
N-Channel Enhancement Mode Power MOSFET

Description

The RM2312 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a battery protection or in other switching application.

G S

Schematic diagram

Marking and pin assignment

SOT-23 top view

General Features

• $V_{DS} = 20V, I_D = 4.5A$

 $R_{DS(ON)} < 45 \text{m}\Omega$ @ $V_{GS}=1.8V$

 $R_{DS(ON)}$ < 40m Ω @ V_{GS} =2.5V

 $R_{DS(ON)}$ < 33m Ω @ V_{GS} =4.5V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package

Application

- Battery protection
- ●Load switch
- Power management
- Package:3K/Reel,9K/Box,72K/Carton
- Halogen-free
- P/N suffix V means AEC-Q101 qualified, e.g:RM2312V

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
2312	RM2312	SOT-23	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

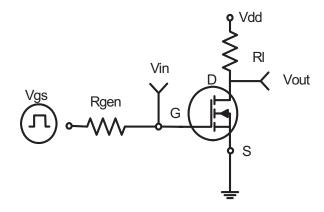
5	,				
Paramete	Symbol	Limit	Unit		
Drain-Source Voltage	VDS	20	V		
Gate-Source Voltage	Vgs	±12	V		
Continuous Drain Current	T _A =25℃	1	4.5	А	
Continuous Drain Current	T _A = 70 °C	I _D	3.6		
Drain Current-Pulsed (Note 1)	I _{DM}	13.5	А		
Maximum Power Dissipation	P _D	1.25	W		
Operating Junction and Storage Temper	T_{J}, T_{STG}	-55 To 150	°C		

Thermal Characteristic

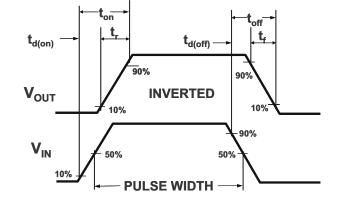
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	100	°C/W

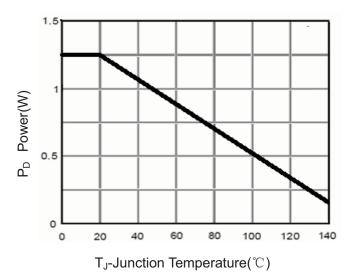
Electrical Characteristics (T_A 25°C unless otherwise noted)

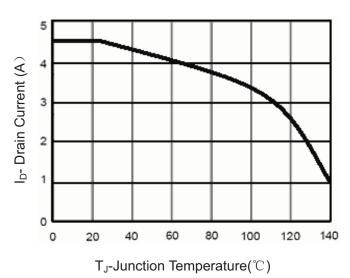
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	20	22	-	V


Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.5	0.65	1.2	V
		V _{GS} =1.8V, I _D =2.0 A	-	28.5	45	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =2.5V, I _D =4.0 A	-	21	40	mΩ
		V _{GS} =4.5V, I _D =4.5A	-	18	33	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =4A	-	10	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ -0\/\/ -0\/	-	500	-	PF
Output Capacitance	C _{oss}	V_{DS} =8V, V_{GS} =0V, F=1.0MHz	-	300	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVII IZ		140	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	20	40	nS
Turn-on Rise Time	t _r	V_{DD} =10 V , I_{D} =1 A	-	18	40	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =4.5 V , R_{GEN} =6 Ω	-	60	108	nS
Turn-Off Fall Time	t _f		-	28	56	nS
Total Gate Charge	Qg		-	10	15	nC
Gate-Source Charge	Q _{gs}	V _{DS} =10V,I _D =3A,V _{GS} =4.5V	-	2.3	-	nC
Gate-Drain Charge	Q_{gd}		-	2.9	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =1A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	4.5	А

Notes:


- $\textbf{1.} \ \textbf{Repetitive rating: pulse width limited by maximum junction temperature.}$
- Surface mounted on FR4 Board, t ≤ 10 sec.
 Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production


RATING AND CHARACTERISTICS CURVES (RM2312)


Figure 1:Switching Test Circuit

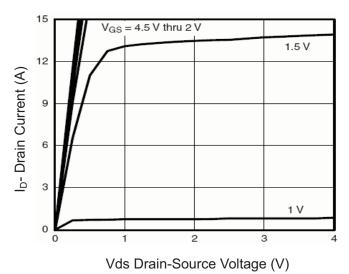
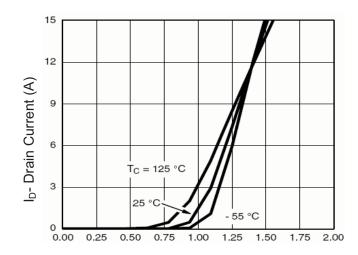
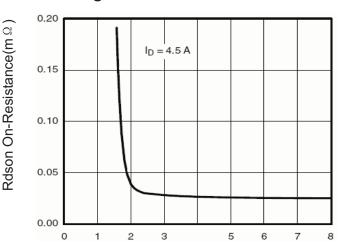

Figure 2:Switching Waveforms

Figure 3 Power Dissipation

Figure 4 Drain Current

Figure 5 Output Characteristics


Figure 6 Drain-Source On-Resistance

RATING AND CHARACTERISTICS CURVES (RM2312)

Vgs Gate-Source Voltage (V)
Figure 7 Transfer Characteristics

Vgs Gate-Source Voltage (V) Figure 9 Rdson vs. Vgs

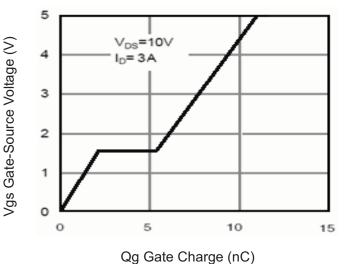


Figure 11 Gate Charge

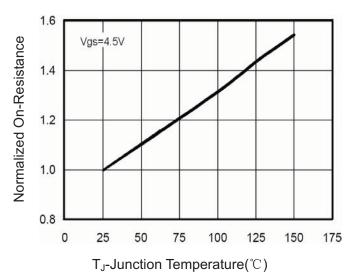


Figure 8 Drain-Source On-Resistance

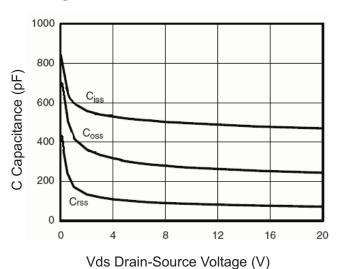


Figure 10 Capacitance vs Vds

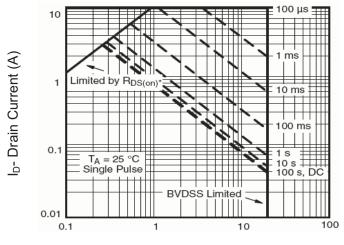



Figure 12 Source- Drain Diode Forward

RATING AND CHARACTERISTICS CURVES (RM2312)

Vds Drain-Source Voltage (V)

Figure 13 Safe Operation Area

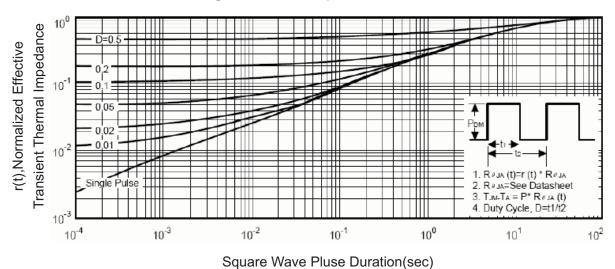
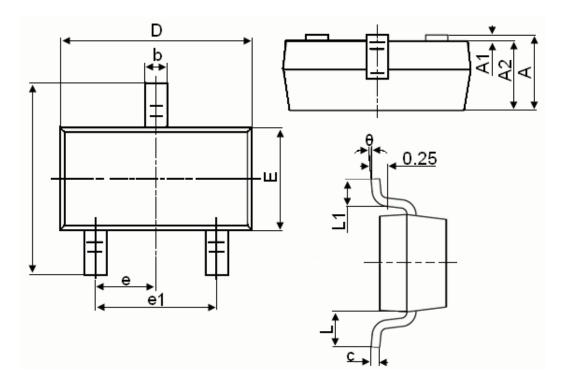



Figure 14 Normalized Maximum Transient Thermal Impedance

SOT-23 Package Information

Cumbal	Dimensions in Millimeters				
Symbol	MIN.	MAX.			
А	0.900	1.150			
A1	0.000	0.100			
A2	0.900	1.050			
b	0.300	0.500			
С	0.080	0.150			
D	2.800	3.000			
E	1.200	1.400			
E1	2.250	2.550			
е		0.950TYP			
e1	1.800	2.000			
L		0.550REF			
L1	0.300	0.500			
θ	0°	8°			

Notes

- 1. All dimensions are in millimeters.
- 2. Tolerance ±0.10mm (4 mil) unless otherwise specified
- 3. Package body sizes exclude mold flash and gate burrs. Mold flash at the non-lead sides should be less than 5 mils.
- 4. Dimension L is measured in gauge plane.
- 5. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

