

RM8810

Descriptions

N-channel Double MOSFET in a SOT23-6 Plastic Package. It is ESD protested.

Features

advanced trench technology to provide excellent RDS(on), low gate charge.

Applications

Use as Load Switch or PWM application.

Equivalent Circuit

Pinning

2018-06/33 REV:O

Absolute Maximum Ratings(T_a=25°C)

Parameter	Symbol	Rating	Unit		
Drain-Source Voltage	V _{DS}	20	V		
Drain Current - Continuous	I _D (T _a =25℃)	7.0	A		
Drain Current - Continuous	I _D (T _a =70℃)	5.7			
Drain Current – Pulsed	I _{DM}	25	А		
Gate-Source Voltage	V _{GS}	±8.0	V		
Power Dissipation	P _D (T _a =25℃)	1.5	\\/		
Power Dissipation	P _D (T _a =70℃)	1.0	vv		
Junction-to-Ambient ^A	t ≤ 10s	В	83	°C/W	
Junction-to-Ambient ^{AD}	Steady-State	κ _{θJA}	120		
Junction-to-Lead	unction-to-Lead Steady-State		70	°C/W	
Junction and Storage Temperature	T _{j,} T _{stg}	-55 ~ 150	°C		

Electrical Characteristics($T_a=25^{\circ}C$)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit	
Drain-Source Breakdown Voltage	BV_{DSS}	V _{GS} =0V	I _D =250μΑ	20			V	
Drain-Source Leakage Current		V _{DS} =16V	V _{GS} =0V			1.0	μA	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =16V Tj=85℃	V _{GS} =0V			10	μA	
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±8V	V _{DS} =0V			±10	μA	
On state drain current	I _{D(ON)}	V _{GS} =4.5V	V _{DS} =5V	25			А	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$	I _D =250μΑ	0.45	0.6	1.0	V	
Static Drain-Source On-Resistance	R _{DS(on)}	V _{GS} =4.5V	I _D =6.0A		16	20		
		V _{GS} =2.5V	I _D =6.0A		19	25	11122	
Forward Transconductance	g fs	V _{DS} =5.0V	I _D =7.0A		50		S	
Forward On Voltage	V _{SD}	V _{GS} =0V	I _S =1.0A			1.3	V	
Maximum Body-Diode Continuous Current	I _S					2	А	
Input Capacitance C _{is}					1295			
Output Capacitance	C _{oss}	V _{DS} =10V f=1.0MHz	V _{GS} =0V		160		pF	
Reverse Transfer Capacitance	C _{rss}				87			

CRECTRON

Electrical Characteristics(T_a=25°C)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Gate resistance	R _g	V _{DS} =0V V _{GS} =0V f=1.0MHz		1.8		KΩ
Total Gate Charge	Qg			10	14	
Gate Source Charge	Q _{gs}	V _{DS} =10V V _{GS} =4.5V		4.2		nC
Gate Drain Charge	Q _{gd}			2.6		
Turn-on Delay Time	t _{d(on)}			280		ns
Rise Time	t _r	V _{DS} =10V V _{GS} =4.5V		328		ns
Turn-off Delay Time	t _{d(off)}	$R_G=3.0\Omega$ $R_L=1.54\Omega$		3.76		μs
Fall Time	t _f			2.24		μs
Body Diode Reverse Recovery Time	t _{rr}	I _F =7A dl/dt=100A/ms V _{GS} =-9V		31		ns
Body Diode Reverse Recovery Charge	Q _{rr}	IF=7A dl/dt=100A/ms V _{GS} =-9V		6.8		nC

Notes:

A. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on $T_{J(MAX)}=150^{\circ}$ C, using ≤ 10 s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150$ °C. Ratings are based on low frequency and duty cycles to keep initial $T_J=25$ °C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300ms pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating.

RATING AND CHARACTERISTICS CURVES (RM8810)

CRECTRON

V_{GS} - Q_a 5 1800 V_{DS}=10V I_D=7A 1600 4 1400 C. Capacitance (pF) 1200 V_{GS} (Volts) 1000 800 600 1 400 200 0 0 0 2 4 6 8 10 12 5 0 10 15 20 Q_g (nĈ) V_{DS} (Volts) ID - VDS 10000 100.0 T_{J(Max)}=150° C T_A=25° C 10µs # 1000 11110 10.0 R_{DS(ON)} 100us limited I^D (Ymps) Power (W) -1ms 100 10ms 100ms 1111 10 10s T_{J(Max)}=150° C T_A=25° C 0.1 DC ₩ 1 0.0 0.00001 0.001 0.1 10 1000 0.01 0.1 10 100 1 V_{DS} (Volts) Pulse Width (s) 10 D=Ton/T In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse Z_{6JA} Normalized Transient Thermal Resistance T_{J,PK}=T_A+P_{DM}.Z_{0JA}.R_{0JA} LITH 111111 T I I I III =120° C/W 1 R. ---------0.1 Ħ Po 11111 0.01 Single Pulse t. Ton т 0.001 0.00001 0.0001 0.001 0.01 0.1 10 100 1000 1 Pulse Width (s)

RATING AND CHARACTERISTICS CURVES (RM8810)

Test circuit and waveform

Package Dimensions

Marking Instructions

Note:

8810:	Product Type.
****.	Date code change with manufacturing date.

Temperature Profile for IR Reflow Soldering(Pb-Free)

Notes:

1.Preheating:25~150 °C, Time:60~90sec.

 $2. Peak \qquad Temp.: 245 \pm 5^\circ C, \ Duration: 5 \pm 0.5 sec.$

3. Cooling Speed: 2~10°C/sec.

Resistance to Soldering Heat Test Conditions

Temp:260±5°C Time:10±1 sec

Packaging SPEC.

REEL

Package Type	Units					Dimer	nsion	(unit: mm ³)
i donago ijpo	Units/Reel	Reels/Inner Box	Units/Inner Box	Inner Boxes/Outer Box	Units/Outer Box	Reel	Inner Box	Outer Box
SOT23-5/6	3,000	10	30,000	4	120,000	7″×8	210×205×205	445×230×435

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

