

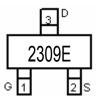
P-Channel Enhancement Mode Power MOSFET

Description

The RM2309E uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications .It is ESD protested.

Schematic diagram

General Features


• $V_{DS} = -30V, I_{D} = -3.5A$

 $R_{DS(ON)} <$ 38 $m\Omega$ @ $V_{GS} \text{=-}10V$

 $R_{DS(ON)} < 70 \ m\Omega @ V_{GS} \text{=-}4.5 \text{V}$

ESD Rating: 2000V HBM

- High power and current handing capability
- Lead free product is acquired
- Surface mount package

Marking and pin assignment

Daring S

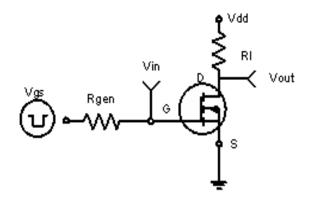
SOT-23 top view

Application

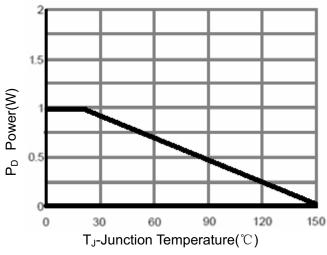
- Load switch
- Halogen-free
- P/N suffix V means AEC-Q101 qualified, e.g:RM2309EV

Package Marking and Ordering Information

Device Marking Device		Device Package	Reel Size	Tape width	Quantity
2309E	RM2309E	SOT-23	Ø180mm	8 mm	3000 units


Limiting Values

9	minerity values			
Symbol	Parameter	Rating	Unit	
V _{DSS}	Drain-Source Voltage	- 30	W	
V _{GSS}	Gate-Source Voltage	± 20	V	


Electrical Characteristics (Ta = 25 °C Unless Otherwise Noted)

	Symbol	Parameter	Condit	ions	Min	Тур	Max	Unit
Static Cha	aracteristics							
BV _{DSS}	Drain-Source Breakdown Voltage		$V_{GS} = 0 \text{ V}, I_{DS} =$	$V_{GS} = 0 \text{ V}, I_{DS} = -250 \mu\text{A}$		-	-	V
$V_{GS(th)}$	Gate Threshold Voltage		$V_{DS} = V_{GS}, I_{DS} =$	$V_{DS} = V_{GS}, I_{DS} = -250 \mu A$		- 1.8	- 2.5	V
	Drain Lookaga Cui	kaga Current	V _{DS} = - 24 V, V _{GS}	; = 0 V	-	-	-1	μΑ
I _{DSS}	Drain Leakage Current			T _J = 85 °C	-	-	- 30	μΑ
I_{GSS}	Gate Leakage Current		$V_{GS} = \pm 20 \text{ V}, V_{D}$	s = 0 V	-	-	± 10	μA
R _{DS(ON)} ^a	On-State Resistance		V _{GS} = - 10 V, I _{DS}	V _{GS} = - 10 V, I _{DS} = - 1 A		30	38	mΩ
NDS(ON)			$V_{GS} = -4.5 \text{ V}, I_{DS}$	V _{GS} = - 4.5 V, I _{DS} = - 1 A		55	70	11122
Diode Ch	aracteristics							
V _{SD}	Diode Forward Vo	oltage	I _{SD} = - 1 A, V _{GS} =	0 V	-	- 0.7	- 1.3	V

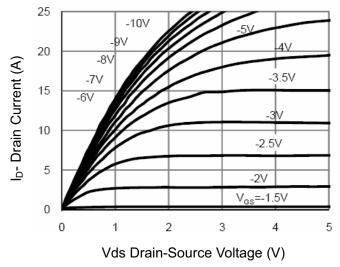

RATING AND CHARACTERISTICS CURVES (RM2309E)

Figure 1:Switching Test Circuit

Figure 3 Power Dissipation

Figure 5 Output Characteristics

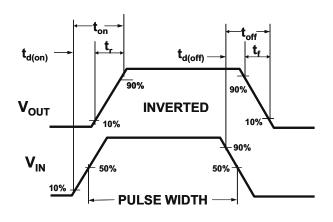
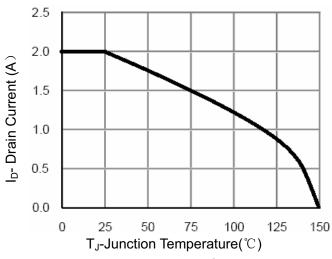



Figure 2:Switching Waveforms

Figure 4 Drain Current

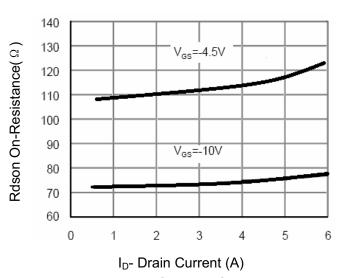
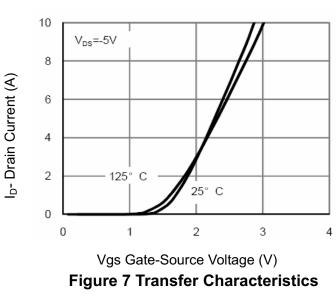



Figure 6 Drain-Source On-Resistance

RATING AND CHARACTERISTICS CURVES (RM2309E)

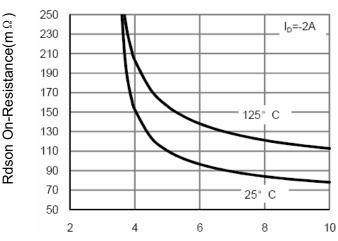


Figure 9 Rdson vs Vgs

Vgs Gate-Source Voltage (V)

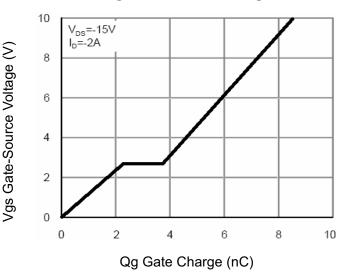


Figure 11 Gate Charge

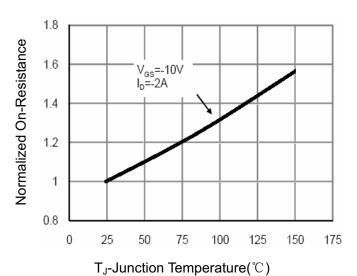
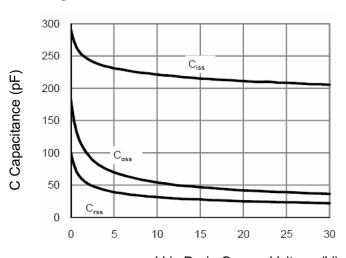



Figure 8 Drain-Source On-Resistance

Vds Drain-Source Voltage (V)

Figure 10 Capacitance vs Vds

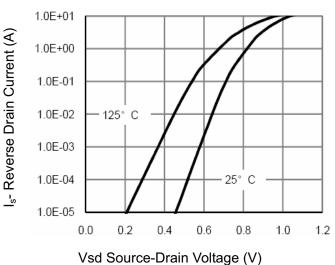
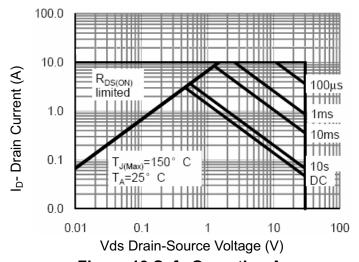
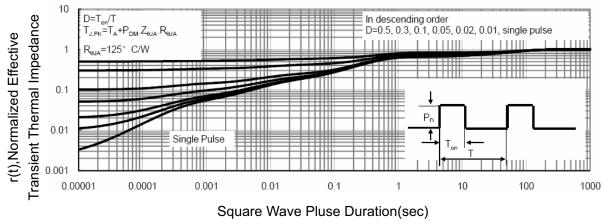


Figure 12 Source- Drain Diode Forward

RATING AND CHARACTERISTICS CURVES (RM2309E)

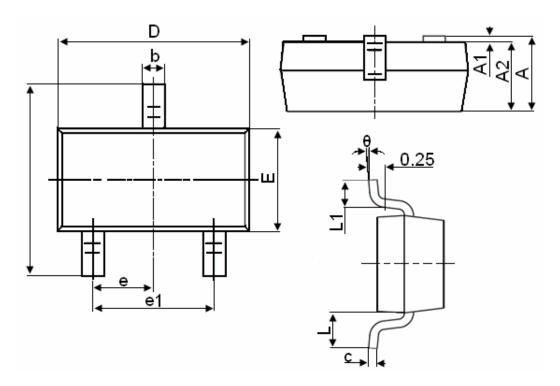

Figure 13 Safe Operation Area

Figure 14 Normalized Maximum Transient Thermal Impedance

SOT-23 Package Information

Symbol	Dimensions in Millimeters				
Symbol	MIN.	MAX.			
Α	0.900	1.150			
A1	0.000	0.100			
A2	0.900	1.050			
b	0.300	0.500			
С	0.080	0.150			
D	2.800	3.000			
E	1.200	1.400			
E1	2.250	2.550			
е	0.950TYP				
e1	1.800	2.000			
L	0.550REF				
L1	0.300	0.500			
θ	0°	8°			

Notes

- 1. All dimensions are in millimeters.
- 2. Tolerance ±0.10mm (4 mil) unless otherwise specified
- $3.\ Package\ body\ sizes\ exclude\ mold\ flash\ and\ gate\ burrs.\ Mold\ flash\ at\ the\ non-lead\ sides\ should\ be\ less\ than\ 5\ mils.$
- 4. Dimension L is measured in gauge plane.
- $5. \ Controlling \ dimension \ is \ millimeter, \ converted \ inch \ dimensions \ are \ not \ necessarily \ exact.$

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

