before CLKOUT2 high	P - 1.7		ns
6	t _{oh(CKO2H-EAIV)}	Output hold time, EAx invalid after CLKOUT2 high	⁽³⁾ P – 4		ns
9	t _{osu(ADSV-CKO2H)}	Output setup time, SDCAS/SSADS valid before CLKOUT2 high	P - 1.7		ns
10	t _{oh(CKO2H-ADSV)}	Output hold time, SDCAS/SSADS valid after CLKOUT2 high	⁽³⁾ P - 4		ns
11	t _{osu(OEV-CKO2H)}	Output setup time, SDRAS/SSOE valid before CLKOUT2 high	P - 1.7		ns
12	t _{oh(CKO2H-OEV)}	Output hold time, SDRAS/SSOE valid after CLKOUT2 high	⁽³⁾ P - 4		ns
13	t _{osu(EDV-CKO2H)}	Output setup time, EDx valid before CLKOUT2 high ⁽⁴⁾	P - 2.3		ns
14	t _{oh(CKO2H-EDIV)}	Output hold time, EDx invalid after CLKOUT2 high	⁽³⁾ P - 4		ns
15	t _{osu(WEV-CKO2H)}	Output setup time, SDWE/SSWE valid before CLKOUT2 high	P - 1.7		ns
16	t _{oh(CKO2H-WEV)}	Output hold time, SDWE/SSWE valid after CLKOUT2 high	⁽³⁾ P – 4		ns

(1)

P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses. (2) This parameter is not production tested. (3)

(4) For the first write in a series of one or more consecutive adjacent writes, the write data is generated one CLKOUT2 cycle early to accommodate the ED enable time.

7.32 Switching Characteristics for Synchronous DRAM Cycles

over recommended operating conditions for synchronous DRAM cycles for C6203B Rev. 2⁽¹⁾⁽²⁾ (see Figure 15 through Figure 20)

NO.		PARAMETER	MIN	MAX	UNIT
1	t _{osu(CEV-CKO2H)}	Output setup time, CEx valid before CLKOUT2 high	P - 0.9		ns
2	t _{oh(CKO2H-CEV)}	Output hold time, CEx valid after CLKOUT2 high	⁽³⁾ P - 4.1		ns
3	t _{osu(BEV-CKO2H)}	Output setup time, BEx valid before CLKOUT2 high	P - 0.9		ns
4	t _{oh(CKO2H-BEIV)}	Output hold time, BEx invalid after CLKOUT2 high	⁽³⁾ P - 4.1		ns
5	t _{osu(EAV-CKO2H)}	Output setup time, EAx valid before CLKOUT2 high	P - 0.9		ns
6	t _{oh(CKO2H-EAIV)}	Output hold time, EAx invalid after CLKOUT2 high	⁽³⁾ P - 4.1		ns
9	t _{osu(CASV-CKO2H)}	Output setup time, SDCAS/SSADS valid before CLKOUT2 high	P - 0.9		ns
10	t _{oh(CKO2H-CASV)}	Output hold time, SDCAS/SSADS valid after CLKOUT2 high	⁽³⁾ P - 4.1		ns
11	t _{osu(EDV-CKO2H)}	Output setup time, EDx valid before CLKOUT2 high ⁽⁴⁾	P - 1.5		ns
12	t _{oh(CKO2H-EDIV)}	Output hold time, EDx invalid after CLKOUT2 high	⁽³⁾ P - 4.1		ns
13	t _{osu(WEV-CKO2H)}	Output setup time, SDWE/SSWE valid before CLKOUT2 high	P - 0.9		ns
14	t _{oh(CKO2H-WEV)}	Output hold time, SDWE/SSWE valid after CLKOUT2 high	⁽³⁾ P - 4.1		ns
15	t _{osu(SDA10V-CKO2H)}	Output setup time, SDA10 valid before CLKOUT2 high	P - 0.9		ns
16	t _{oh(CKO2H-SDA10IV)}	Output hold time, SDA10 invalid after CLKOUT2 high	⁽³⁾ P - 4.1		ns
17	t _{osu(RASV-CKO2H)}	Output setup time, SDRAS/SSOE valid before CLKOUT2 high	P - 0.9		ns
18	t _{oh(CKO2H-RASV)}	Output hold time, SDRAS/SSOE valid after CLKOUT2 high	⁽³⁾ P - 4.1		ns

 P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.
 SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses. This parameter is not production tested.

(3)

(4) For the first write in a series of one or more consecutive adjacent writes, the write data is generated one CLKOUT2 cycle early to accommodate the ED enable time.

ISTRUMENTS

FXAS

7.33 Switching Characteristics for the HOLD/HOLDA Cycles

over recommended operating conditions for the HOLD/HOLDA cycles⁽¹⁾⁽²⁾ (see Figure 21)

NO.		PARAMETER		MAX	UNIT
1	t _{d(HOLDL-EMHZ)}	Delay time, HOLD low to EMIF bus high impedance	⁽³⁾ 3P	(4)	ns
2	t _{d(EMHZ-HOLDAL)}	Delay time, EMIF bus high impedance to HOLDA low	⁽³⁾ 0	⁽³⁾ 2P	ns
4	t _{d(HOLDH-EMLZ)}	Delay time, HOLD high to EMIF bus low impedance	⁽³⁾ 3P	⁽³⁾ 7P	ns
5	t _{d(EMLZ-HOLDAH)}	Delay time, EMIF bus low impedance to HOLDA high	⁽³⁾ 0	⁽³⁾ 2P	ns

 P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.
 <u>EMIF b</u>us consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SDCAS/ SSADS, SDRAS/SSOE, SDWE/SSWE, and SDA10.

This parameter is not production tested. (3)

All pending EMIF transactions are allowed to complete before HOLDA is asserted. The worst case for this is an asynchronous read or (4)write with external ARDY used or a minimum of eight consecutive SDRAM reads or writes when RBTR8 = 1. If no bus transactions are occurring, then the minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1.

7.34 Switching Characteristics for Reset

over recommended operating conditions during reset⁽¹⁾⁽²⁾ (see Figure 22)

NO.		PARAMETER	MIN	MAX	UNIT
2	t _{d(RSTL-CKO2IV)}	Delay time, RESET low to CLKOUT2 invalid	⁽³⁾ P		ns
3	t _{d(RSTH-CKO2V)}	Delay time, RESET high to CLKOUT2 valid		⁽³⁾ 4P	ns
4	t _{d(RSTL-HIGHIV)}	Delay time, RESET low to high group invalid	⁽³⁾ P		ns
5	t _{d(RSTH-HIGHV)}	Delay time, RESET high to high group valid		⁽³⁾ 4P	ns
6	t _{d(RSTL-LOWIV)}	Delay time, RESET low to low group invalid	⁽³⁾ P		ns
7	t _{d(RSTH-LOWV)}	Delay time, RESET high to low group valid		⁽³⁾ 4P	ns
8	t _{d(RSTL-ZHZ)}	Delay time, RESET low to Z group high impedance	⁽³⁾ P		ns
9	t _{d(RSTH-ZV)}	Delay time, RESET high to Z group valid		⁽³⁾ 4P	ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) High group consists of: XFCLK, HOLDA

Low group consists of: IACK, INUM[3:0], DMAC[3:0], PD, TOUTO, and TOUT1 Z group consists of: EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SDCAS/SSADS, SDRAS/SSOE, SDWE/SSWE, SDA10, CLKX0, CLKX1, CLKX2, FSX0, FSX1, FSX2, DX0, DX1, DX2, CLKR0, CLKR1, CLKR2, FSR0, FSR1, FSR2, XCE[3:0], XBE[3:0]/XA[5:2], XOE, XRE, XWE/XWAIT, XAS, XW/R, XRDY, XBLAST, XHOLD, and XHOLDA

(3)This parameter is not production tested.

7.35 Switching Characteristics for Interrupt Response Cycles

over recommended operating conditions during interrupt response cycles⁽¹⁾⁽²⁾ (see Figure 23)

NO.		PARAMETER	MIN	MAX	UNIT
1	t _{R(EINTH} – IACKH)	Response time, EXT_INTx high to IACK high	⁽³⁾ 9P		ns
4	t _{d(CKO2L-IACKV)}	Delay time, CLKOUT2 low to IACK valid	⁽³⁾ -1.5	⁽³⁾ 10	ns
5	t _{d(CKO2L-INUMV)}	Delay time, CLKOUT2 low to INUMx valid	⁽³⁾ -2.0	⁽³⁾ 10	ns
6	t _{d(CKO2L-INUMIV)}	Delay time, CLKOUT2 low to INUMx invalid	⁽³⁾ -2.0	⁽³⁾ 10	ns

P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. (1)

(2) When CLKOUT2 is in half mode (see CLKOUT2 in), timings are based on falling edges.

This parameter is not production tested. (3)

7.36 Switching Characteristics for Synchronous FIFO Interface

over recommended operating conditions for synchronous FIFO interface (see Figure 24 through Figure 26)

NO.		PARAMETER		MAX	UNIT
NO.			MIN	INIAA	
1	t _{d(XFCKH-XCEV)}	Delay time, XFCLK high to XCEx valid	⁽¹⁾ -1.5	4.5	ns
2	t _{d(XFCKH-XAV)}	Delay time, XFCLK high to XBE[3:0]/XA[5:2] valid ⁽²⁾	⁽¹⁾ -1.5	4.5	ns
3	t _{d(XFCKH-XOEV)}	Delay time, XFCLK high to XOE valid	⁽¹⁾ -1.5	4.5	ns
4	t _{d(XFCKH-XREV)}	Delay time, XFCLK high to XRE valid	⁽¹⁾ -1.5	4.5	ns
7	t _{d(XFCKH-XWEV)}	Delay time, XFCLK high to XWE/XWAIT ⁽³⁾ valid	⁽¹⁾ -1.5	4.5	ns
8	t _{d(XFCKH-XDV)}	Delay time, XFCLK high to XDx valid		4.5	ns
9	t _{d(XFCKH-XDIV)}	Delay time, XFCLK high to XDx invalid	⁽¹⁾ -1.5		ns

This parameter is not production tested. (1)

(2)

 $\frac{\text{XBE}[3:0]}{\text{XAE}[5:2]} \text{ operate as address signals XA[5:2] during synchronous FIFO accesses.}$ $\frac{\text{XWE}}{\text{XWAIT}} \text{ operates as the write-enable signal XWE during synchronous FIFO accesses.}$ (3)

7.37 Switching Characteristics for Asynchronous Peripheral Cycles

over recommended operating conditions for asynchronous peripheral cycles⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾ (see Figure 27 through Figure 30)

NO.		PARAMETER	MIN	TYP	MAX	UNIT
1	t _{osu(SELV-XREL)}	Output setup time, select signals valid to \overline{XRE} low	RS × P - 2			ns
2	toh(XREH-SELIV)	Output hold time, XRE low to select signals invalid	⁽⁵⁾ RH × P - 2			ns
5	t _{w(XREL)}	Pulse duration, XRE low		RST × P		ns
8	t _{d(XRDYH-XREH)}	Delay time, XRDY high to XRE high	⁽⁵⁾ 3P		⁽⁵⁾ 4P + 5	ns
12	tosu(SELV-XWEL)	Output setup time, select signals valid to \overline{XWE} low	WS × P - 3			ns
13	t _{oh(XWEH-SELIV)}	Output hold time, $\overline{\text{XWE}}$ low to select signals invalid	⁽⁵⁾ WH × P – 2			ns
14	t _{w(XWEL)}	Pulse duration, XWE low		WST x P		ns
17	t _{d(XRDYH-XWEH)}	Delay time, XRDY high to XWE high	⁽⁵⁾ 3P		⁽⁵⁾ 4P + 5	ns

(1) RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are programmed by the expansion bus XCE space control registers.

P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

The sum of RS and RST (or WS and WST) must be a minimum of 4 to use XRDY input to extend strobe width (3)

Select signals include: XCEx, XBE[3:0]/XA[5:2], XOE; and for writes, include XD[31:0], with the exception that XCEx can stay active for (4) an additional 7P ns following the end of the cycle.

(5) This parameter is not production tested.

7.38 Switching Characteristics With External Device as Bus Master

over recommended operating conditions with external device as bus master⁽¹⁾ (see Figure 31 and Figure 32)

NO.		PARAMETER	MIN	MAX	UNIT
11	t _{d(XCKIH-XDLZ)}	Delay time, XCLKIN high to XDx low impedance	(2)0		ns
12	t _{d(XCKIH-XDV)}	Delay time, XCLKIN high to XDx valid		4P	ns
13	t _{d(XCKIH-XDIV)}	Delay time, XCLKIN high to XDx invalid	(2)5		ns
14	t _{d(XCKIH-XDHZ)}	Delay time, XCLKIN high to XDx high impedance		⁽²⁾ 4P	ns
15	t _{d(XCKIH-XRY)}	Delay time, XCLKIN high to XRDY invalid ⁽³⁾	⁽²⁾ 5	⁽²⁾ 4P	ns
20	t _{d(XCKIH-XRYLZ)}	Delay time, XCLKIN high to XRDY low impedance	(2)5	⁽²⁾ 4P	ns
21	t _{d(XCKIH-XRYHZ)}	Delay time, XCLKIN high to XRDY high impedance ⁽³⁾	⁽²⁾ 2P + 5	⁽²⁾ 7P	ns

P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. (1)

This parameter is not production tested. (2)

(3) XRDY operates as active-low ready input/output during host-port accesses.

ISTRUMENTS

FXAS

7.39 Switching Characteristics With C62x as Bus Master

over recommended operating conditions with C62x as bus master⁽¹⁾ (see Figure 33 through Figure 35)

NO.		PARAMETER	MIN	MAX	UNIT
1	t _{d(XCKIH-XASV)}	Delay time, XCLKIN high to XAS valid	⁽²⁾ 5	4P	ns
2	t _{d(XCKIH-XWRV)}	Delay time, XCLKIN high to XW/R valid ⁽³⁾	⁽²⁾ 5	4P	ns
3	t _{d(XCKIH-XBLTV)}	Delay time, XCLKIN high to XBLAST valid ⁽⁴⁾	(2)5	4P	ns
4	t _{d(XCKIH-XBEV)}	Delay time, XCLKIN high to XBE[3:0]/XA[5:2] valid ⁽⁵⁾	(2)5	4P	ns
5	t _{d(XCKIH-XDLZ)}	Delay time, XCLKIN high to XDx low impedance	(2)0		ns
6	t _{d(XCKIH-XDV)}	Delay time, XCLKIN high to XDx valid		4P	ns
7	t _{d(XCKIH-XDIV)}	Delay time, XCLKIN high to XDx invalid	⁽²⁾ 5		ns
8	t _{d(XCKIH-XDHZ)}	Delay time, XCLKIN high to XDx high impedance		⁽²⁾ 4P	ns
13	t _{d(XCKIH-XWTV)}	Delay time, XCLKIN high to XWE/XWAIT valid ⁽⁶⁾	⁽²⁾ 5	4P	ns

P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. (1)

This parameter is not production tested. (2)

(3) XW/R input/output polarity selected at boot.

XBLAST output polarity is always active low. (4)

XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses. XWE/XWAIT operates as XWAIT output signal during host-port accesses. (5)

7.40 Switching Characteristics With External Device as Asynchronous Bus Master

over recommended operating conditions with external device as asynchronous bus master⁽¹⁾ (see Figure 36 and Figure 37)

NO.		PARAMETER	MIN	MAX	UNIT
5	t _{d(XCSL-XDLZ)}	Delay time, $\overline{\text{XCS}}$ low to XDx low impedance	⁽²⁾ 0		ns
6	t _{d(XCSH-XDIV)}	Delay time, XCS high to XDx invalid	⁽²⁾ 0	⁽²⁾ 12	ns
7	t _{d(XCSH-XDHZ)}	Delay time, XCS high to XDx high impedance		⁽²⁾ 4P	ns
8	t _{d(XRYL-XDV)}	Delay time, XRDY low to XDx valid	(2)-4	⁽²⁾ 1	ns
9	t _{d(XCSH-XRYH)}	Delay time, XCS high to XRDY high	(2)0	12	ns

P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. (1)

This parameter is not production tested. (2)

Switching Characteristics for Expansion Bus Arbitration (Internal Arbiter Enabled) 7.41

over recommended operating conditions for expansion bus arbitration (internal arbiter enabled)⁽¹⁾⁽²⁾ (see Figure 38)

					, , , , , , , , ,
NO.		PARAMETER	MIN	MAX	UNIT
1	t _{d(XHDH-XBHZ)}	Delay time, XHOLD high to expansion bus high impedance	⁽³⁾ 3P	(4)	ns
2	t _{d(XBHZ-XHDAH)}	Delay time, expansion bus high impedance to XHOLDA high	⁽³⁾ 0	⁽³⁾ 2P	ns
4	t _{d(XHDL-XHDAL)}	Delay time, XHOLD low to XHOLDA low	⁽³⁾ 3P		ns
5	t _{d(XHDAL-XBLZ)}	Delay time, XHOLDA low to expansion bus low impedance	⁽³⁾ 0	⁽³⁾ 2P	ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

Expansion bus consists of XBE[3:0]/XA[5:2], XAS, XW/R, and XBLAST. (2)

This parameter is not production tested. (3)

(4) All pending expansion bus transactions are allowed to complete before XHOLDA is asserted.

7.42 Switching Characteristics for Expansion Bus Arbitration (Internal Arbiter Disabled)

over recommended operating conditions for expansion bus arbitration (internal arbiter disabled)⁽¹⁾ (see Figure 39)

NO.	PARAMETER	MIN	MAX	UNIT
1	$t_{d(XHDAH-XBLZ)}$ Delay time, XHOLDA high to expansion bus low impedance ⁽²⁾	⁽³⁾ 2P	⁽³⁾ 2P + 10	ns
2	$t_{d(XBHZ-XHDL)}$ Delay time, expansion bus high impedance to XHOLD low ⁽²⁾	(3)0	⁽³⁾ 2P	ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

Expansion bus consists of XBE[3:0]/XA[5:2], XAS, XW/R, and XBLAST. (2)

(3)This parameter is not production tested.

7.43 Switching Characteristics for McBSP

over recommended operating conditions for McBSP⁽¹⁾⁽²⁾ (see Figure 40)

NO.		PARAMETER		MIN	MAX	UNIT
1	t _{d(CKSH-CKRXH)}	Delay time, CLKS high to CLKR/X high for internal CLF from CLKS input	KR/X generated	⁽³⁾ 4	⁽³⁾ 16	ns
2	t _{c(CKRX)}	Cycle time, CLKR/X	CLKR/X int	⁽³⁾ 2P ⁽⁴⁾⁽⁵⁾		ns
3	t _{w(CKRX)}	Pulse duration, CLKR/X high or CLKR/X low	CLKR/X int	⁽³⁾ C - 2 ⁽⁶⁾	⁽³⁾ C + 2 ⁽⁶⁾	ns
4	t _{d(CKRH-FRV)}	Delay time, CLKR high to internal FSR valid	CLKR int	(3)-3	⁽³⁾ 3	ns
			CLKX int	(3)-3	3	
9	9 t _{d(CKXH-FXV)} Delay time, CLKX high to internal FSX va		CLKX ext	⁽³⁾ –3	9	ns
			CLKX int	⁽³⁾ -1	⁽³⁾ 5	
12	t _{dis(CKXH-DXHZ)}	hit from CLKX high	CLKX ext	⁽³⁾ 2	(3)9	ns
			CLKX int	⁽³⁾ -1	⁽³⁾ 4	
13	t _{d(CKXH-DXV)}	Delay time, CLKX high to DX valid	CLKX ext	⁽³⁾ 2	⁽³⁾ 11	ns
14	t _{d(FXH-DXV)}	data dalay 0 (XDATDLX = 00b) mode	FSX int	⁽³⁾ -1	⁽³⁾ 5	ns
	data		FSX ext	⁽³⁾ 0	⁽³⁾ 10	

(1) CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

Minimum delay times also represent minimum output hold times.

(3) This parameter is not production tested.

(4)

P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns. The maximum bit rate for the C6203 device is 100 Mbps or CPU / 2 (the slower of the two). Take care to ensure that the AC timings (5) specified in this data sheet are met. The maximum bit rate for McBSP-to-McBSP communications is 100 MHz; therefore, the minimum CLKR / X clock cycle is either twice the CPU cycle time (2P), or 10 ns (100 MHz), whichever value is larger. For example, when running parts at 200 MHz (P = 5 ns), use 10 ns as the minimum CLKR / X clock cycle (by setting the appropriate CLKGDV ratio or external clock source). When running parts at 100 MHz (P = 10 ns), use 2P = 20 ns (50 MHz) as the minimum CLKR / X clock cycle. The maximum bit rate for McBSP-to-McBSP communications applies when the serial port is a master of the clock and frame syncs (with CLKR connected to CLKX, FSR connected to FSX, CLKXM = FSXM = 1, and CLKRM = FSRM = 0) in data delay 1 or 2 mode (R/XDATDLY = 01b or 10b) and the other device the McBSP communicates to is a slave.

(6) C = H or L

S = sample rate generator input clock = P if CLKSM = 1 (P = 1 / CPU clock frequency) = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

H = CLKX high pulse duration = $(CLKGDV/2 + 1) \times S$ if CLKGDV is even

= (CLKGDV + 1) / 2 × S if CLKGDV is odd or zero

L = CLKX low pulse duration = (CLKGDV/2) × S if CLKGDV is even

= (CLKGDV + 1) / 2 × S if CLKGDV is odd or zero

CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the 100-MHz limit.

ISTRUMENTS

7.44 Switching Characteristics for McBSP as SPI Master or Slave

over recommended operating conditions for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 0⁽¹⁾⁽²⁾ (see Figure 42)

	See recommended operating conditions for medicinal as of rimaster of state. OEROTT = 100, OEROTT = 0 (see right + 2)							
NO.		PARAMETER	MASTER ⁽³⁾		SLAVE		UNIT	
			MIN	MAX	MIN	MAX		
1	t _{h(CKXL-FXL)}	Hold time, FSX low after CLKX low ⁽⁴⁾	⁽⁵⁾ T – 2	⁽⁵⁾ T + 3			ns	
2	td(FXL-CKXH)	Delay time, FSX low to CLKX high ⁽⁶⁾	⁽⁵⁾ L – 2	⁽⁵⁾ L + 3			ns	
3	td(CKXH-DXV)	Delay time, CLKX high to DX valid	(5)-4	(5)4	⁽⁵⁾ 3P + 4	⁽⁵⁾ 5P + 17	ns	
6	tdis(CKXL-DXHZ)	Disable time, DX high impedance following last data bit from CLKX low	⁽⁵⁾ L – 2	⁽⁵⁾ L + 3			ns	
7	tdis(FXH-DXHZ)	Disable time, DX high impedance following last data bit from FSX high			⁽⁵⁾ P + 3	⁽⁵⁾ 3P + 17	ns	
8	td(FXL-DXV)	Delay time, FSX low to DX valid			⁽⁵⁾ 2P + 2	⁽⁵⁾ 4P + 17	ns	

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

(3) S = sample rate generator input clock = P if CLKSM = 1 (P = 1 / CPU clock frequency)

= sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

 $T = CLKX period = (1 + CLKGDV) \times S$

H = CLKX high pulse duration = (CLKGDV / 2 + 1) × S if CLKGDV is even

= (CLKGDV + 1) / 2 × S if CLKGDV is odd or zero

L = CLKX low pulse duration = (CLKGDV / 2) \times S if CLKGDV is even

= (CLKGDV + 1) / 2 × S if CLKGDV is odd or zero

CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the 100-MHz limit.

- (4) FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP
- (5) This parameter is not production tested.
- (6) FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

7.45 Switching Characteristics for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0

over recommended operating conditions for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = $0^{(1)(2)}$ (see Figure 43)

NO.		PARAMETER MASTER ⁽³⁾		ER ⁽³⁾	SLAVE		UNIT
			MIN	MAX	MIN	MAX	
1	t _{h(CKXL-FXL)}	Hold time, FSX low after CLKX low ⁽⁴⁾	⁽⁵⁾ L – 2	⁽⁵⁾ L + 3			ns
2	t _{d(FXL-CKXH)}	Delay time, FSX low to CLKX high ⁽⁶⁾	⁽⁵⁾ T - 2	⁽⁵⁾ T + 3			ns
3	t _{d(CKXL-DXV)}	Delay time, CLKX low to DX valid	(5)-4	⁽⁵⁾ 4	⁽⁵⁾ 3P + 4	⁽⁵⁾ 5P + 17	ns
6	t _{dis(CKXL-DXHZ)}	Disable time, DX high impedance following last data bit from CLKX low	(5)-2	⁽⁵⁾ 4	⁽⁵⁾ 3P + 3	⁽⁵⁾ 5P + 17	ns
7	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	⁽⁵⁾ H – 2	⁽⁵⁾ H + 4	⁽⁵⁾ 2P + 2	⁽⁵⁾ 4P + 17	ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

(3) S = Sample rate generator input clock = P if CLKSM = 1 (P = 1 / CPU clock frequency)

= Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

 $T = CLKX period = (1 + CLKGDV) \times S$

H = CLKX high pulse duration = (CLKGDV / 2 + 1) × S if CLKGDV is even

= $(CLKGDV + 1) / 2 \times S$ if CLKGDV is odd or zero

L = CLKX low pulse duration = (CLKGDV / 2) \times S if CLKGDV is even

= (CLKGDV + 1) / 2 × S if CLKGDV is odd or zero

The maximum transfer rate for SPI mode is limited to the above AC timing constraints.

(4) FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

(5) This parameter is not production tested.

(6) FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

7.46 Switching Characteristics for McBSP as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1

over recommended operating conditions for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1⁽¹⁾⁽²⁾ (see Figure 44)

NO.		PARAMETER	MASTER ⁽³⁾		SLAVE		UNIT
			MIN	MAX	MIN	MAX	
1	t _{h(CKXH-FXL)}	Hold time, FSX low after CLKX high ⁽⁴⁾	⁽⁵⁾ T - 2	⁽⁵⁾ T + 3			ns
2	t _{d(FXL-CKXL)}	Delay time, FSX low to CLKX low ⁽⁶⁾	⁽⁵⁾ H – 2	⁽⁵⁾ H + 3			ns
3	t _{d(CKXL-DXV)}	Delay time, CLKX low to DX valid	(5)-4	⁽⁵⁾ 4	⁽⁵⁾ 3P + 4	⁽⁵⁾ 5P + 17	ns
6	t _{dis(CKXH-DXHZ)}	Disable time, DX high impedance following last data bit from CLKX high	⁽⁵⁾ H – 2	⁽⁵⁾ H + 3			ns
7	t _{dis(FXH-DXHZ)}	Disable time, DX high impedance following last data bit from FSX high			⁽⁵⁾ P + 3	⁽⁵⁾ 3P + 17	ns
8	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid			⁽⁵⁾ 2P + 2	⁽⁵⁾ 4P + 17	ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

(3) S = Sample rate generator input clock = P if CLKSM = 1 (P = 1 / CPU clock frequency)

= Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

 $T = CLKX period = (1 + CLKGDV) \times S$

H = CLKX high pulse duration = (CLKGDV / 2 + 1) × S if CLKGDV is even = (CLKGDV + 1) / 2 × S if CLKGDV is odd or zero

L = CLKX low pulse duration = (CLKGDV / 2) × S if CLKGDV is even = (CLKGDV + 1) / 2 × S if CLKGDV is odd or zero

The maximum transfer rate for SPI mode is limited to the above AC timing constraints.

(4) FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

(5) This parameter is not production tested.

(6) FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

7.47 Switching Characteristics for McBSP as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1

for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = $1^{(1)(2)}$ (see Figure 45)

NO.		PARAMETER		R ⁽³⁾	SLAVE		UNIT
			MIN	MAX	MIN	MAX	
1	t _{h(CKXH-FXL)}	Hold time, FSX low after CLKX high ⁽⁴⁾	⁽⁵⁾ H – 2	⁽⁵⁾ H + 3			ns
2	t _{d(FXL-CKXL)}	Delay time, FSX low to CLKX low ⁽⁶⁾	⁽⁵⁾ T - 2	⁽⁵⁾ T + 2			ns
3	t _{d(CKXH-DXV)}	Delay time, CLKX high to DX valid	(5)-4	⁽⁵⁾ 4	⁽⁵⁾ 3P + 4	⁽⁵⁾ 5P + 17	ns
6	t _{dis(CKXH-DXHZ)}	Disable time, DX high impedance following last data bit from CLKX height	(5)-2	⁽⁵⁾ 4	⁽⁵⁾ 3P + 3	⁽⁵⁾ 5P + 17	ns
7	t _{d(FXL-DXV)}	Delay time, FSX low to DX valid	⁽⁵⁾ L – 2	⁽⁵⁾ L + 5	⁽⁵⁾ 2P + 2	⁽⁵⁾ 4P + 17	ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

(3) S = Sample rate generator input clock = P if CLKSM = 1 (P = 1 / CPU clock frequency)

= Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

 $T = CLKX period = (1 + CLKGDV) \times S$

H = CLKX high pulse duration = (CLKGDV / 2 + 1) × S if CLKGDV is even

= (CLKGDV + 1) / 2 × S if CLKGDV is odd or zero

L = CLKX low pulse duration = (CLKGDV / 2) × S if CLKGDV is even

= (CLKGDV + 1) / 2 × S if CLKGDV is odd or zero CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the 100-MHz limit.

(4) FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally. CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

(5) This parameter is not production tested.

(6) FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

SGUS033A-FEBRUARY 2002-REVISED MAY 2016

www.ti.com

7.48 Switching Characteristics for DMAC Outputs

over recommended operating conditions for DMAC outputs⁽¹⁾ (see Figure 46)

NO.	PARAMETER	MIN MAX	UNIT
1	t _{w(DMACH)} Pulse duration, DMAC high	⁽²⁾ 2P - 3	ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) This parameter is not production tested.

7.49 Switching Characteristics for Timer Outputs

over recommended operating conditions for timer outputs⁽¹⁾ (see Figure 47)

NO.	PARAMETER	MIN MAX	UNIT
3	t _{w(TOUTH)} Pulse duration, TOUT high	⁽²⁾ 2P - 3	ns
4	t _{w(TOUTL)} Pulse duration, TOUT low	⁽²⁾ 2P - 3	ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) This parameter is not production tested.

7.50 Switching Characteristics for Power-Down Outputs

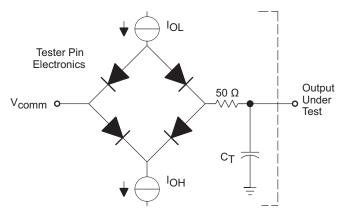
over recommended operating conditions for power-down outputs⁽¹⁾ (see Figure 48)

NO.	PARAMETER	MIN MAX	UNIT
1	t _{w(PDH)} Pulse duration, PD high	⁽²⁾ 2P-3	ns

(1) P = 1 / CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.

(2) This parameter is not production tested.

7.51 Switching Characteristics for JTAG Test Port


over recommended operating conditions for JTAG test port (see Figure 49)

NO.	PARAMETER	MIN	MAX	UNIT
2	t _{d(TCKL-TDOV)} Delay time, TCK low to TDO valid	⁽¹⁾ -4.5	⁽¹⁾ 13.5	ns

(1) This parameter is not production tested.

8 Parameter Measurement Information

Where: I_{OL} = 2 mA, I_{OH} = 2 mA, V_{comm} = 2.1 V, C_T = 15-pF typical load-circuit capacitance

Figure 1. Test Load Circuit for AC Timing Measurements

8.1 Signal Transition Levels

All input and output timing parameters are referenced to 1.5 V for both 0 and 1 logic levels.

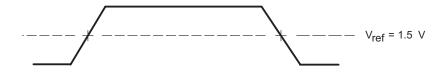


Figure 2. Input and Output Voltage Reference Levels for AC Timing Measurements

All rise and fall transition timing parameters are referenced to V_{IL} MAX and V_{IH} MIN for input clocks, and V_{OL} MAX and V_{OH} MIN for output clocks.

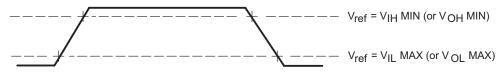
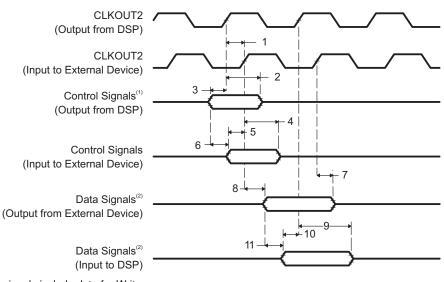


Figure 3. Rise and Fall Transition Time Voltage Reference Levels

8.2 Timing Parameters and Board Routing Analysis

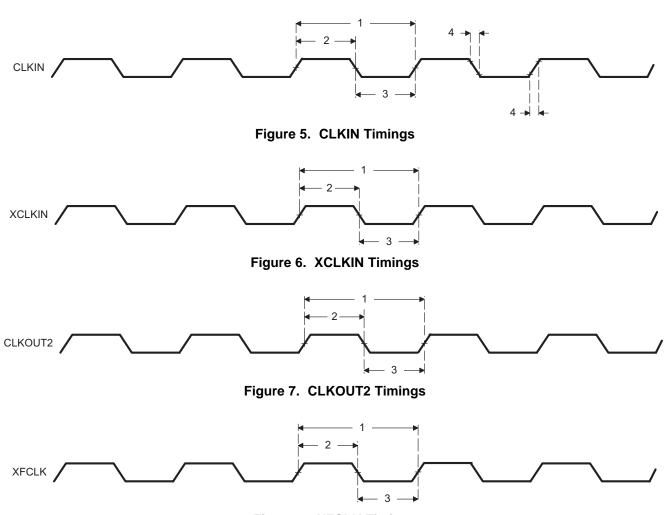

The timing parameter values specified in this data sheet do not include delays by board routings. As a good board design practice, always account for such delays. Timing values may be adjusted by increasing/decreasing such delays. TI recommends using the available I/O buffer information specification (IBIS) models to analyze the timing characteristics correctly. If needed, external logic hardware such as buffers may be used to compensate any timing differences.

For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device and from the external device to the DSP. This round-trip delay tends to negatively impact the input setup time margin, but also tends to improve the input hold time margins (see Table 1 and Figure 4).

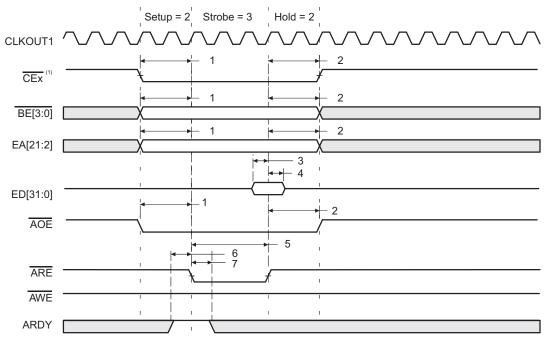
Figure 4 represents a general transfer between the DSP and an external device. Figure 4 also represents board route delays and how they are perceived by the DSP and the external device.

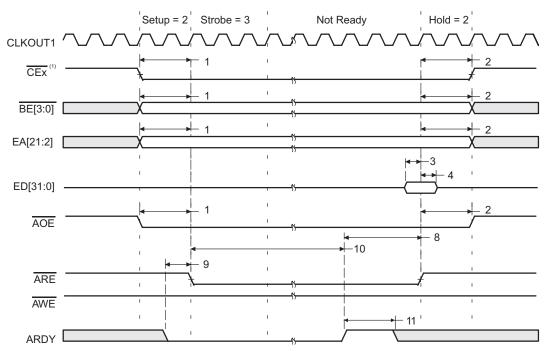
NO.	DESCRIPTION
1	Clock route delay
2	Minimum DSP hold time
3	Minimum DSP setup time
4	External device hold time requirement
5	External device setup time requirement
6	Control signal route delay
7	External device hold time
8	External device access time
9	DSP hold time requirement
10	DSP setup time requirement
11	Data route delay

Table 1. IBIS Timing Parameters Example (See Figure 4)


1. Control signals include data for Writes.

2. Data signals are generated during Reads from an external device.




SMJ320C6203 SGUS033A – FEBRUARY 2002 – REVISED MAY 2016

 CEx stays active for 7 – the value of Read Hold cycles after the last access (DMA transfer or CPU access). For example, if read HOLD = 1, then CEx stays active for six more cycles. This does not affect performance, it merely reflects the overhead of the EMIF.

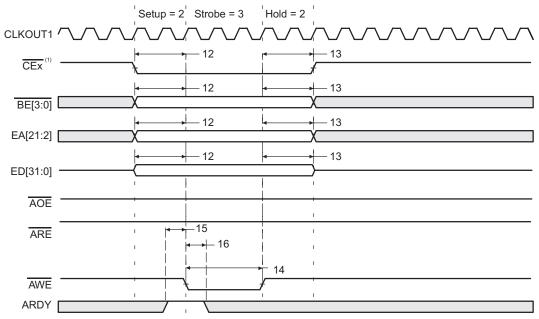
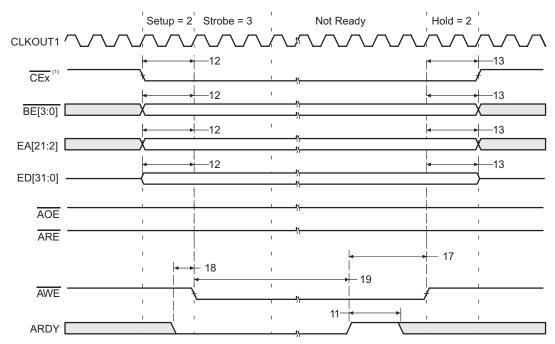
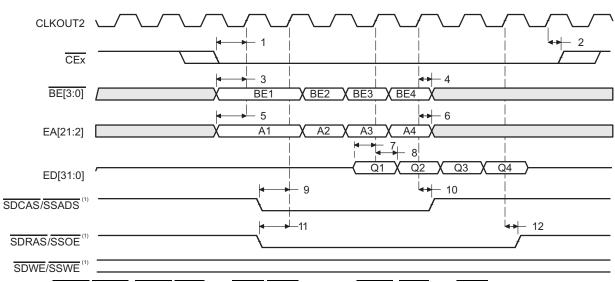


Figure 9. Asynchronous Memory Read Timing (ARDY Not Used)

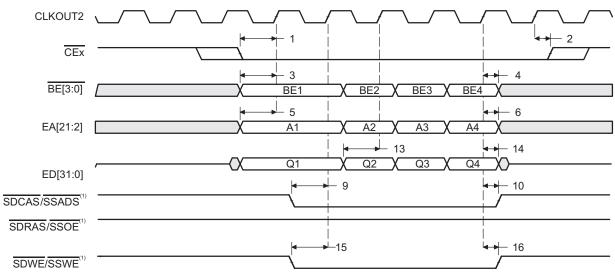
 CEx stays active for 7 – the value of Read Hold cycles after the last access (DMA transfer or CPU access). For example, if read HOLD = 1, then CEx stays active for six more cycles. This does not affect performance, it merely reflects the overhead of the EMIF.


Figure 10. Asynchronous Memory Read Timing (ARDY Used)

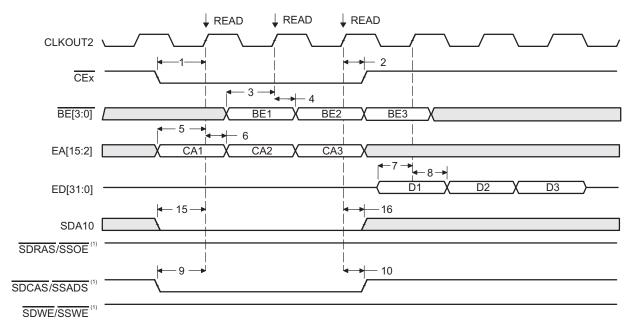
1. If no write accesses are scheduled for the next cycle and write hold is set to 1 or greater, then CEx stays active for three cycles after the value of the programmed hold period. If write hold is set to 0, then CEx stays active for four more cycles. This does not affect performance, it merely reflects the overhead of the EMIF.



1. If no write accesses are scheduled for the next cycle and write hold is set to 1 or greater, then CEx stays active for three cycles after the value of the programmed hold period. If write hold is set to 0, then CEx stays active for four more cycles. This does not affect performance, it merely reflects the overhead of the EMIF.



1. SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.



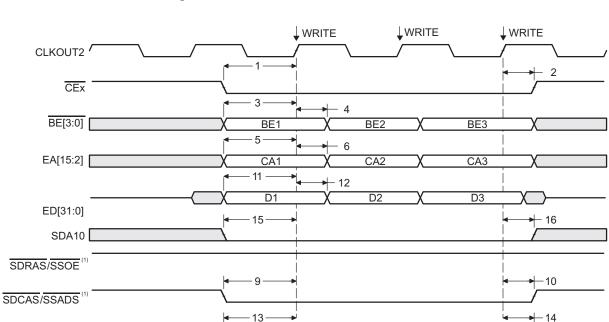
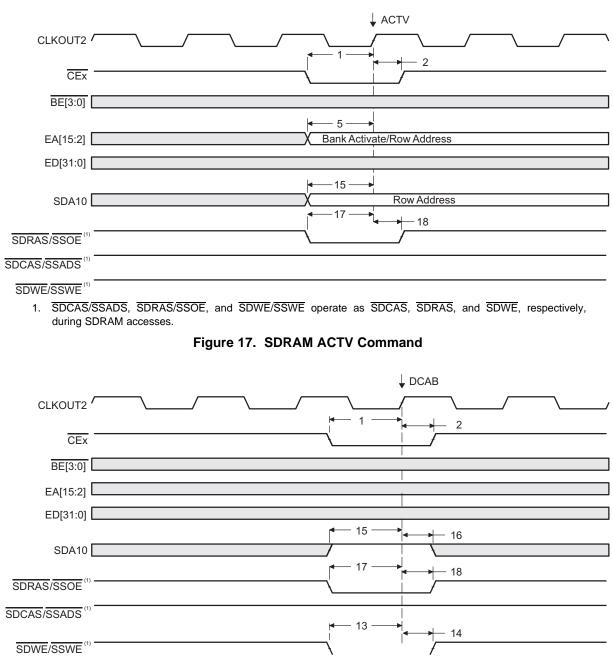

1. SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SSADS, SSOE, and SSWE, respectively, during SBSRAM accesses.

Figure 14. SBSRAM Write Timing

1. SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.

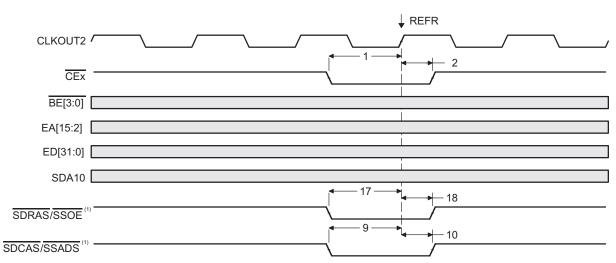
Figure 15. Three SDRAM READ Commands

1. SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.

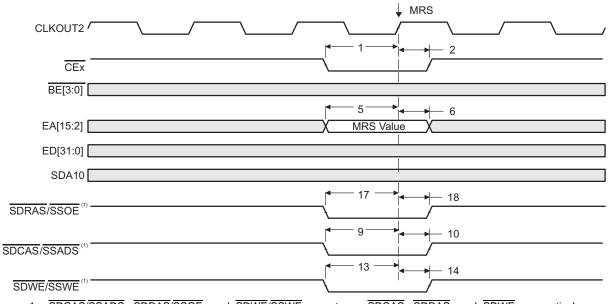

Figure 16. Three SDRAM WRT Commands

SDWE/SSWE (1)

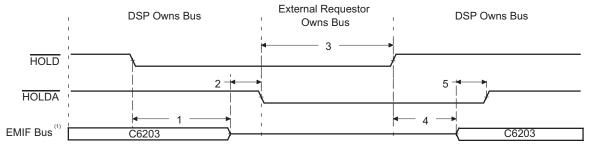
SMJ320C6203 SGUS033A-FEBRUARY 2002-REVISED MAY 2016


www.ti.com

1. SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.



SDWE/SSWE


1. SDCAS/SSADS, SDRAS/SSOE, and SDWE/SSWE operate as SDCAS, SDRAS, and SDWE, respectively, during SDRAM accesses.

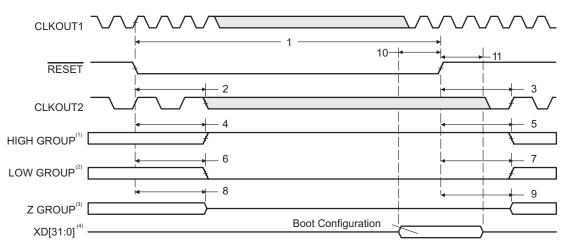
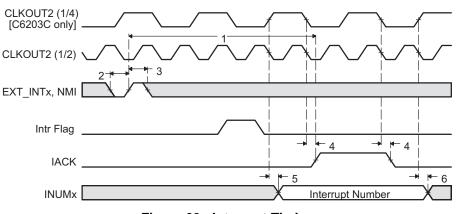

1. <u>SDCAS/SSADS</u>, <u>SDRAS/SSOE</u>, and <u>SDWE/SSWE</u> operate as <u>SDCAS</u>, <u>SDRAS</u>, and <u>SDWE</u>, respectively, during SDRAM accesses.

Figure 20. SDRAM MRS Command


 EMIF bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SDCAS/SSADS, SDRAS/SSOE, SDWE/SSWE, and SDA10.

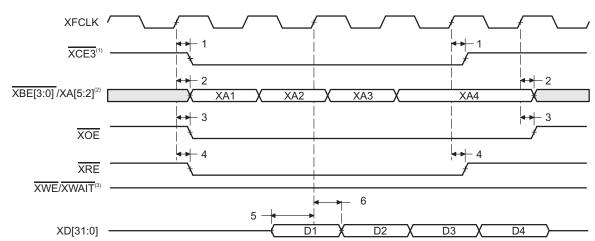
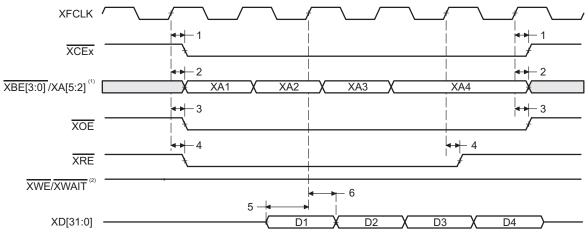

- 1. High group consists of: XFCLK, HOLDA
- 2. Low group consists of: IACK, INUM[3:0], DMAC[3:0], PD, TOUT0, and TOUT1
- 3. Z group consists of: EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SDCAS/SSADS, SDRAS/SSOE, SDWE/SSWE, SDA10, CLKX0, CLKX1, CLKX2, FSX0, FSX1, FSX2, DX0, DX1, DX2, CLKR0, CLKR1, CLKR2, FSR0, FSR1, FSR2, XCE[3:0], XBE[3:0]/XA[5:2], XOE, XRE, XWE/XWAIT, XAS, XW/R, XRDY, XBLAST, XHOLD, and XHOLDA
- 4. XD[31:0] are the boot configuration pins during device reset.

Figure 22. Reset Timing

Figure 23. Interrupt Timing



1. FIFO read (glueless) mode only available in $\overline{\text{XCE3}}$.

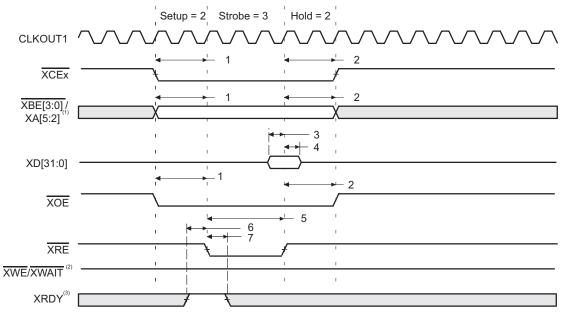
2. XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during synchronous FIFO accesses.

3. XWE/XWAIT operate as the write-enable signal XWE during synchronous FIFO accesses.

1. XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during synchronous FIFO accesses.

2. XWE/XWAIT operate as the write-enable signal XWE during synchronous FIFO accesses.

Figure 25. FIFO Read Timing

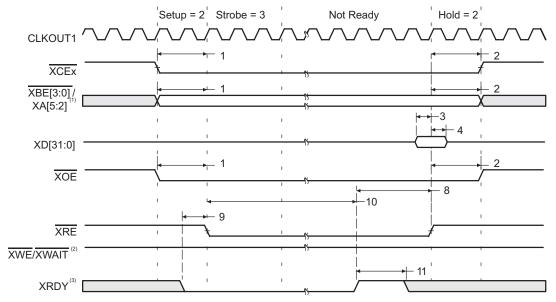

SMJ320C6203 SGUS033A-FEBRUARY 2002-REVISED MAY 2016

www.ti.com

- 1. XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during synchronous FIFO accesses.
- 2. XWE/XWAIT operate as the write-enable signal XWE during synchronous FIFO accesses.

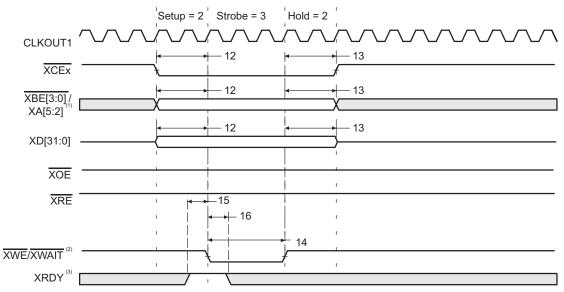
Figure 26. FIFO Write Timing

1. XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during expansion bus asynchronous peripheral accesses.


2. XWE/XWAIT operate as the write-enable signal XWE during expansion bus asynchronous peripheral accesses.

3. XRDY operates as active-high ready input during expansion bus asynchronous peripheral accesses.

Figure 27. Expansion Bus Asynchronous Peripheral Read Timing (XRDY Not Used)

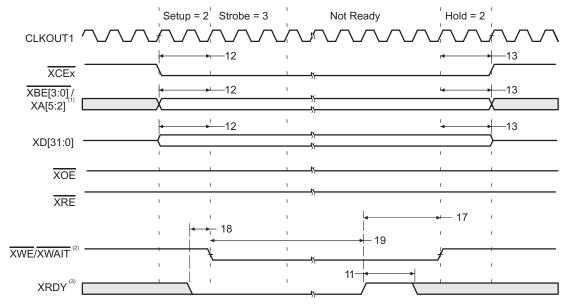


1. XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during expansion bus asynchronous peripheral accesses.

2. XWE/XWAIT operate as the write-enable signal XWE during expansion bus asynchronous peripheral accesses.

3. XRDY operates as active-high ready input during expansion bus asynchronous peripheral accesses.

Figure 28. Expansion Bus Asynchronous Peripheral Read Timing (XRDY Used)


1. XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during expansion bus asynchronous peripheral accesses.

2. XWE/XWAIT operate as the write-enable signal XWE during expansion bus asynchronous peripheral accesses.

3. XRDY operates as active-high ready input during expansion bus asynchronous peripheral accesses.

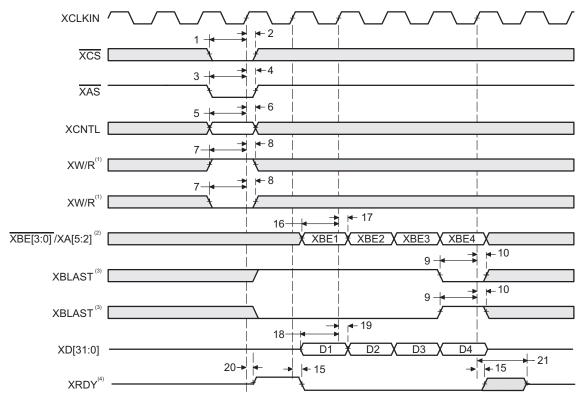
Figure 29. Expansion Bus Asynchronous Peripheral Write Timing (XRDY Not Used)


1. XBE[3:0]/XA[5:2] operate as address signals XA[5:2] during expansion bus asynchronous peripheral accesses.

2. XWE/XWAIT operate as the write-enable signal XWE during expansion bus asynchronous peripheral accesses.

3. XRDY operates as active-high ready input during expansion bus asynchronous peripheral accesses.

Figure 30. Expansion Bus Asynchronous Peripheral Write Timing (XRDY Used)

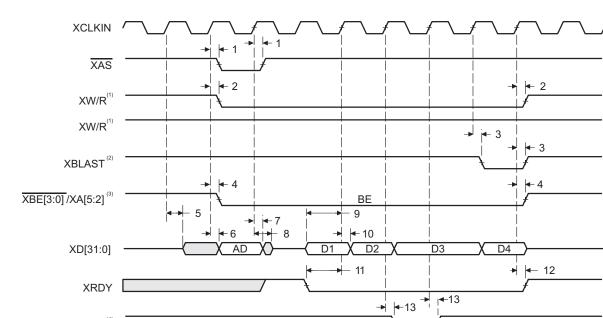


1. XW/R input/output polarity selected at boot

2. XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.

- 3. XBLAST input polarity selected at boot
- 4. XRDY operates as active-low ready input/output during host-port accesses.

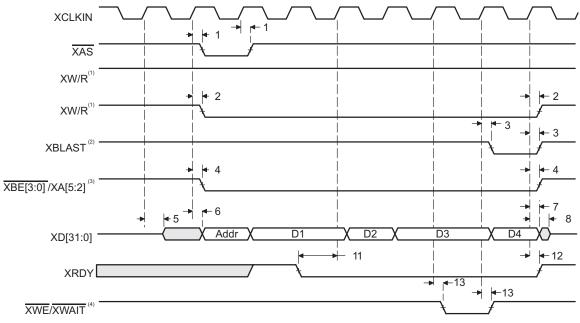
Figure 31. External Host as Bus Master—Read


1. XW/R input/output polarity selected at boot

2. XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.

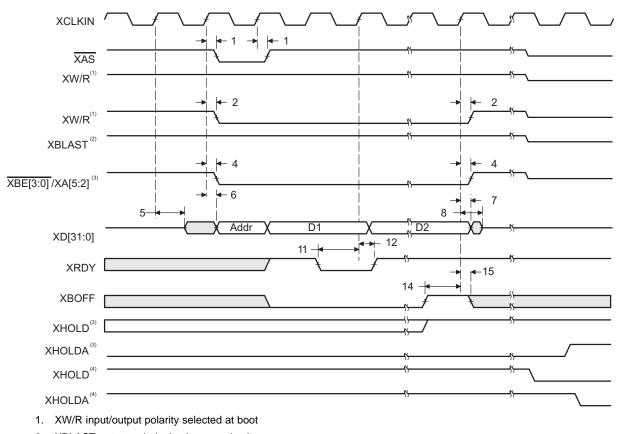
- 3. XBLAST input polarity selected at boot
- 4. XRDY operates as active-low ready input/output during host-port accesses.

Figure 32. External Host as Bus Master—Write



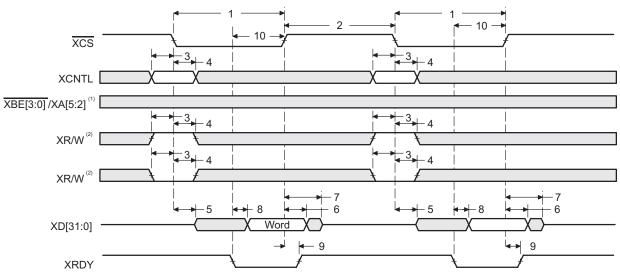
XWE/XWAIT (4)

- 1. XW/R input/output polarity selected at boot
- 2. XBLAST output polarity is always active low.
- 3. XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.
- 4. XWE/XWAIT operate as XWAIT output signal during host-port accesses.


Figure 33. C62x as Bus Master—Read

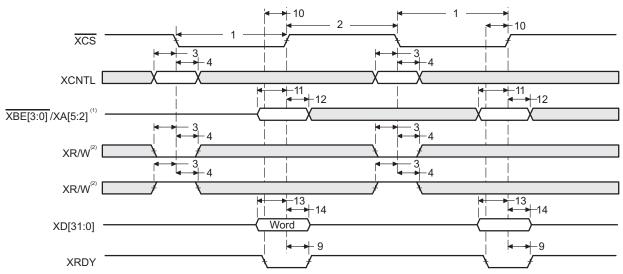
- 1. XW/R input/output polarity selected at boot
- 2. XBLAST output polarity is always active low.
- 3. XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.
- 4. XWE/XWAIT operate as XWAIT output signal during host-port accesses.

Figure 34. C62x as Bus Master—Write



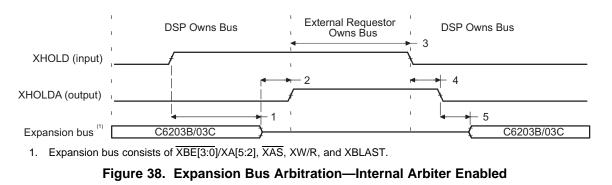
- 2. XBLAST output polarity is always active low.
- 3. XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.
- 4. Internal arbiter enabled
- 5. External arbiter enabled
- NOTE: This diagram illustrates XBOFF timing. Figure 38 and Figure 39 show bus arbitration timing.

Figure 35. C62x as Bus Master—BOFF Operation



1. $\overline{XBE[3:0]}/XA[5:2]$ operate as byte-enables $\overline{XBE[3:0]}$ during host-port accesses.

2. XW/R input/output polarity selected at boot



1. XBE[3:0]/XA[5:2] operate as byte-enables XBE[3:0] during host-port accesses.

2. XW/R input/output polarity selected at boot

Figure 37. External Device as Asynchronous Master—Write

STRUMENTS www.ti.com

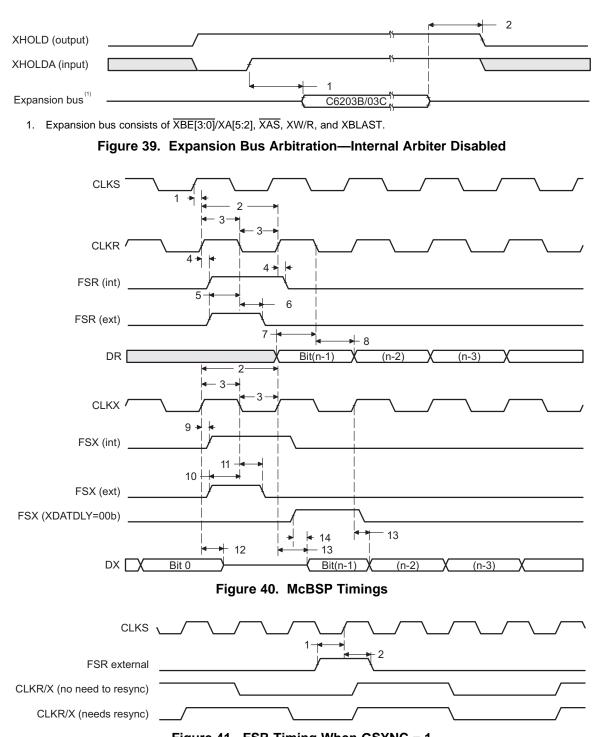
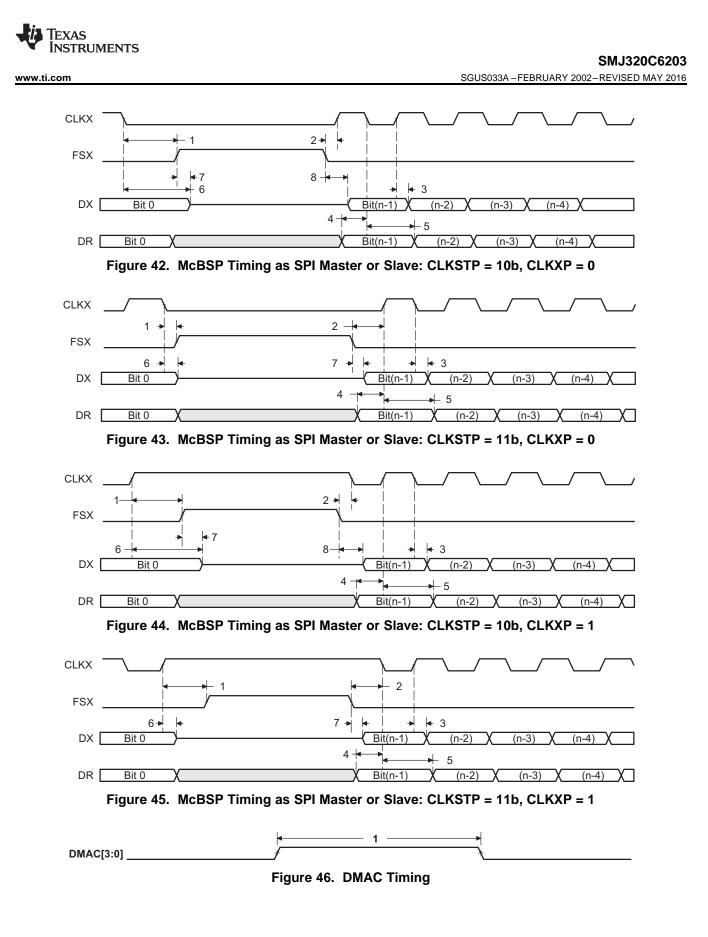
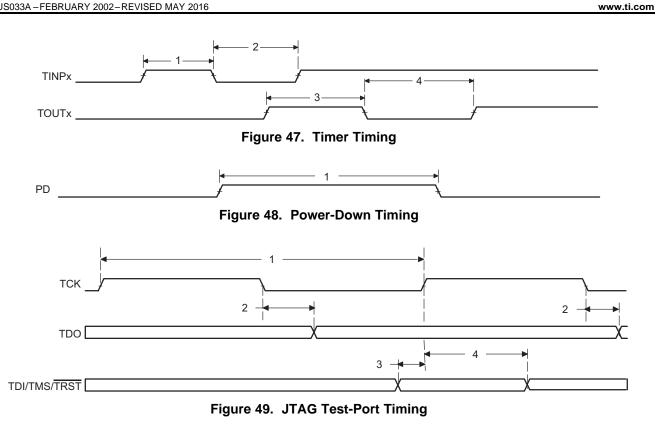
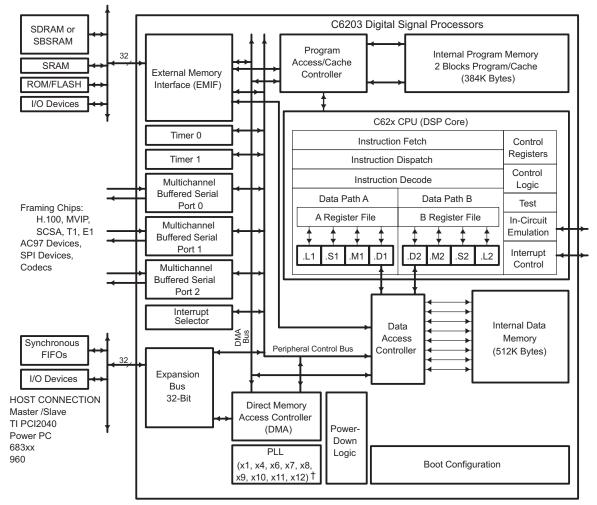




Figure 41. FSR Timing When GSYNC = 1


Texas Instruments

9 Detailed Description

9.1 Functional Block Diagram

A. For additional details on the PLL clock module and specific options for the C6203 device, see *Characteristics of the* C6203 DSP and Clock PLL.

SMJ320C6203 SGUS033A-FEBRUARY 2002-REVISED MAY 2016

www.ti.com

9.2 Feature Description

9.2.1 Signal Groups Description

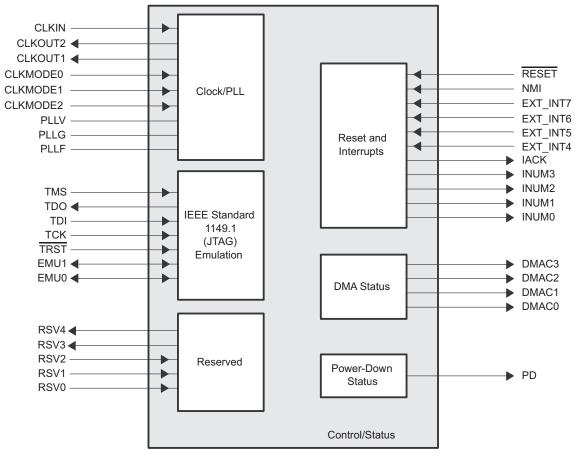


Figure 50. CPU (DSP Core) Signals

Feature Description (continued)

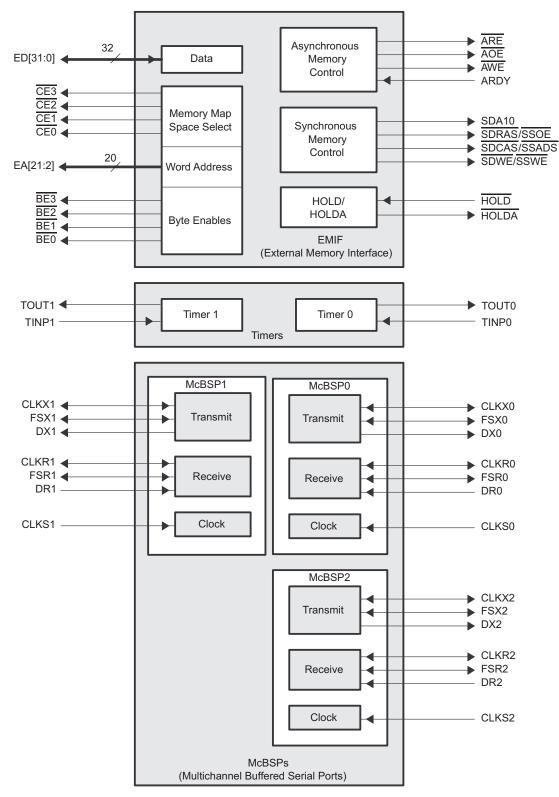


Figure 51. Peripheral Signals

TEXAS INSTRUMENTS

www.ti.com

Feature Description (continued)

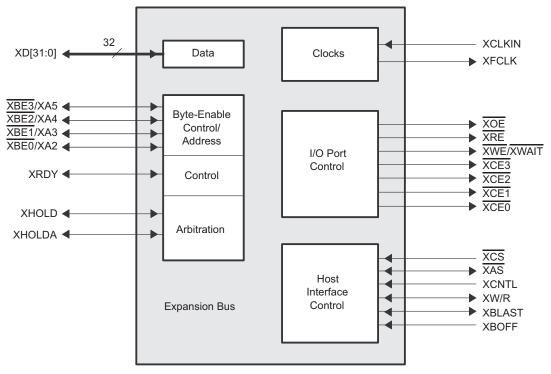


Figure 52. Peripheral Signals (continued)

9.2.2 CPU (DSP Core) Description

The CPU fetches VelociTI advanced VLIW (256 bits wide) to supply up to eight 32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture features controls by which all eight units do not have to be supplied with instructions if they are not ready to execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute packet as the previous instruction, or whether it should be executed in the following clock as a part of the next execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The variable-length execute packets are a key memory-saving feature, distinguishing the C62x CPU from other VLIW architectures.

The CPU features two sets of functional units. Each set contains four units and a register file. One set contains functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files each contain 16 32-bit registers for a total of 32 general-purpose registers. The two sets of functional units, along with two register files, compose sides A and B of the CPU (see *Functional Block Diagram* and Figure 53). The four functional units on each side of the CPU can freely share the 16 registers belonging to that side. Additionally, each side features a single data bus connected to all the registers on the other side, by which the two sets of functional units can access data from the register files on the opposite side. Register access by functional units on the same side of the CPU as the register file can service all the units in a single clock cycle. Register access using the register file across the CPU supports one read and one write per cycle.

Another key feature of the C62x CPU is the load/store architecture, where all instructions operate on registers (as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data transfers between the register files and the memory. The data address driven by the .D units allows data addresses generated from one register file to be used to load or store data to or from the other register file. The C62x CPU supports a variety of indirect addressing modes using either linear- or circular-addressing modes with 5- or 15-bit offsets. All instructions are conditional, and most instructions can access any of the 32 registers. However, some registers are singled out to support specific addressing or to hold the condition for conditional instructions (if the condition is not automatically true). The two .M functional units are dedicated for multiplies. The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results available every clock cycle.

Feature Description (continued)

The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory. The 32-bit instructions destined for the individual functional units are linked together by 1 bits in the least significant bit (LSB) position of the instructions. The instructions that are chained together for simultaneous execution (up to eight in total) compose an execute packet. A 0 in the LSB of an instruction breaks the chain, effectively placing the instructions that follow it in the next execute packet. If an execute packet crosses the 256-bit-wide fetch-packet boundary, the assembler places it in the next fetch packet, while the remainder of the current fetch packet is padded with NOP instructions. The number of execute packets within a fetch packet can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit registers, they can be subsequently moved to memory as bytes or half-words as well. All load and store instructions are byte-, half-word, or word-addressable.

Feature Description (continued)

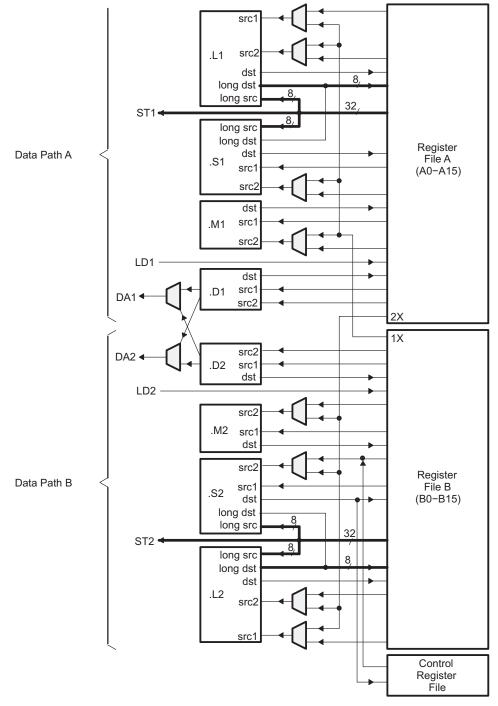
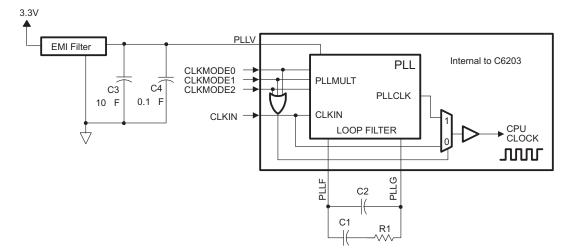


Figure 53. SMJ320C62x CPU (DSP Core) Data Paths

Feature Description (continued)

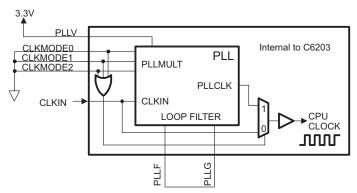
9.2.3 Clock PLL


Most of the internal C6203 clocks are generated from a single source through the CLKIN pin. This source clock either drives the PLL, which multiplies the source clock in frequency to generate the internal CPU clock, or bypasses the PLL to become the internal CPU clock.

To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Figure 54, and Table 3 through Table 17 show the external PLL circuitry for either x1 (PLL bypass) or x4 PLL multiply modes. Figure 55 shows the external PLL circuitry for a system with *only* x1 (PLL bypass) mode.

To minimize the clock jitter, a single clean power supply should power both the C6203 device and the external clock oscillator circuit. Noise coupling into PLLF directly impacts PLL clock jitter. Observe the minimum CLKIN rise and fall times. For the input clock timing requirements, see the input and output clocks in *Specifications*. Table 2 lists some examples of compatible CLKIN external clock sources:

COMPATIBLE PARTS FOR EXTERNAL CLOCK SOURCES (CLKIN)	PART NUMBER	MANUFACTURER
Oscillators	JITO-2	Fox Electronix
	STA series, ST4100 series	SaRonix Corporation
	SG-636	Epson America
	342	Corning Frequency Control
PLL	MK1711-S, ICS525-02	Integrated Circuit Systems


Table 2. Compatible	CLKIN External Clock Sources
---------------------	------------------------------

- (1) For the PLL options and CLKMODE pins setup, see Table 3 and Table 17.
- (2) Keep the lead length and the number of vias between pin PLLF, pin PLLG, R1, C1, and C2 to a minimum. In addition, place all PLL components (R1, C1, C2, C3, C4, and EMI Filter) as close to the C6000 DSP device as possible. Best performance is achieved with the PLL components on a single side of the board without jumpers, switches, or components other than the ones shown.
- (3) For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (R1, C1, C2, C3, C4, and the EMI Filter).
- (4) The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DVDD.

Figure 54. External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode

- (1) For a system with **only** PLL x1 (bypass) mode, short the PLLF to PLLG.
- (2) The 3.3-V supply for PLLV must be from the same 3.3-V power plane supplying the I/O voltage, DVDD.

Figure 55. External PLL Circuitry for x1 (Bypass) PLL Mode Only

BIT (PIN NO.)	CLKMODE2 (G12)	CLKMODE1 (G10)	CLKMODE0 (C12)	DEVICES AND PLL CLOCK OPTIONS	
				C6203 (GLP)	
Value	0	0	0	Bypass (x1)	
	0	0	1	x4	
	0	1	0	x8	
	0	1	1	x10	
	1	0	0	x6	
	1	0	1	x9	
	1	1	0	x7	
	1	1	1	x11	

(1) $f(CPU Clock) = f(CLKIN) \times (PLL mode)$

9.3 Register Maps

9.3.1 Memory Map Summary

Table 4 shows the memory map address ranges of the C6203 device. The C6203 device has the capability of a MAP 0 or MAP 1 memory block configuration. These memory block configurations are set up at reset by the boot configuration pins (generically called BOOTMODE[4:0]). For the C6203 device, the BOOTMODE configuration is handled, at reset, by the expansion bus module (specifically XD[4:0] pins). For more detailed information on the C6203 device settings, which include the device boot mode configuration at reset and other device-specific configurations, see the *TMS320C6000 Peripherals Reference Guide* (SPRU190) for information regarding boot configuration.

MEMORY BLOCK DESCRIPTION		BLOCK SIZE (BYTES)	HEX ADDRESS RANGE	
MAP 0	MAP 1			
External Memory Interface (EMIF) CE0			0000_0000 - 0005_FFFF	
EMIF CE0	Reserved	4M – 384K	0006_0000 - 003F_FFFF	
EMIF CE0	EMIF CE0	12M	0040_0000 - 00FF_FFFF	
EMIF CE1	EMIF CE0	4M	0100_0000 - 013F_FFFF	
Internal Program RAM	EMIF CE1	384K	0140_0000 - 0145_FFFF	
Reserved	EMIF CE1	4M – 384K	0146_0000 - 017F_FFFF	
EMIF R	egisters	256K	0180_0000 - 0183_FFFF	
DMA Control	ler Registers	256K	0184_0000 - 0187_FFFF	
Expansion B	us Registers	256K	0188_0000 - 018B_FFFF	
McBSP 0	Registers	256K	018C_0000 - 018F_FFFF	
McBSP 1	Registers	256K	0190_0000 - 0193_FFFF	
Timer 0 I	Registers	256K	0194_0000 - 0197_FFFF	
Timer 1 I	Registers	256K	0198_0000 - 019B_FFFF	
Interrupt Selector Registers		512	019C_0000 - 019C_01FF	
Power-Down Registers		256K – 512	019C_0200 - 019F_FFFF	
Reserved		256K	01A0_0000 - 01A3_FFFF	
McBSP 2 Registers		256K	01A4_0000 - 01A7_FFFF	
Rese	erved	5.5M	01A8_0000 - 01FF_FFFF	
EMIF	CE2	16M	0200_0000 - 02FF_FFFF	
EMIF	CE3	16M	0300_0000 - 03FF_FFFF	
Reserved		1G – 64M	0400_0000 - 3FFF_FFF	
Expansion bus XCE0		256M	4000_0000 - 4FFF_FFF	
Expansion bus XCE1		256M	5000_0000 - 5FFF_FFF	
Expansion bus XCE2		256M	6000_0000 - 6FFF_FFF	
Expansion bus XCE3		256M	7000_0000 – 7FFF_FFF	
Internal Data RAM		512K	8000_0000 - 8007_FFFF	
Rese	erved	2G – 512K	8008_0000 - FFFF_FFF	

Table 4. 320C6203 Memory Map Summary

9.3.2 Peripheral Register Descriptions

Table 5 through Table 14 identify the peripheral registers for the C6203 device by their register names, acronyms, and hex address or hex address range. For more detailed information on the register contents, bit names, and their descriptions, see the *TMS320C6000 Peripherals Reference Guide* (SPRU190).

SMJ320C6203

SGUS033A - FEBRUARY 2002 - REVISED MAY 2016

SMJ320C6203 SGUS033A-FEBRUARY 2002-REVISED MAY 2016

www.ti.com

STRUMENTS

ÈXAS

Table 5. EMIF Registers

HEX ADDRESS RANGE	ACRONYM	REGISTER NAME	COMMENTS
0180 0000	GBLCTL	EMIF global control	
0180 0004	CECTL1	EMIF CE1 space control	External or internal; dependent on MAP0 or MAP1 configuration (selected by the MAP bit in the EMIF GBLCTL register
0180 0008	CECTL0	EMIF CE0 space control	External or internal; dependent on MAP0 or MAP1 configuration (selected by the MAP bit in the EMIF GBLCTL register
0180 000C	-	Reserved	
0180 0010	CECTL2	EMIF CE2 space control	Corresponds to EMIF CE2 memory space: [0200 0000 - 02FF FFFF]
0180 0014	CECTL3	EMIF CE3 space control	Corresponds to EMIF CE3 memory space: [0300 0000 - 03FF FFFF]
0180 0018	SDCTL	EMIF SDRAM control	
0180 001C	SDTIM	EMIF SDRAM refresh control	
0180 0020 - 0180 0054	-	Reserved	
0180 0058 - 0183 FFFF	-	Reserved	

Table 6. DMA Registers

HEX ADDRESS RANGE	ACRONYM	REGISTER NAME
0184 0000	PRICTL0	DMA channel 0 primary control
0184 0004	PRICTL2	DMA channel 2 primary control
0184 0008	SECCTL0	DMA channel 0 secondary control
0184 000C	SECCTL2	DMA channel 2 secondary control
0184 0010	SRC0	DMA channel 0 source address
0184 0014	SRC2	DMA channel 2 source address
0184 0018	DST0	DMA channel 0 destination address
0184 001C	DST2	DMA channel 2 destination address
0184 0020	XFRCNT0	DMA channel 0 transfer counter
0184 0024	XFRCNT2	DMA channel 2 transfer counter
0184 0028	GBLCNTA	DMA global count reload register A
0184 002C	GBLCNTB	DMA global count reload register B
0184 0030	GBLIDXA	DMA global index register A
0184 0034	GBLIDXB	DMA global index register B
0184 0038	GBLADDRA	DMA global address register A
0184 003C	GBLADDRB	DMA global address register B
0184 0040	PRICTL1	DMA channel 1 primary control
0184 0044	PRICTL3	DMA channel 3 primary control
0184 0048	SECCTL1	DMA channel 1 secondary control
0184 004C	SECCTL3	DMA channel 3 secondary control
0184 0050	SRC1	DMA channel 1 source address
0184 0054	SRC3	DMA channel 3 source address
0184 0058	DST1	DMA channel 1 destination address
0184 005C	DST3	DMA channel 3 destination address
0184 0060	XFRCNT1	DMA channel 1 transfer counter
0184 0064	XFRCNT3	DMA channel 3 transfer counter
0184 0068	GBLADDRC	DMA global address register C
0184 006C	GBLADDRD	DMA global address register D
0184 0070	AUXCTL	DMA auxiliary control register
0184 0074 - 0187 FFFF	-	Reserved

Copyright © 2002–2016, Texas Instruments Incorporated

INSTRUMENTS

SGUS033A – FEBRUARY 2002 – REVISED MAY 2016

www.ti.com

ACRONYM HEX ADDRESS RANGE **REGISTER NAME** COMMENTS 0188 0000 XBGC Expansion bus global control register 0188 0004 XCECTL1 XCE1 space control register Corresponds to expansion bus XCE0 memory space: [4000 0000 - 4FFF FFFF] Corresponds to expansion bus XCE1 memory space: [5000 0000 - 5FFF FFFF] 0188 0008 XCECTL0 XCE0 space control register DSP read/write access only XBHC 0188 000C Expansion bus host port interface control register 0188 0010 XCECTL2 XCE2 space control register Corresponds to expansion bus XCE2 memory space: [6000 0000 - 6FFF FFFF] 0188 0014 XCECTL3 XCE3 space control register Corresponds to expansion bus XCE3 memory space: [7000 0000 - 7FFF FFFF] 0188 0018 Reserved _ 0188 001C _ Reserved 0188 0020 XBIMA Expansion bus internal master address DSP read/write access only register 0188 0024 XBEA Expansion bus external address register DSP read/write access only 0188 0028 - 018B FFFF _ Reserved XBISA Expansion bus internal slave address _ _ XBD Expansion bus data

Table 7. Expansion Bus Registers

Table 8. Interrupt Selector Registers

HEX ADDRESS RANGE	ACRONYM	REGISTER NAME	COMMENTS
019C 0000	MUXH	Interrupt multiplexer high	Selects which interrupts drive CPU interrupts 10 to 15 (INT10 to INT15)
019C 0004	MUXL	Interrupt multiplexer low	Selects which interrupts drive CPU interrupts 4 to 9 (INT04 to INT09)
019C 0008	EXTPOL	External interrupt polarity	Sets the polarity of the external interrupts (EXT_INT4-EXT_INT7)
019C 000C - 019C 01FF	-	Reserved	
019C 0200	PDCTL	Peripheral power-down control register	
019C 0204 - 019F FFFF	-	Reserved	

Table 9. Peripheral Power-Down Control Register

HEX ADDRESS RANGE	ACRONYM	REGISTER NAME
019C 0200	PDCTL	Peripheral power-down control register

Table 10. McBSP 0 Registers

HEX ADDRESS RANGE	ACRONYM	REGISTER NAME	COMMENTS
018C 0000	DRR0	McBSP0 data receive register	The CPU and DMA/EDMA controller can only read this register; they cannot write to it.
018C 0004	DXR0	McBSP0 data transmit register	
018C 0008	SPCR0	McBSP0 serial port control register	
018C 000C	RCR0	McBSP0 receive control register	
018C 0010	XCR0	McBSP0 transmit control register	
018C 0014	SRGR0	McBSP0 sample rate generator register	
018C 0018	MCR0	McBSP0 multichannel control register	
018C 001C	RCER0	McBSP0 receive channel enable register	
018C 0020	XCER0	McBSP0 transmit channel enable register	
018C 0024	PCR0	McBSP0 pin control register	

Copyright © 2002–2016, Texas Instruments Incorporated

STRUMENTS

XAS

Table 10. McBSP 0 Registers (continued)				
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS				
018C 0028 - 018F FFFF	-	Reserved		

Table 11. McBSP 1 Registers

HEX ADDRESS RANGE	ACRONYM	REGISTER NAME	COMMENTS
0190 0000	DRR1	Data receive register	The CPU and DMA/EDMA controller can only read this register; they cannot write to it.
0190 0004	DXR1	McBSP1 data transmit register	
0190 0008	SPCR1	McBSP1 serial port control register	
0190 000C	RCR1	McBSP1 receive control register	
0190 0010	XCR1	McBSP1 transmit control register	
0190 0014	SRGR1	McBSP1 sample rate generator register	
0190 0018	MCR1	McBSP1 multichannel control register	
0190 001C	RCER1	McBSP1 receive channel enable register	
0190 0020	XCER1	McBSP1 transmit channel enable register	
0190 0024	PCR1	McBSP1 pin control register	
0190 0028 - 0193 FFFF	-	Reserved	

Table 12. McBSP 2 Registers

HEX ADDRESS RANGE	ACRONYM	REGISTER NAME	COMMENTS
01A4 0000	DRR2	McBSP2 data receive register	The CPU and DMA/EDMA controller can only read this register; they cannot write to it.
01A4 0004	DXR2	McBSP2 data transmit register	
01A4 0008	SPCR2	McBSP2 serial port control register	
01A4 000C	RCR2	McBSP2 receive control register	
01A4 0010	XCR2	McBSP2 transmit control register	
01A4 0014	SRGR2	McBSP2 sample rate generator register	
01A4 0018	MCR2	McBSP2 multichannel control register	
01A4 001C	RCER2	McBSP2 receive channel enable register	
01A4 0020	XCER2	McBSP2 transmit channel enable register	
01A4 0024	PCR2	McBSP2 pin control register	
01A4 0028 - 01A7 FFFF	_	Reserved	

Table 13. Timer 0 Registers

HEX ADDRESS RANGE	ACRONYM	REGISTER NAME	COMMENTS
0194 0000	CTLO	Timer 0 control register	Determines the operating mode of the timer, monitors the timer status, and controls the function of the TOUT pin.
0194 0004	PRD0	Timer 0 period register	Contains the number of timer input clock cycles to count. This number controls the TSTAT signal frequency.
0194 0008	CNT0	Timer 0 counter register	Contains the current value of the incrementing counter.
0194 000C - 0197 FFFF	-	Reserved	

SGUS033A-FEBRUARY 2002-REVISED MAY 2016

Table 14. Timer 1 Registers

HEX ADDRESS RANGE	ACRONYM	REGISTER NAME	COMMENTS
0198 0000	CTL1	Timer 1 control register	Determines the operating mode of the timer, monitors the timer status, and controls the function of the TOUT pin.
0198 0004	PRD1	Timer 1 period register	Contains the number of timer input clock cycles to count. This number controls the TSTAT signal frequency.
0198 0008	CNT1	Timer 1 counter register	Contains the current value of the incrementing counter.
0198 000C - 019B FFFF	-	Reserved	

The C6203 DMA supports up to four independent programmable DMA channels, plus an auxiliary channel used for servicing the HPI module. The four main DMA channels can be read/write synchronized based on the events shown in Table 15. Selection of these events is done by the RSYNC and WSYNC fields in the Primary Control registers of the specific DMA channel. For more detailed information on the DMA module, associated channels, and event-synchronization, see the *TMS320C6000 Peripherals Reference Guide* (SPRU190).

Table 15. 320C6203 DMA Synchronization Events

DMA EVENT NUMBER (BINARY)	EVENT NAME	EVENT DESCRIPTION
00000	Reserved	Reserved
00001	TINTO	Timer 0 interrupt
00010	TINT1	Timer 1 interrupt
00011	SD_INT	EMIF SDRAM timer interrupt
00100	EXT_INT4	External interrupt pin 4
00101	EXT_INT5	External interrupt pin 5
00110	EXT_INT6	External interrupt pin 6
00111	EXT_INT7	External interrupt pin 7
01000	DMA_INT0	DMA channel 0 interrupt
01001	DMA_INT1	DMA channel 1 interrupt
01010	DMA_INT2	DMA channel 2 interrupt
01011	DMA_INT3	DMA channel 3 interrupt
01100	XEVT0	McBSP0 transmit event
01101	REVT0	McBSP0 receive event
01110	XEVT1	McBSP1 transmit event
01111	REVT1	McBSP1 receive event
10000	DSP_INT	Host processor-to-DSP interrupt
10001	XEVT2	McBSP2 transmit event
10010	REVT2	McBSP2 receive event
10011 - 11111	Reserved	Reserved. Not used.

9.3.3 Interrupt Sources and Interrupt Selector

The C62x DSP core supports 16 prioritized interrupts, which are listed in Table 16. The highest-priority interrupt is INT_00 (dedicated to RESET) while the lowest-priority interrupt is INT_15. The first four interrupts (INT_00 to INT_03) are non-maskable and fixed. The remaining interrupts (INT_04 to INT_15) are maskable and default to the interrupt source specified in Table 16. The interrupt source for interrupts 4 to 15 can be programmed by modifying the selector value (binary value) in the corresponding fields of the Interrupt Selector Control registers: MUXH (address 0x019C0000) and MUXL (address 0x019C0004).

Table To: Co205 DSF Interrupts										
CPU INTERRUPT NUMBER	INTERRUPT SELECTOR CONTROL REGISTER	SELECTOR VALUE (BINARY)	INTERRUPT EVENT	INTERRUPT SOURCE						
INT_00 ⁽¹⁾	-	-	RESET							
INT_01 ⁽¹⁾	-	-	NMI							
INT_02 ⁽¹⁾	-	-	Reserved	Reserved. Do not use.						
INT_03 ⁽¹⁾	-	-	Reserved	Reserved. Do not use.						
INT_04 ⁽²⁾	MUXL[4:0]	00100	EXT_INT4	External interrupt pin 4						
INT_05 ⁽²⁾	MUXL[9:5]	00101	EXT_INT5	External interrupt pin 5						
INT_06 ⁽²⁾	MUXL[14:10]	00110	EXT_INT6	External interrupt pin 6						
INT_07 ⁽²⁾	MUXL[20:16]	00111	EXT_INT7	External interrupt pin 7						
INT_08 ⁽²⁾	MUXL[25:21]	01000	DMA_INT0	DMA channel 0 interrupt						
INT_09 ⁽²⁾	MUXL[30:26]	01001	DMA_INT1	DMA channel 1 interrupt						
INT_10 ⁽²⁾	MUXH[4:0]	00011	SD_INT	EMIF SDRAM timer interrupt						
INT_11 ⁽²⁾	MUXH[9:5]	01010	DMA_INT2	DMA channel 2 interrupt						
INT_12 ⁽²⁾	MUXH[14:10]	01011	DMA_INT3	DMA channel 3 interrupt						
INT_13 ⁽²⁾	MUXH[20:16]	00000	DSP_INT	Host-processor-to-DSP interrupt						
INT_14 ⁽²⁾	MUXH[25:21]	00001	TINT0	Timer 0 interrupt						
INT_15 ⁽²⁾	MUXH[30:26]	00010	TINT1	Timer 1 interrupt						
-	-	01100	XINT0	McBSP0 transmit interrupt						
-	-	01101	RINT0	McBSP0 receive interrupt						
-	-	01110	XINT1	McBSP1 transmit interrupt						
-	-	01111	RINT1	McBSP1 receive interrupt						
-	-	10000	Reserved	Reserved. Not used.						
-	-	10001	XINT2	McBSP2 transmit interrupt						
-	-	10010	RINT2	McBSP2 receive interrupt						
-	-	10011 - 11111	Reserved	Reserved. Do not use.						

Table 16. C6203 DSP Interrupts

Interrupts INT_00 through INT_03 are non-maskable and fixed.
 Interrupts INT_04 through INT_15 are programmable by modifying the binary selector values in the Interrupt Selector Control registers fields. Table 16 shows the default interrupt sources for Interrupts INT_04 through INT_15. For more detailed information on interrupt sources and selection, see the *TMS320C6000 Peripherals Reference Guide* (SPRU190).

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Typical Application

10.1.1 Detailed Design Procedure

See the component selection in Table 17.

Та	able 17. SMJ3	20C6203 PLL	Component	Selection Tab	le ⁽¹⁾

CLKMODE	CLKIN RANGE (MHz)	CPU CLOCK FREQUENCY RANGE (MHz)	CLKOUT2 RANGE (MHz)	R1 [±1%] (REVISION NO.)	C1 [±10%] (REVISION NO.)	C2 [±10%] (REVISION NO.)	TYPICAL LOCK TIME (µs)
x4	32.5 to 75	130 to 300	65 to 150	45.3 Ω	47 nF	10 pF	75
x6	21.7 to 50						
x7	18.6 to 42.9						
x8	16.3 to 37.5						
x9	14.4 to 33.3						
x10	13 to 30						
x11	11.8 to 27.3						

(1) Under some operating conditions, the maximum PLL lock time may vary by as much as 150% from the specified typical value. For example, if the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.

11 Power Supply Recommendations

11.1 Power-Supply Sequencing

TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However, systems should be designed to ensure that neither supply is powered up for extended periods of time if the other supply is below the proper operating voltage.

11.2 System-Level Design Considerations

System-level design considerations, such as bus contention, may require supply sequencing to be implemented. In this case, the core supply should be powered up at the same time as, or prior to (and powered down after), the I/O buffers. This is to ensure that the I/O buffers receive valid inputs from the core before the output buffers are powered up, thus, preventing bus contention with other chips on the board.

11.3 Power-Supply Design Considerations

For systems using the C6000 DSP platform of devices, the core supply may be required to provide in excess of 2 A per DSP until the I/O supply is powered up. This extra current condition is a result of uninitialized logic within the DSP and is corrected after the CPU detects an internal clock pulse. With the PLL enabled, as the I/O supply is powered on, a clock pulse is produced stopping the extra current draw from the supply. With the PLL disabled, as many as five external clock cycle pulses may be required to stop this extra current draw. A normal current state returns after the I/O power supply is turned on and the CPU detects a clock pulse. Decreasing the amount of time between the core supply power up and the I/O supply power up can minimize the effects of this current draw.

A dual-power supply with simultaneous sequencing, such as available with TPS563xx controllers or PT69xx plugin power modules, can be used to eliminate the delay between core and I/O power up. See the *Using the TPS56300 to Power DSPs* application report (SLVA088). A Schottky diode can also be used to tie the core rail to the I/O rail, effectively pulling up the I/O power supply to a level that can help initialize the logic within the DSP.

Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize inductance and resistance in the power delivery path. Additionally, when designing for high-performance applications using the C6000 platform of DSPs, the PCB should include separate power planes for core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.1.2 Development Support

TI offers an extensive line of development tools for the TMS320C6000 DSP platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules.

The following products support development of C6000 DSP-based applications:

12.1.2.1 Software Development Tools

Code Composer Studio[™] Integrated Development Environment (IDE) including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software (DSP/BIOS[™]), which provides the basic run-time target software needed to support any DSP application.

12.1.2.2 Hardware Development Tools

Extended Development System (XDS[™]) Emulator (supports C6000 DSP multiprocessor system debug) EVM (Evaluation Module)

The *TMS320 DSP Development Support Reference Guide* (SPRU011) contains information about developmentsupport products for all TMS320 DSP family member devices, including documentation. See this document for further information on TMS320 DSP documentation or any TMS320 DSP support products from Texas Instruments. An additional document, the TMS320 Third-Party Support Reference Guide (SPRU052), contains information about TMS320 DSP-related products from other companies in the industry. To receive TMS320 DSP literature, contact the Literature Response Center at 800/477-8924.

For a complete listing of development-support tools for the TMS320C6000 DSP platform, visit the Texas Instruments web site at www.ti.com and select "Find Development Tools". For device-specific tools, under "Semiconductor Products" select "Digital Signal Processors", choose a product family, and select the particular DSP device. For information on pricing and availability, contact the nearest TI field sales office or authorized distributor.

12.1.3 Device and Development-Support Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all SMJ320 DSP devices and support tools. Each SMJ320 DSP commercial family member has one of three prefixes: SMX, SM, or SMJ. Texas Instruments recommends two of three possible prefix designators for support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (SMX/TMDX) through fully qualified production devices/tools (SMJ/TMDS).

Device development evolutionary flow:

- **SMX** Experimental device that is not necessarily representative of the final device's electrical specifications
- **SM** Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification
- **SMJ** Fully qualified production device processed to MIL-PRF-38535

Support tool development evolutionary flow:

TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.

Device Support (continued)

TMDS Fully qualified development-support product

SMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

SMJ devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (SMX or SM) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, GLP), the temperature range, and the device speed range in megahertz (for example, 20 is 200 MHz).

Figure 56 provides a legend for reading the complete device name. For the C6203 device orderable part numbers (P/Ns), see the Texas Instruments web site at www.ti.com, or contact the nearest TI field sales office, or authorized distributor.

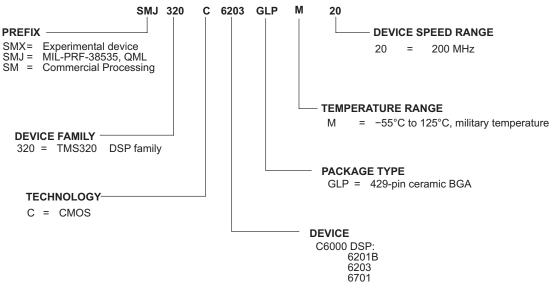


Figure 56. SMJ320C6000 DSP Platform Device Nomenclature

12.2 Documentation Support

12.2.1 Related Documentation

Extensive documentation supports all SMJ320 DSP family devices from product announcement through applications development. The types of documentation available include: data sheets, such as this document, with design specifications; complete user's reference guides for all devices and tools; technical briefs; development-support tools; on-line help; and hardware and software applications. The following is a brief, descriptive list of support documentation specific to the C6000 DSP devices:

The *TMS320C6000 CPU and Instruction Set Reference Guide* (SPRU189) describes the C6000 CPU (DSP core) architecture, instruction set, pipeline, and associated interrupts.

The *TMS320C6000 Peripherals Reference Guide* (SPRU190) describes the functionality of the peripherals available on the C6000 DSP platform of devices, such as the 64-/32-/16-bit external memory interfaces (EMIFs), 32-/16-bit host-port interfaces (HPIs), multichannel buffered serial ports (McBSPs), direct memory access (DMA), enhanced direct-memory-access (EDMA) controller, expansion bus, peripheral component interconnect (PCI), clocking and phase-locked loop (PLL); and power-down modes. This guide also includes information on internal data and program memories.

Documentation Support (continued)

The *TMS320C6000 Technical Brief* (SPRU197) gives an introduction to the TMS320C62x/TMS320C67x devices, associated development tools, and third-party support.

The tools support documentation is electronically available within the Code Composer Studio[™] IDE. For a complete listing of the latest C6000 DSP documentation, visit the Texas Instruments website at www.ti.com.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

SMJ320C62x, VelociTI, C62x, C6000, Code Composer Studio, DSP/BIOS, XDS, E2E are trademarks of Texas Instruments.

Windows is a registered trademark of Microsoft Corporation. Motorola is a registered trademark of Motorola Trademark Holdings, LLC. All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

SMJ320C6203

SGUS033A - FEBRUARY 2002 - REVISED MAY 2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
5962-0051001QXA	ACTIVE	CFCBGA	GLP	429	1	Non-RoHS	SNPB	N / A for Pkg Type	-55 to 125	5962-0051001QX	Samples
						& Green				A	Bampies
										SMJ320C6203GLP	
										M20	
SM320C6203GLPM20	ACTIVE	CFCBGA	GLP	429	1	Non-RoHS	SNPB	N / A for Pkg Type	-55 to 125	SM320C6203GLPM	Samplas
						& Green		0 71		20	Samples
SMJ320C6203GLPM20	ACTIVE	CFCBGA	GLP	429	1	Non-RoHS	SNPB	N / A for Pkg Type	-55 to 125	5962-0051001QX	Samples
						& Green				A	Samples
										SMJ320C6203GLP	
										M20	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

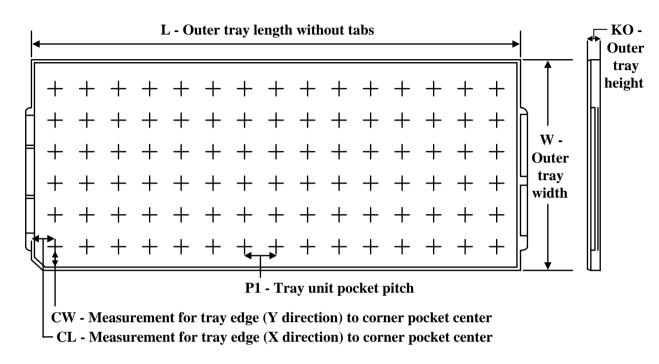
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


Texas Instruments

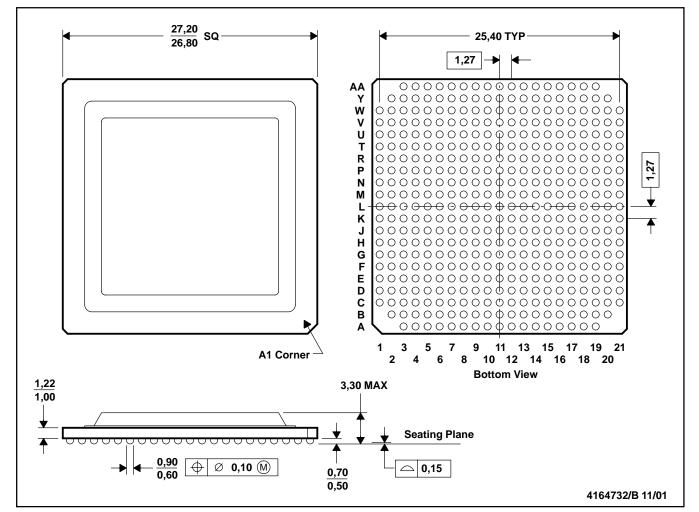
www.ti.com

TRAY

23-Jun-2023

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	K0 (µm)	P1 (mm)	CL (mm)	CW (mm)
5962-0051001QXA	GLP	CFCBGA	429	1	4x10	150	315	135.9	7620	29.2	26.1	24.15
SM320C6203GLPM20	GLP	CFCBGA	429	1	4x10	150	315	135.9	7620	29.2	26.1	24.15
SMJ320C6203GLPM20	GLP	CFCBGA	429	1	4x10	150	315	135.9	7620	29.2	26.1	24.15


*All dimensions are nominal

MECHANICAL DATA

MCBG004A - SEPTEMBER 1998 - REVISED JANUARY 2002

CERAMIC BALL GRID ARRAY

GLP (S-CBGA-N429)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-156
- D. Flip chip application only

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated