ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

2-Input NAND Gate, Open Drain Output

NL17SZ38

The NL17SZ38 is a single 2–Input NAND gate with open drain output operating from a 1.65 V to 5.5 V supply.

Features

- Designed for 1.65 V to 5.5 V V_{CC} Operation
- 2.4 ns t_{PD} at $V_{CC} = 5 V (Typ)$
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- IOFF Supports Partial Power Down Protection
- Sink 32 mA at 4.5 V
- Available in SC-88, SC-74 and UDFN6 Packages
- Chip Complexity < 100 FETs
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

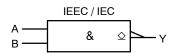
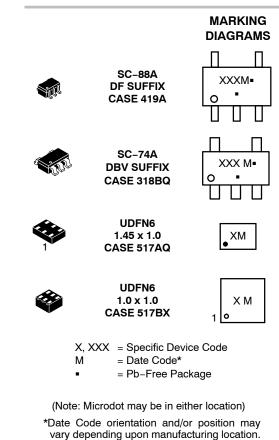
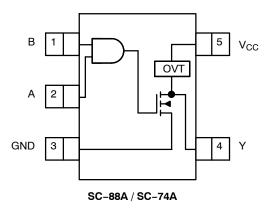
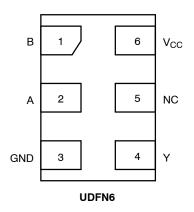



Figure 1. Logic Symbol


ON Semiconductor®


www.onsemi.com

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

PIN ASSIGNMENT (SC-88A/SC-74A)

Pin	Function
1	В
2	А
3	GND
4	Y
5	V _{CC}

PIN ASSIGNMENT (UDFN)

Pin	Function
1	В
2	А
3	GND
4	Y
5	NC
6	V _{CC}

FUNCTION TABLE

Inp	Output	
Α	В	Y
L	L	Z
L	н	Z
Н	L	Z
Н	Н	L

MAXIMUM RATINGS

Symbol	Characteristics		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
V _{IN}	DC Input Voltage		–0.5 to +6.5	V
V _{OUT}		ve–Mode (High or Low State) Tri–State Mode (Note 1) wer–Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +6.5 -0.5 to +6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
I _{OUT}	DC Output Source/Sink Current	±50	mA	
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground Pin		±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 secs		260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 2)	SC-88A SC-74A UDFN6	377 320 154	°C/W
PD	Power Dissipation in Still Air	SC-88A SC-74A UDFN6	332 390 812	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V_{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri-stated.

 Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.

4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

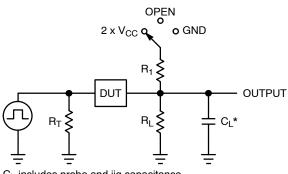
Symbol	Characteristics	Min	Мах	Unit
V _{CC}	Positive DC Supply Voltage	1.65	5.5	V
V _{IN}	DC Input Voltage	0	5.5	V
V _{OUT}	Tri–Si		V _{CC} 5.5 5.5	
T _A	Operating Temperature Range	-55	+125	°C
t _r , t _f	V.	$ \begin{array}{c} = 1.65 \ V \ to \ 1.95 \ V \\ _{CC} = 2.3 \ V \ to \ 2.7 \ V \\ _{CC} = 3.0 \ V \ to \ 3.6 \ V \\ _{CC} = 4.5 \ V \ to \ 5.5 \ V \\ \end{array} $	20 20 10 5	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

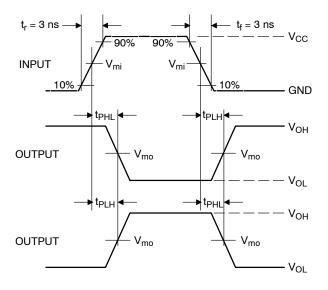
			V _{CC}	Т	م = 25°0	2	–55°C ≤ T	A ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Units
V _{IH}	High-Level Input		1.65 to 1.95	0.65 V _{CC}	-	-	0.65 V _{CC}	_	V
	Voltage		2.3 to 5.5	0.70 V _{CC}	-	-	0.70 V _{CC}	-	
VIL	Low-Level Input		1.65 to 1.95	-	-	0.35 V _{CC}	-	0.35 V _{CC}	V
	Voltage		2.3 to 5.5	-	-	0.30 V _{CC}	-	$0.30 V_{CC}$	
V _{OL}	Low–Level Output Voltage		1.65 to 5.5 1.65 2.3 3 3 4.5		- 0.08 0.12 0.24 0.26 0.31	0.1 0.24 0.3 0.4 0.55 0.55		0.1 0.24 0.3 0.4 0.55 0.55	V
I _{IN}	Input Leakage Current	V_{IN} = 5.5 V or GND	1.65 to 5.5	-	-	±0.1	-	±1.0	μA
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	-	1.0	-	10	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5	_	-	1.0	_	10	μΑ
I _{OZ}	3-State Output Leakage Current	V_{OUT} = 0 V to 5.5 V	1.65 to 5.5	-	-	±0.5	-	±5.0	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


AC ELECTRICAL CHARACTERISTICS

				٦	Γ _A = +25°C	;	T _A = -40	to +85°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PZL}	Propagation Delay,		1.65 to 1.95	_	6.5	12.7	-	13.2	ns
	(A or B) to Y (Figure 3, 4)		2.3 to 2.7	-	3.5	7.0	-	7.5	
			3.0 to 3.6	-	2.8	5.0	-	5.2	
			4.5 to 5.5	-	2.8	5.0	-	5.2	
t _{PLZ}	Propagation Delay,		1.65 to 1.95	-	5.5	12.7	-	13.2	ns
	(A or B) to Y (Figure 3, 4)		2.3 to 2.7	-	3.0	7.0	-	7.5	
			3.0 to 3.6	-	2.1	6.0	-	5.2	
			4.5 to 5.5	_	1.3	4.3	-	4.5	

CAPACITIVE CHARACTERISTICS


Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	2.5	pF
C _{OUT}	Output Capacitance	V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC}	4.0	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	10 MHz, V _{CC} = 5.5 V, V _{IN} = 0 V or V _{CC}	4.0	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static).

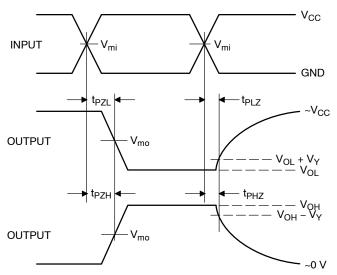
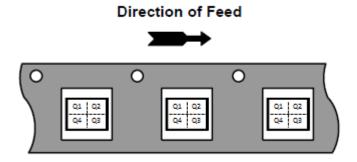

 C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 Ω) f = 1 MHz

Figure 3. Test Circuit

Switch Position	C _L , pF	R_{L}, Ω	R ₁ , Ω
Open	See AC Character	istics Tal	ble
$2 \times V_{CC}$	50	500	500
GND	50	500	500
	Position Open 2 x V _{CC}	Position Entropy Open See AC Character 2 x V _{CC} 50	Position End Open See AC Characteristics Tat 2 x V _{CC} 50

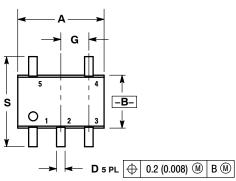
X = Don't Care

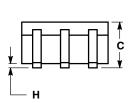
Figure 4. Switching Waveforms

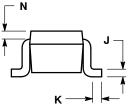

		v		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ}	V _Y , V
1.65 to 1.95	V _{CC} / 2	V _{CC} / 2	V _{CC} / 2	0.15
2.3 to 2.7	V _{CC} / 2	V _{CC} / 2	V _{CC} / 2	0.15
3.0 to 3.6	V _{CC} / 2	V _{CC} / 2	V _{CC} / 2	0.3
4.5 to 5.5	V _{CC} / 2	V _{CC} / 2	V _{CC} / 2	0.3

DEVICE ORDERING INFORMATION

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
NL17SZ38DFT2G (In Development)	SC-88A	TBD	Q4	3000 / Tape & Reel
NL17SZ38DBVT1G	SC-74A	AT	Q4	3000 / Tape & Reel
NL17SZ38MU1TCG (In Development)	UDFN6, 1.45 x 1.0, 0.5P	TBD	Q4	3000 / Tape & Reel
NL17SZ38MU3TCG (In Development)	UDFN6, 1.0 x 1.0, 0.35P	TBD	Q4	3000 / Tape & Reel

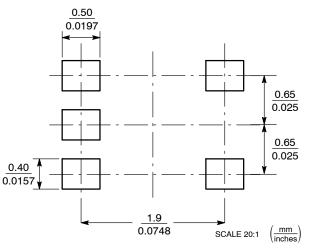

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


Pin 1 Orientation in Tape and Reel



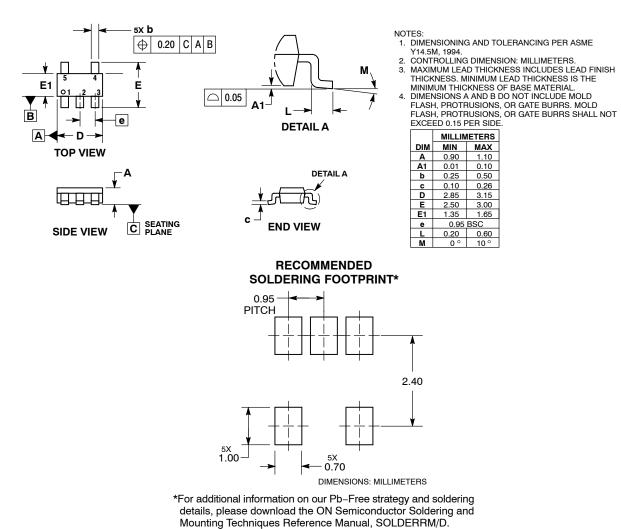
PACKAGE DIMENSIONS

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L

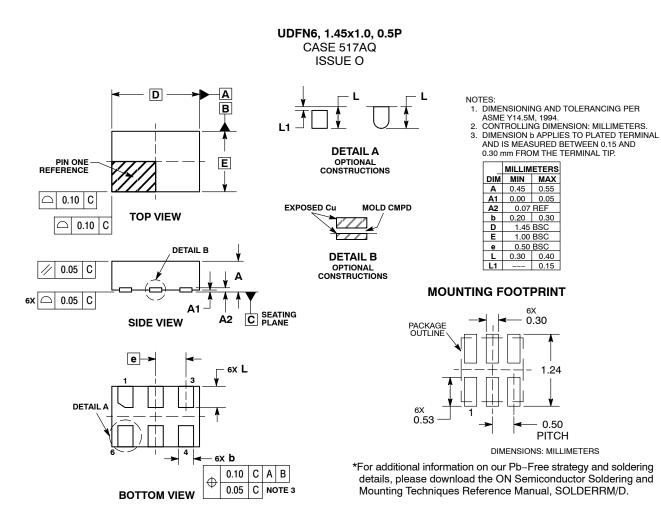


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

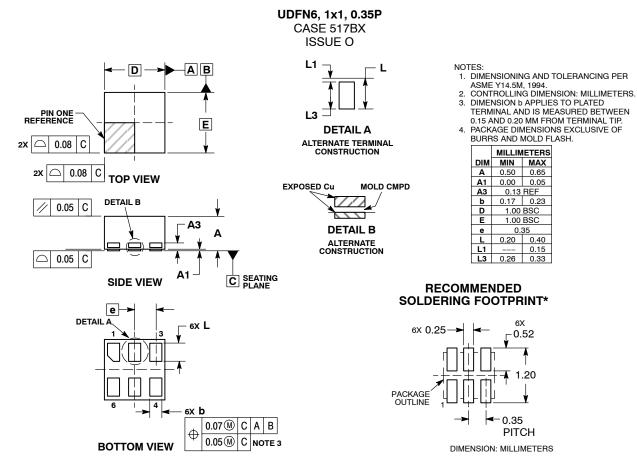
	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026	BSC	0.65 BSC		
Н		0.004		0.10	
ſ	0.004	0.010	0.10	0.25	
Κ	0.004	0.012	0.10	0.30	
Ν	0.008 REF		0.20 REF		
s	0.079	0.087	2.00	2.20	


SOLDER FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


PACKAGE DIMENSIONS

SC-74A CASE 318BQ ISSUE B



www.onsemi.com 8

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor are ot designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has degined applications, each and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, co

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative