Self-Protected Low Side Driver with Temperature and Current Limit

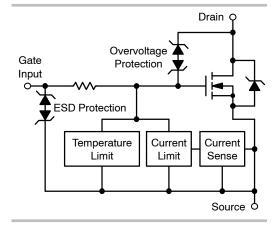
NCV8405A/B is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device is suitable for harsh automotive environments.

Features

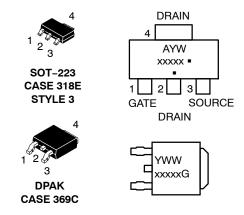
- Short-Circuit Protection
- Thermal Shutdown with Automatic Restart
- Overvoltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial



ON Semiconductor®


www.onsemi.com

V _{(BR)DSS} (Clamped)	R _{DS(ON)} TYP	I _D MAX
42 V	90 m Ω @ 10 V	6.0 A*

^{*}Max current limit value is dependent on input condition.

MARKING DIAGRAM

A = Assembly Location

Y = Year W, WW = Work Week xxxxx = 8405A or 8405B G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating Drain-to-Source Voltage Internally Clamped			Value	Unit
			42	V
Drain-to-Gate Voltage Internally Clamped	$(R_G = 1.0 M\Omega)$	V_{DGR}	42	V
Gate-to-Source Voltage		V _{GS}	±14	V
Continuous Drain Current		I _D	Internally Limited	
Power Dissipation – SOT–223 Version Power Dissipation – DPAK Version	@ T _A = 25°C (Note 1) @ T _A = 25°C (Note 2) @ T _S = 25°C @ T _A = 25°C (Note 1) @ T _A = 25°C (Note 2) @ T _S = 25°C	P _D	1.0 1.7 11.4 2.0 2.5 40	W
Thermal Resistance – SOT-223 Version Thermal Resistance – DPAK Version	Junction-to-Ambient Steady State (Note 1) Junction-to-Ambient Steady State (Note 2) Junction-to-Soldering Point Steady State Junction-to-Ambient Steady State (Note 1) Junction-to-Ambient Steady State (Note 2) Junction-to-Soldering Point Steady State	R _{OJA}	130 72 11 60 50 3.0	°C/W
Single Pulse Drain–to–Source Avalanche Energy (V _{DD} = 40 V, V _G = 5.0 V, I _{PK} = 2.8 A, L = 80 mH, R _{G(ext)} = 25 Ω , TJ = 25 $^{\circ}$ C)		E _{AS}	275	mJ
Load Dump Voltage $V_{LD} = V_A + V_S (V_{GS} = 0 \text{ and } 10 \text{ V}, R_I = 2.0 \Omega, R_L = 6.0 \Omega, t_d = 400 \text{ ms})$		V_{LD}	53	V
Operating Junction Temperature		TJ	-40 to 150	°C
Storage Temperature		T _{stg}	-55 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted onto min pad FR4 PCB, (2 oz. Cu, 0.06" thick).

2. Surface-mounted onto 2" sq. FR4 board (1" sq., 1 oz. Cu, 0.06" thick).

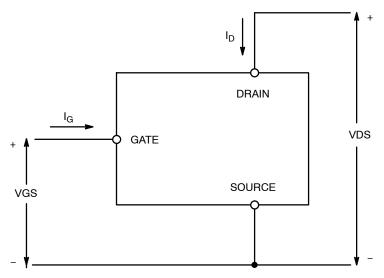


Figure 1. Voltage and Current Convention

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Condition	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			<u>I</u>			
Drain-to-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 10 \text{ mA}, T_J = 25^{\circ}\text{C}$	V _{(BR)DSS}	42	46	51	V
(Note 3)	V _{GS} = 0 V, I _D = 10 mA, T _J = 150°C (Note 5)	· (BH)D33	42	45	51	1
Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 32 V, T _J = 25°C	I _{DSS}		0.5	2.0	μΑ
-	V _{GS} = 0 V, V _{DS} = 32 V, T _J = 150°C (Note 5)			2.0	10	<u> </u>
Gate Input Current	V _{DS} = 0 V, V _{GS} = 5.0 V	I _{GSSF}		50	100	μΑ
ON CHARACTERISTICS (Note 3)			•			
Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 150 \mu A$	V _{GS(th)}	1.0	1.6	2.0	V
Gate Threshold Temperature Coefficient		V _{GS(th)} /T _J		4.0		-mV/°C
Static Drain-to-Source On-Resistance	V _{GS} = 10 V, I _D = 1.4 A, T _J = 25°C	R _{DS(on)}		90	100	mΩ
	V _{GS} = 10 V, I _D = 1.4 A, T _J = 150°C (Note 5)			165	190	
	V _{GS} = 5.0 V, I _D = 1.4 A, T _J = 25°C			105	120	
	V _{GS} = 5.0 V, I _D = 1.4 A, T _J = 150°C (Note 5)			185	210	1
	V _{GS} = 5.0 V, I _D = 0.5 A, T _J = 25°C			105	120	
	$V_{GS} = 5.0 \text{ V}, I_D = 0.5 \text{ A}, T_J = 150^{\circ}\text{C}$ (Note 5)			185	210	1
Source-Drain Forward On Voltage	V _{GS} = 0 V, I _S = 7.0 A	V _{SD}		1.05		V
SWITCHING CHARACTERISTICS (Note	5)		ı			
Turn-ON Time (10% V _{IN} to 90% I _D)	V _{GS} = 10 V, V _{DD} = 12 V	t _{ON}		20		μs
Turn-OFF Time (90% V _{IN} to 10% I _D)	$I_D = 2.5 \text{ A}, R_L = 4.7 \Omega$	t _{OFF}		110		
Slew-Rate ON (70% V _{DS} to 50% V _{DS})	V _{GS} = 10 V, V _{DD} = 12 V,	-dV _{DS} /dt _{ON}		1.0		V/μs
Slew-Rate OFF (50% V _{DS} to 70% V _{DS})	$R_L = 4.7 \Omega$	dV _{DS} /dt _{OFF}		0.4		
SELF PROTECTION CHARACTERISTIC	S (T _J = 25°C unless otherwise noted) (Note 4)				
Current Limit	$V_{DS} = 10 \text{ V}, V_{GS} = 5.0 \text{ V}, T_{J} = 25^{\circ}\text{C}$	I _{LIM}	6.0	9.0	11	Α
	V _{DS} = 10 V, V _{GS} = 5.0 V, T _J = 150°C (Note 5)		3.0	5.0	8.0	
	V _{DS} = 10 V, V _{GS} = 10 V, T _J = 25°C		7.0	10.5	13	
	V _{DS} = 10 V, V _{GS} = 10 V, T _J = 150°C (Note 5)		4.0	7.5	10	1
Temperature Limit (Turn-off)	V _{GS} = 5.0 V (Note 5)	T _{LIM(off)}	150	180	200	°C
Thermal Hysteresis	V _{GS} = 5.0 V	$\Delta T_{LIM(on)}$		15		
Temperature Limit (Turn-off)	V _{GS} = 10 V (Note 5)	T _{LIM(off)}	150	165	185	
Thermal Hysteresis	V _{GS} = 10 V	$\Delta T_{LIM(on)}$		15		
GATE INPUT CHARACTERISTICS (Note	5)					
Device ON Gate Input Current	$V_{GS} = 5 \text{ V I}_{D} = 1.0 \text{ A}$	I_{GON}		50		μΑ
	V _{GS} = 10 V I _D = 1.0 A			400		
Current Limit Gate Input Current	V _{GS} = 5 V, V _{DS} = 10 V	I _{GCL}		0.05		mA
	V _{GS} = 10 V, V _{DS} = 10 V			0.4		
Thermal Limit Fault Gate Input Current	V _{GS} = 5 V, V _{DS} = 10 V	I _{GTL}		0.22		mA
	V _{GS} = 10 V, V _{DS} = 10 V			1.0	_	
ESD ELECTRICAL CHARACTERISTICS	$(T_J = 25^{\circ}C \text{ unless otherwise noted})$ (No	ote 5)				
Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	4000			V
	Machine Model (MM)		400			

- Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Fault conditions are viewed as beyond the normal operating range of the part.
 Not subject to production testing.

