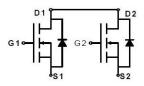
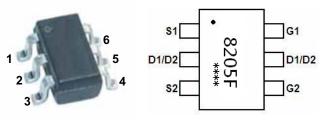


Descriptions

N-channel Double MOSFET in a SOT23-6 Plastic Package.


Features

advanced trench technology to provide excellent $R_{DS(on)}$, low gate charge and operation with gate voltages as low as 2.5V.


Applications

Use as a Battery protection , Switching application.

Equivalent Circuit

Pinning

Marking

Marking

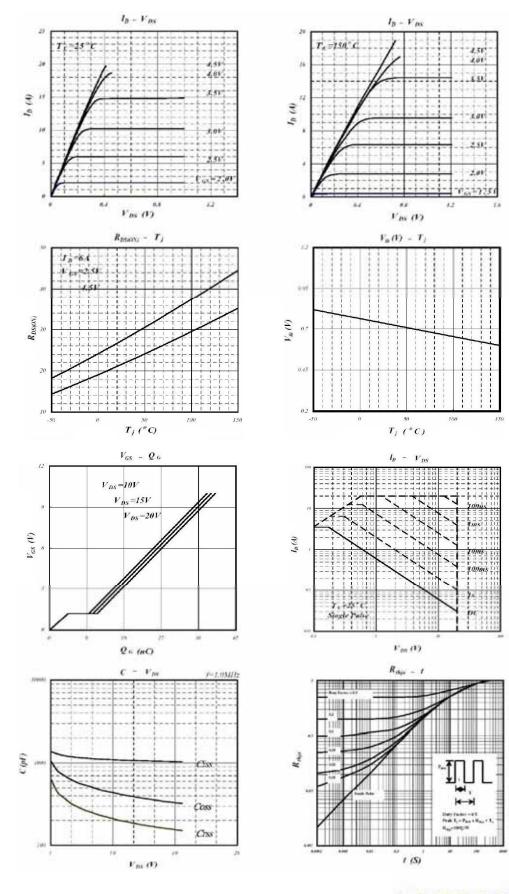
2018-06/33 REV:O

Absolute Maximum Ratings(Ta=25 °C)

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	V _{DS}	20	V
Drain Current - Continuous	I _D (Ta=25℃)	6.0	A
Drain Current - Continuous	I _D (Ta=100℃)	4.8	А
Drain Current – Pulsed	I _{DM}	20	А
Gate-Source Voltage	V _{GS}	±12	V
Maximum Power Dissipation	P _D (Ta=25℃)	1.14	W
Thermal Resistance Junction-to-Ambient	R _{0JA}	110	°C/W
Junction Temperature	Tj	150	°C
Storage Temperature Range	T _{stg}	-55 ~ 150	°C

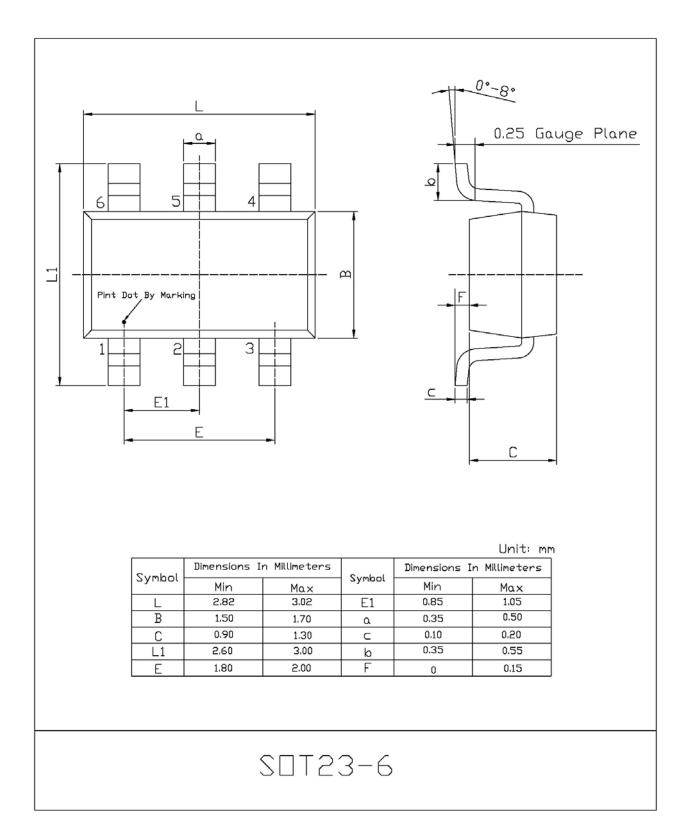
Electrical Characteristics(Ta=25°C)

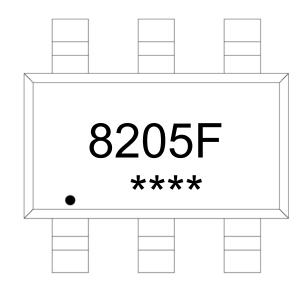
Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	BV_{DSS}	V _{GS} =0V	I _D =250μΑ	20			V
Drain-Source Leakage Current(T _i =25℃)	I _{DSS}	V _{DS} =20V	V _{GS} =0V			1	μA
Drain-Source Leakage Current(T _i =70℃)	I _{DSS}	V _{DS} =16V	V _{GS} =0V			25	μA
Gate-Source Leakage Current	I_{GSS}	V _{GS} =±10V	V _{DS} =0V			±100	nA
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$	I _D =250μΑ	0.5		1.2	V
Static Drain-Source On-Resistance	RDS(on)	V _{GS} =4.5V	I _D =1.0A		11.5	17	mΩ
		V _{GS} =2.5V	I _D =1.0A		16.5	22	mΩ
		V _{GS} =4.5V	I _D =6.0A		14	20	mΩ
		V _{GS} =2.5V	I _D =5.2A		17	24	mΩ
Forward Transconductance	g fs	V _{DS} =5.0V	I _D =4.0A	5			S
Forward On Voltage	V_{SD}	V _{GS} =0V	I _S =1.7A			1.2	V
Input Capacitance	C _{iss}				1035		pF
Output Capacitance	C _{oss}	V _{DS} =20V V _{GS} =0V f=1.0MHz			320		pF
Reverse Transfer Capacitance	C _{rss}	1 1.010112			150		pF
Turn-on Delay Time	t _{d(on)}		I _D =1A R _G =6Ω		30		ns
Rise Time	t _r	V _{DS} =10V V _{GS} =5V R _D =10Ω			70		ns
Turn-off Delay Time	t _{d(off)}				40		ns
Fall Time	t _f				65		ns


Notes:

1, Surface Mounted on FR4 Board, $t \le 10$ sec.

2 Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.


CRECTRON -----


CRECTRON

Package Dimensions

CRECTRON -


Marking Instructions

8205F: Product Type Code.****: Date code change with manufacturing date.

Temperature Profile for IR Reflow Soldering(Pb-Free)

Notes:

1.Preheating:25~150 °C, Time:60~90sec.

2.Peak Temp.:245 ±5°C, Duration:5±0.5sec.

3. Cooling Speed: 2~10°C/sec.

Resistance to Soldering Heat Test Conditions

Temp:260±5℃ Time:10±1 sec

Packaging SPEC.

REEL

Package Type	Units				Dimension		(unit: mm ³)	
i donago i jpo	Units/Reel	Reels/Inner Box	Units/Inner Box	Inner Boxes/Outer Box	Units/Outer Box	Reel	Inner Box	Outer Box
SOT23-5/6	3,000	10	30,000	4	120,000	7″×8	210×205×205	445×230×435

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

