

Silicon Carbide (SiC) MOSFET – EliteSiC, 22 mohm, 1200 V, M3S, D²PAK-7L

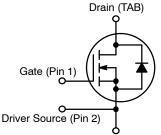
NVBG022N120M3S

Features

- Typ. $R_{DS(on)} = 22 \text{ m}\Omega$ @ $V_{GS} = 18 \text{ V}$
- Ultra Low Gate Charge (Q_{G(tot)} = 142 nC)
- High Speed Switching with Low Capacitance (Coss = 146 pF)
- 100% Avalanche Tested
- AEC-Q101 Qualified and PPAP Capable
- These Devices are RoHS Compliant

Typical Applications

- Automotive On Board Charger
- Automotive DC/DC Converter for EV/HEV


MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	1200	V
Gate-to-Source Voltage			V_{GS}	-10/+22	V
Recommended Operation Values of Gate-to-Source Voltage		V_{GSop}	-3/+18	٧	
Continuous Drain Current (Notes 2, 3)	Steady State	T _C = 25°C	I _D	72	Α
Power Dissipation (Note 2)			P _D	234	W
Continuous Drain Current (Notes 2, 3)	Steady State	T _C = 100°C	I _D	51	Α
Power Dissipation (Note 2)			P _D	117	W
Pulsed Drain Current (Note 4)	T _C = 25°C		I _{DM}	171	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode) T _C = 25°C, V _{GS} = -3 V (Note 2)			Is	53	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 23.1 A, L = 1 mH) (Note 5)			E _{AS}	267	mJ
Maximum Temperature for Soldering (10 s)			T_L	270	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface mounted on a FR-4 board using1 in2 pad of 2 oz copper.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 3. The maximium current rating is based on typical R_{DS(on)} performance.
- 4. Repetitive rating, limited by max junction temperature.
- 5. E_{AS} of 264 mJ is based on starting $T_J = 25^{\circ}C$; L = 1 mH, $I_{AS} = 23.1$ A, $V_{DD} = 100$ V, $V_{GS} = 18$ V.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
1200 V	30 mΩ @ 18 V	72 A

Power Source (Pins 3, 4, 5, 6, 7)

N-CHANNEL MOSFET

D²PAK-7L CASE 418BJ

MARKING DIAGRAM

BG022N 120M3S AYWWZZ

BG022N120M3S = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping
NVBG022N120M3S	D ² PAK-7L	800 / Tape & Reel

THERMAL CHARACTERISTICS

Parameter		Тур	Max	Unit
Junction-to-Case - Steady State (Note 2)		0.64	-	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)		-	40	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF-STATE CHARACTERISTICS			ı	1		ı
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	1200	_	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C (Note 7)	-	0.3	-	V/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 1200 V	-	-	100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = +22/-10 V, V _{DS} = 0 V	-	-	±1	μΑ
ON-STATE CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 20 \text{ mA}$	2.04	2.72	4.4	V
Recommended Gate Voltage	V_{GOP}		-3	-	+18	V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 18 \text{ V}, I_D = 40 \text{ A}, T_J = 25^{\circ}\text{C}$	-	22	30	mΩ
		V _{GS} = 18 V, I _D = 40 A, T _J = 175°C (Note 7)	-	44	-	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 40 A (Note 7)	-	34	-	S
CHARGES, CAPACITANCES & GATE RES	SISTANCE					
Input Capacitance	C _{ISS}		-	3175	-	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V	-	146	-	
Reverse Transfer Capacitance	C _{RSS}		-	14	-	
Total Gate Charge	Q _{G(TOT)}		-	142	-	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -3/18 \text{ V}, V_{DS} = 800 \text{ V},$	-	11	-	
Gate-to-Source Charge	Q_{GS}	$V_{GS} = -3/18 \text{ V}, V_{DS} = 800 \text{ V},$ $I_{D} = 40 \text{ A}$	_	16	-	
Gate-to-Drain Charge	Q_{GD}		_	38	-	
Gate-Resistance	R_{G}	f = 1 MHz	-	1.5	-	Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(ON)}		-	18	-	ns
Rise Time	t _r		-	24	-	
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = -3/18 \text{ V},$	-	47	-	
Fall Time	t _f	V_{DS} = 800 V, I_{D} = 40 A, R_{G} = 4.5 Ω inductive load (Notes 6, 7)	-	14	-	
Turn-On Switching Loss	E _{ON}		-	485	-	μJ
Turn-Off Switching Loss	E _{OFF}	, , ,	-	220	-	
Total Switching Loss	E _{tot}		-	705	-	
SOURCE-DRAIN DIODE CHARACTERIST	rics					
Continuous Source-Drain Diode Forward Current (Note 2)	I _{SD}	V _{GS} = -3 V, T _C = 25°C	-	-	53	Α
Pulsed Source–Drain Diode Forward Current (Note 4)	I _{SDM}	(Note 7)	-	-	171	
Forward Diode Voltage	V_{SD}	$V_{GS} = -3 \text{ V}, I_{SD} = 40 \text{ A}, T_{J} = 25^{\circ}\text{C}$	_	4.5	_	V