TYPICAL PERFORMANCE CURVES



Figure 2. Single Pulse Maximum Switch-off Current vs. Load Inductance

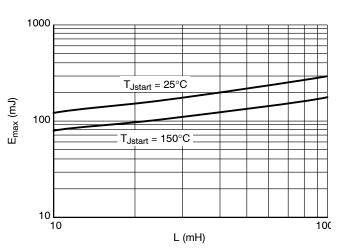


Figure 3. Single Pulse Maximum Switching Energy vs. Load Inductance

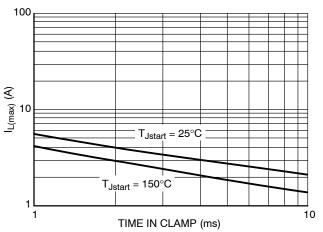


Figure 4. Single Pulse Maximum Inductive Switch-off Current vs. Time in Clamp

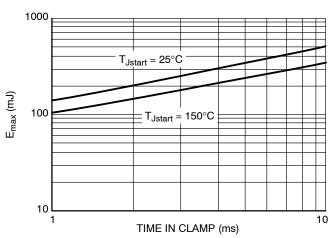


Figure 5. Single Pulse Maximum Inductive Switching Energy vs. Time in Clamp

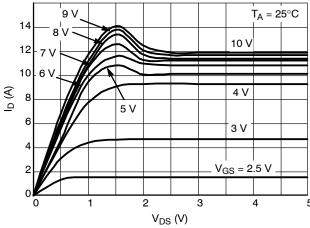


Figure 6. Output Characteristics

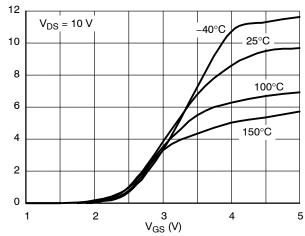


Figure 7. Transfer Characteristics

I_D (A)

TYPICAL PERFORMANCE CURVES

Figure 8. R_{DS(on)} vs. Gate-Source Voltage

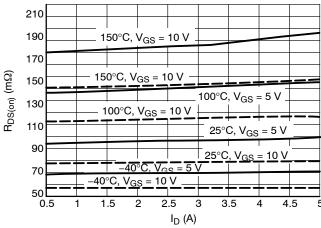


Figure 9. R_{DS(on)} vs. Drain Current

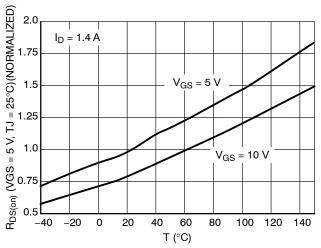


Figure 10. Normalized R_{DS(on)} vs. Temperature

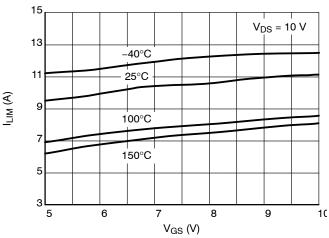


Figure 11. Current Limit vs. Gate-Source Voltage

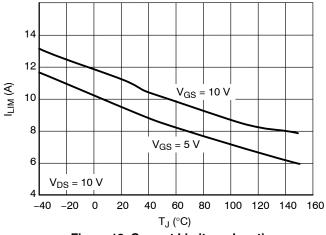


Figure 12. Current Limit vs. Junction Temperature

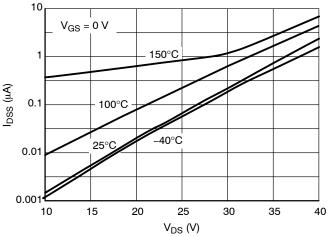


Figure 13. Drain-to-Source Leakage Current

TYPICAL PERFORMANCE CURVES

V_{SD} (V)

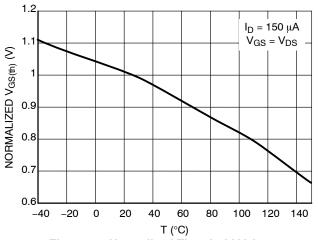


Figure 14. Normalized Threshold Voltage vs. Temperature

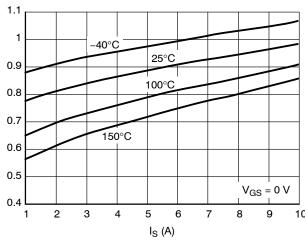


Figure 15. Body-Diode Forward Characteristics

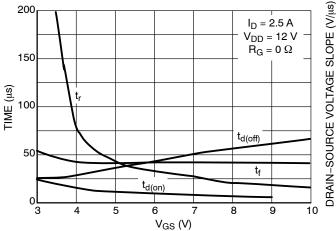


Figure 16. Resistive Load Switching Time vs.

Gate-Source Voltage

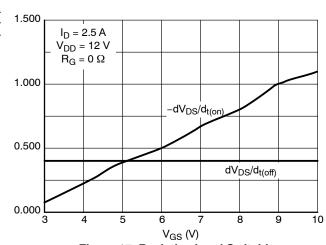


Figure 17. Resistive Load Switching
Drain-Source Voltage Slope vs. Gate-Source
Voltage

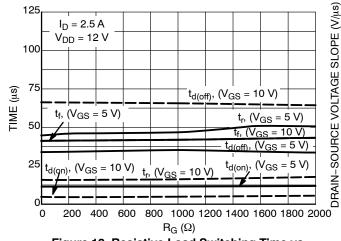


Figure 18. Resistive Load Switching Time vs.

Gate Resistance

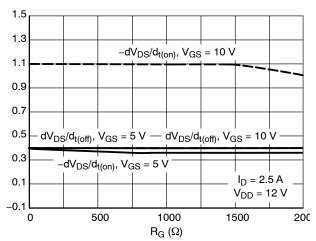


Figure 19. Drain-Source Voltage Slope during Turn On and Turn Off vs. Gate Resistance

TYPICAL PERFORMANCE CURVES

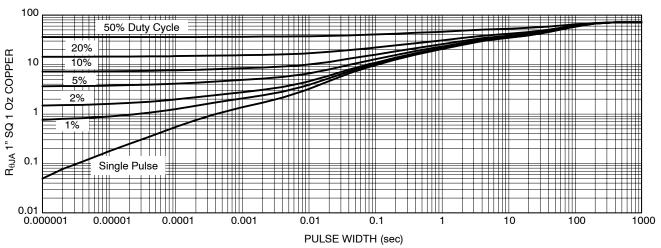


Figure 20. Transient Thermal Resistance

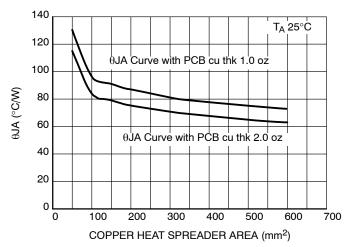


Figure 21. θ JA vs. Copper

TEST CIRCUITS AND WAVEFORMS

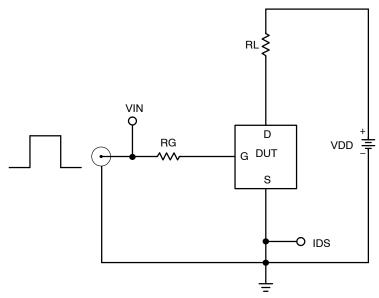


Figure 22. Resistive Load Switching Test Circuit

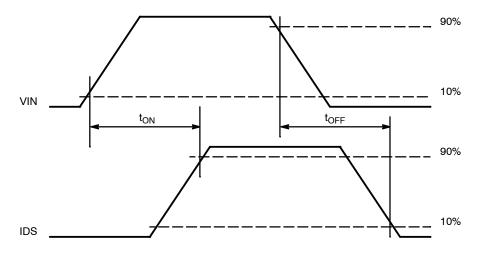


Figure 23. Resistive Load Switching Waveforms

TEST CIRCUITS AND WAVEFORMS

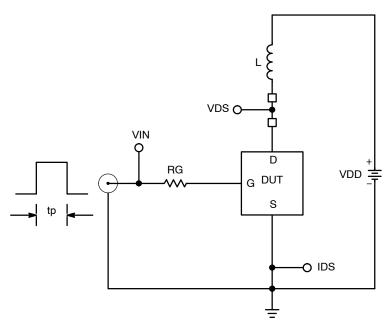
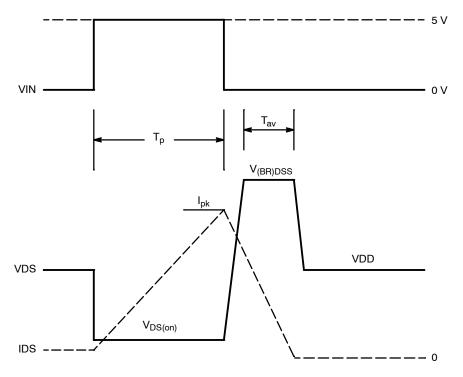
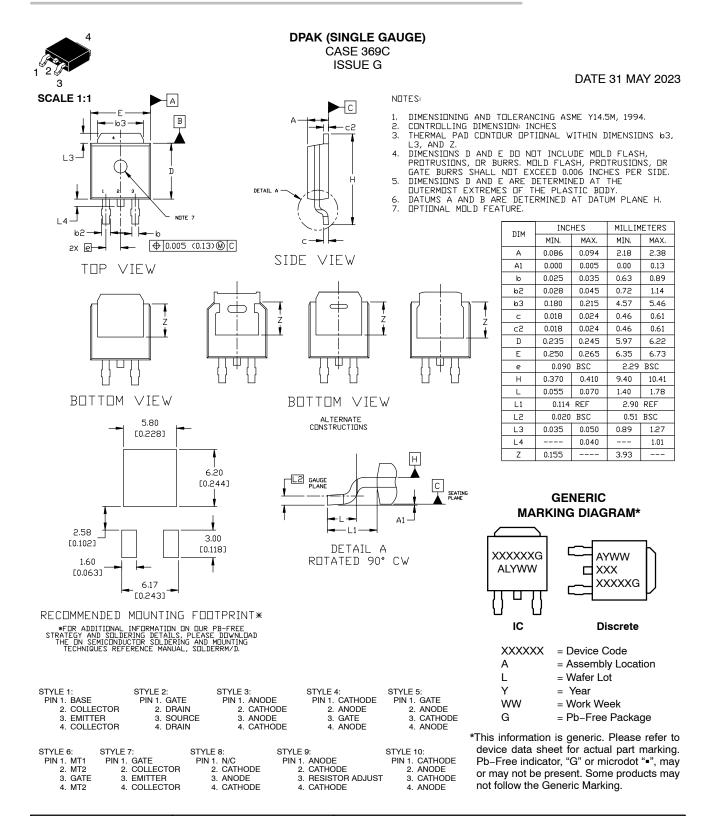


Figure 24. Inductive Load Switching Test Circuit




Figure 25. Inductive Load Switching Waveforms

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8405ASTT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel
NCV8405ASTT3G	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV8405ADTRKG	DPAK (Pb-Free)	2500 / Tape & Reel
NCV8405BDTRKG	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales