NSDEMN11XV6T1, NSDEMN11XV6T5

Common Cathode Quad Array Switching Diode

This Common Cathode Epitaxial Planar Quad Diode is designed for use in ultra high speed switching applications. This device is housed in the SOT–563 package which is designed for low power surface mount applications, where board space is at a premium.

Features

- Fast t_{rr}
- Low C_D
- Pb–Free Packages are Available

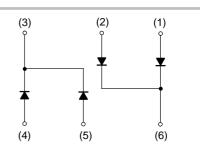
MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Rating	Symbol	Value	Unit
Reverse Voltage	V _R	80	Vdc
Peak Reverse Voltage	V _{RM}	80	Vdc
Forward Current	١ _F	100	mAdc
Peak Forward Current	I _{FM}	300	mAdc
Peak Forward Surge Current	I _{FSM} (Note 1)	2.0	Adc

THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)SymbolMaxUnitTotal Device Dissipation @TA = 25°CPD357 (Note 2) 2.9mW mW/°CDerate above 25°CPD350 (Note 2)mW/°CThermal Resistance, Junction-to-AmbientR $_{\theta JA}$ 350 (Note 2)°C/WCharacteristic (Both Junctions Heated)SymbolMaxUnitTotal Device Dissipation @TA = 25°CPD500 (Note 2)mW/°CDerate above 25°C4.0mW/°C				
Derate above 25°C(Note 2) 2.9 (Note 2)mW/°CThermal Resistance, Junction-to-Ambient $R_{\theta JA}$ 350 (Note 2)°C/WCharacteristic (Both Junctions Heated)SymbolMaxUnitTotal Device Dissipation @TA = 25°C P_D 500 (Note 2)mW/°C		Symbol	Мах	Unit
Derate above 25°C2.9 (Note 2)mW/°CThermal Resistance, Junction-to-Ambient $R_{\theta JA}$ 350 (Note 2)°C/WCharacteristic (Both Junctions Heated)SymbolMaxUnitTotal Device Dissipation @TA = 25°CPD500 (Note 2)mW	Total Device Dissipation $@T_A = 25^{\circ}C$	PD		mW
Characteristic (Both Junctions Heated) Symbol Max Unit Total Device Dissipation @T _A = 25°C P _D 500 (Note 2) mW	Derate above 25°C		`2.9 ´	m₩/°C
(Both Junctions Heated)SymbolMaxUnitTotal Device Dissipation @TA = 25°CPD500 (Note 2)mW	Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}		°C/W
Total Device Dissipation $@T_A = 25^{\circ}C$ P_D500 (Note 2)mW	Characteristic			
(Note 2)	(Both Junctions Heated)	Symbol	Max	Unit
	Total Device Dissipation $@T_A = 25^{\circ}C$	PD		mW
	Derate above 25°C		· · · ·	mW/⁰C
(Note 2)				
Thermal Resistance, Junction-to-Ambient $R_{\theta JA}$ 250 (Note 2)°C/W	Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}		°C/W
Junction and Storage Temperature T_J , T_{stg} -55 to +150 °C				

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. t = 1 μS

2. FR-4 @ Minimum Pad

ON Semiconductor®

http://onsemi.com

CASE 463A PLASTIC

MARKING DIAGRAM

N9 = Specific Device Code M = Date Code = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NSDEMN11XV6T1	SOT-563	4000/Tape & Reel
NSDEMN11XV6T1G	SOT-563 (Pb-Free)	4000/Tape & Reel
NSDEMN11XV6T5	SOT-563	8000/Tape & Reel
NSDEMN11XV6T5G	SOT-563 (Pb-Free)	8000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NSDEMN11XV6T1, NSDEMN11XV6T5

Characteristic	Symbol	Condition	Min	Max	Unit
Reverse Voltage Leakage Current	I _R	V _R = 70 V	-	0.1	μAdc
Forward Voltage	V _F	I _F = 100 mA	-	1.2	Vdc
Reverse Breakdown Voltage	V _R	I _R = 100 μA	80	-	Vdc
Diode Capacitance	CD	V _R = 6.0 V, f = 1.0 MHz	-	3.5	pF
Reverse Recovery Time	t _{rr} (Note 3)	$I_F = 5.0 \text{ mA}, V_R = 6.0 \text{ V}, R_L = 100 \Omega, I_{rr} = 0.1 I_R$	-	4.0	ns

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

3. trr Test Circuit on following page.

TYPICAL ELECTRICAL CHARACTERISTICS

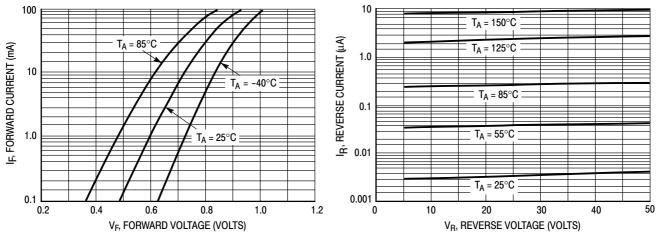


Figure 1. Forward Voltage

Figure 2. Reverse Current

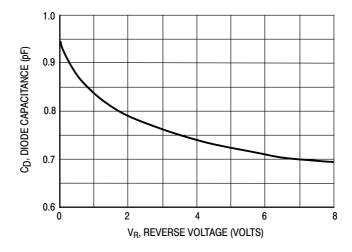


Figure 3. Diode Capacitance

NSDEMN11XV6T1, NSDEMN11XV6T5

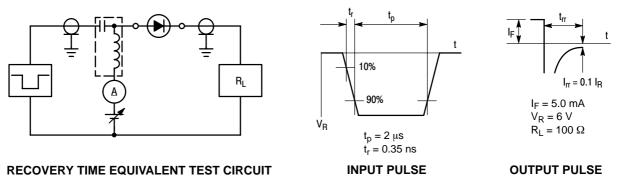


Figure 4. Reverse Recovery Time Test Circuit for the NSDEMN11XV6T1

6Х

(

MILLIMETERS

NDM.

0.55

0.22

0.13

1.60

1.20

0.50 BSC

0.20

1.60

MAX.

0.60

0.27

0.18

1.70

1.30

0.30

1.70

SIDE VIEW

MIN.

0.50

0.17

0.08

1.50

1.10

0.10

1.50

DIM

Α

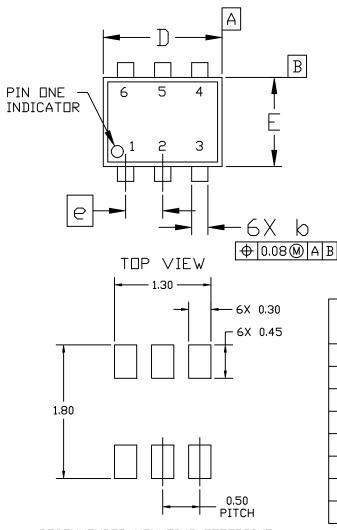
b

С

D E

e L

 H_E



SOT-563, 6 LEAD CASE 463A ISSUE H

DATE 26 JAN 2021

ALE 4:1

- NDTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 1. DIMENSIONING AND TOLERANCING PER A 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS DF BASE MATERIAL.

RECOMMENDED MOUNTING FOOTPRINT* * For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

DOCUMENT NUMBER: 98AON11126D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
Electronic versions are uncontrolled except when accessed directly from the Document F	Reposito

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. EMITTER 1	PIN 1. EMITTER 1	PIN 1. CATHIDE 1
2. BASE 1	2. EMITTER 2	2. CATHIDE 1
3. COLLECTOR 2	3. BASE 2	3. ANUDE/ANUDE 2
4. EMITTER 2	4. COLLECTOR 2	4. CATHIDE 2
5. BASE 2	5. BASE 1	5. CATHIDE 2
6. COLLECTOR 1	6. COLLECTOR 1	6. ANUDE/ANUDE 1
STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. COLLECTOR	PIN 1. CATHEDE	PIN 1. CATHODE
2. COLLECTOR	2. CATHEDE	2. ANODE
3. BASE	3. ANEDE	3. CATHODE
4. EMITTER	4. ANEDE	4. CATHODE
5. COLLECTOR	5. CATHEDE	5. CATHODE
6. COLLECTOR	6. CATHEDE	6. CATHODE
STYLE 7:	STYLE 8:	STYLE 9:
PIN 1. CATHODE	PIN 1. DRAIN	PIN 1. SDURCE 1
2. ANODE	2. DRAIN	2. GATE 1
3. CATHODE	3. GATE	3. DRAIN 2
4. CATHODE	4. SDURCE	4. SDURCE 2
5. ANODE	5. DRAIN	5. GATE 2
6. CATHODE	6. DRAIN	6. DRAIN 1
STYLE 10: PIN 1. CATHIDE 1 2. N/C 3. CATHIDE 2 4. ANIDE 2 5. N/C 6. ANIDE 1	STYLE 11: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	

6. COLLECTOR 2

DATE 26 JAN 2021

GENERIC **MARKING DIAGRAM***

XX = Specific Device Code

M = Month Code

. = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON11126D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD PAG		PAGE 2 OF 2

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

4. ANDDE 2 5. N/C 6. ANDDE 1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>