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
SOURCE-DRAIN DIODE CHARACTERISTICS							
Reverse Recovery Time	t _{RR}		-	23	-	ns	
Reverse Recovery Charge	Q _{RR}	$V_{GS} = -3/18 \text{ V}, I_{SD} = 40 \text{ A},$ $dI_{S}/dt = 1000 \text{ A}/\mu\text{s}, V_{DS} = 800 \text{ V}$ (Note 7)	-	146	-	nC	
Reverse Recovery Energy	E _{REC}		-	5	-	μJ	
Peak Reverse Recovery Current	I _{RRM}		-	13	-	Α	
Charge time	t _A		_	13	-	ns	
Discharge time	t _B]	_	10	_	ns	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. E_{ON}/E_{OFF} result is with body diode

7. Defined by design, not subject to production test.

TYPICAL CHARACTERISTICS

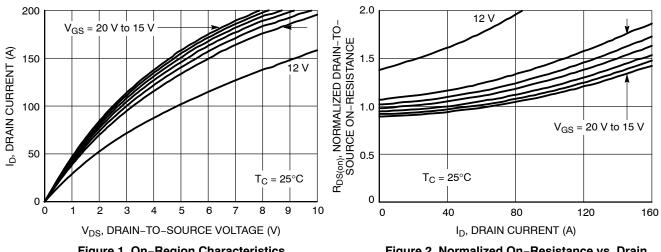


Figure 1. On-Region Characteristics

Figure 2. Normalized On-Resistance vs. Drain **Current and Gate Voltage**

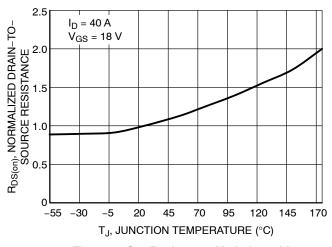


Figure 3. On-Resistance Variation with Temperature

Figure 4. On-Resistance vs. Gate-to-Source Voltage

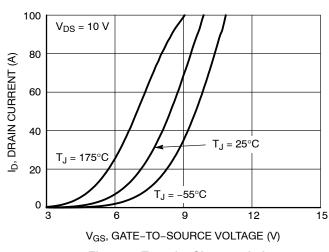


Figure 5. Transfer Characteristics

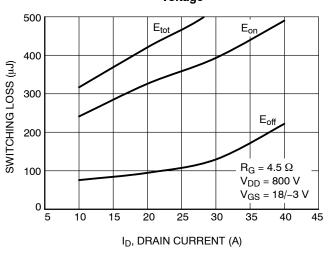
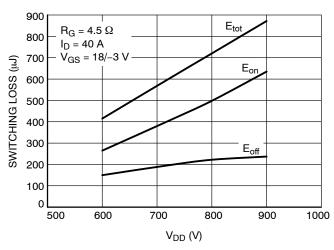
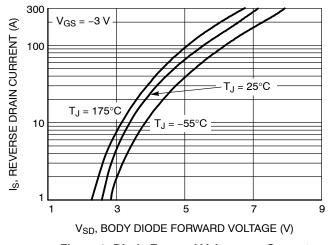



Figure 6. Switching Loss vs. Drain Current


TYPICAL CHARACTERISTICS

700 I_D = 20 A E_{tot} 600 V_{DD} = 800 V $V_{GS} = 18/-3 \text{ V}$ SWITCHING LOSS (µJ) 500 Eon 400 300 200 $\mathsf{E}_{\mathsf{off}}$ 100 0 2 4 6 8 10 R_G , GATE RESISTANCE (Ω)

Figure 7. Switching Loss vs. Drain Voltage

Figure 8. Switching Loss vs. Gate Resistance

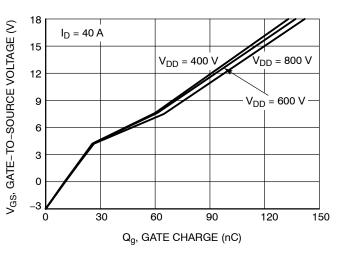
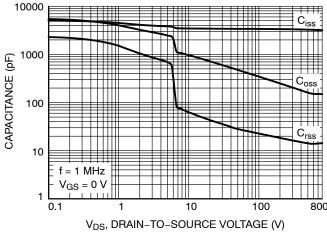



Figure 9. Diode Forward Voltage vs. Current

Figure 10. Gate-to-Source Voltage vs. Total Charge

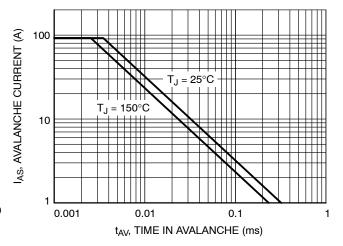


Figure 11. Capacitance vs. Drain-to-Source Voltage

Figure 12. Unclamped Inductive Switching Capability

TYPICAL CHARACTERISTICS

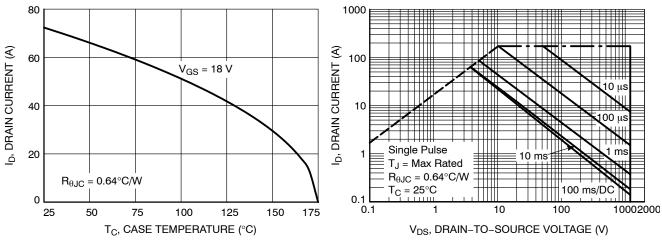


Figure 13. Maximum Continuous Drain Current vs. Case Temperature

Figure 14. Safe Operating Area

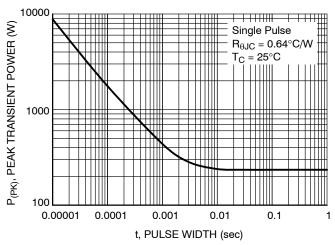


Figure 15. Single Pulse Maximum Power Dissipation

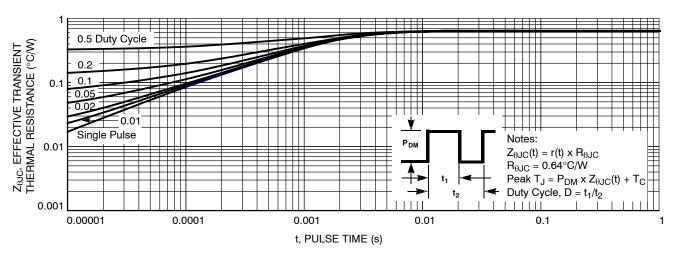
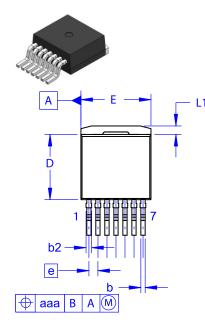
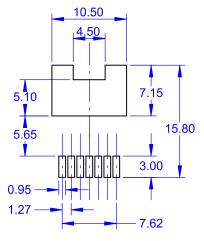
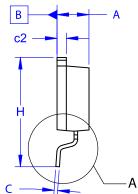




Figure 16. Junction-to-Case Transient Thermal Response

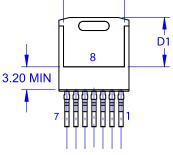


D²PAK7 (TO-263-7L HV) CASE 418BJ **ISSUE B**

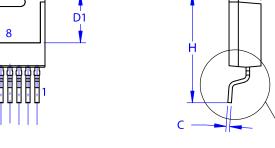
LAND PATTERN RECOMMENDATION

DATE 16 AUG 2019

NOTES:


A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED. B. ALL DIMENSIONS ARE IN MILLIMETERS.

OUT OF JEDEC STANDARD VALUE.

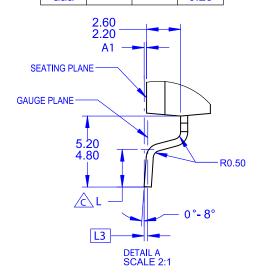

D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.

E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	4.30	4.50	4.70		
A 1	0.00	0.10	0.20		
b2	0.60	0.70	0.80		
b	0.51	0.60	0.70		
С	0.40	0.50	0.60		
c2	1.20	1.30	1.40		
D	9.00	9.20	9.40		
D1	6.15	6.80	7.15		
Е	9.70	9.90	10.20		
E1	7.15	7.65	8.15		
е	~	1.27	~		
Н	15.10	15.40	15.70		
L	2.44	2.64	2.84		
L1	1.00	1.20	1.40		
L3	~	0.25	~		
aaa	~	~	0.25		

E1

GENERIC MARKING DIAGRAM*



XXXX = Specific Device Code

= Assembly Location

= Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON84234G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	D ² PAK7 (TO-263-7L HV)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales