

My Mini Race Car

Created by John Park

https://learn.adafruit.com/my-mini-race-car

Last updated on 2023-08-29 03:22:28 PM EDT

©Adafruit Industries Page 1 of 62

5

7

9

24

31

37

38

41

48

52

57

Table of Contents

Introduction

Unboxing Your Mini Race Car Kit

• Kit Contents

• Feather, USB Cable, & Batteries

• Car Chassis & Assembly Tools

• Prototyping Parts and Components

Assembling and Wiring Your Mini Race Car

• Motors and Wheels and Tires

• Lower Chassis

• Turn over the plate

• Turn over the plate again

• Prepare the Battery Box

• Middle Chassis Layer

• Prepare the Electronics

• LiPoly Battery

3D Printed Car Parts

• Bonus Body Parts

How Your Race Car Works: The Basics

• Board Support Package and Drivers

• Libraries

• DC Motor Test

• Let's Get Moving

Code for Your Race Car

• Libraries

• The Code

Driving Your Race Car

Temperature and Humidity Data

• Power Pins:

• I2C Logic pins:

• Download Adafruit_HTU21DF

• Load Demo

• Bluetooth Data Streaming

• Plotting

• Sensor Placement

Make Your Race Car Autonomous

• Mounting the Sensors

• The Code

Control Your Race Car's Speed

• Using the Controller to Control Speed

Connecting Your Race Car to Adafruit IO

• Sign up for Adafruit IO and create your first dashboard.

©Adafruit Industries Page 2 of 62

• Send data to Adafruit IO

©Adafruit Industries Page 3 of 62

©Adafruit Industries Page 4 of 62

Introduction

Get ready to race down the track with your Feather microcontroller-based Mini Race

Car! You'll build this high performance racer, using the Bluetooth LE capable Feather

32u4 Bluefruit LE board, Motor Driver FeatherWing, and TE HTU21D-F temperature &

 humidity sensor to give you racetrack telemetry data.

©Adafruit Industries Page 5 of 62

All of this is controlled from your mobile device using the free Bluefruit Connect app

for iOS and Android.

Let's get started!!

©Adafruit Industries Page 6 of 62

Unboxing Your Mini Race Car Kit

My Mini Race Car is designed to introduce you to the joys of making with electronics.

We decided to come up with a fun pack of parts that:

Could introduce a beginner to making

Teach electronics and programming skills

Does not assume any prior experience

Does not require any soldering or special tools

Kit Contents

After a lot of thinking, here's what we came up with:

•

•

•

•

©Adafruit Industries Page 7 of 62

Feather, USB Cable, & Batteries

Feather 32u4 Bluefruit LE is the brains of your race car! It is Arduino-compatible

and has Bluetooth wireless control

Motor FeatherWing is the muscle of this car, providing power to the motors --

 Lets you drive up to 4 DC or 2 stepper motors- certainly enough motors to

power the car kit!

TE HTU21D-F is the heart of your race car. Temperature & Humidity sensor

breakout board for realtime car/track sensing!

•

•

•

©Adafruit Industries Page 8 of 62

1x USB Cable - Standard A-B - 3 ft/1m (http://adafru.it/62) - use this to install new

code onto your Feather (from any computer)

3.7V LiPoly battery - this battery will power your Feather (but not the motors)

4x AA Batteries (http://adafru.it/3349) - Use these to power your the motors of

your super awesome little race car

Car Chassis & Assembly Tools

Three layer Robot Chassis Kit in Black (http://adafru.it/3244) - This kit gives you

everything you need to build the shell of a 2-wheel-drive Mobile Platform

Robot to help you channel your inner Mario Andretti

Pocket Screwdriver with Philips and slotted ends

Prototyping Parts and Components

Half Size Breadboard Perfect fit for your car kit. Your Feather will connect to the

breadboard, allowing you to easily plug in other sensor, LEDs, buzzers,

potentiometers, switches, and more

1x 4xAA Battery Holder w/ On/Off Switch () - A nice portable battery holder for

your car's motor batteries.

1x Shield stacking headers for Arduino (http://adafru.it/85) - Allow optional

plugging in of many different boards, sensors, and wiring

1x Rubber Bumper Feet () - Helps keep the battery packs safe and secure

Jumper wires for making additional connections

Assembling and Wiring Your Mini Race Car

The wiring and assembly is pretty easy, and there is no soldering required! You'll just

need the small screwdriver that came in the kit, and it wouldn't hurt to grab some

pliers. (It'll make it faster and easier to put together)

First, you'll assemble the robot chassis. All the parts needed for this are inside the

brown box with the 'Custom Black 2WD Robot + extra layer' sticker on it.

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 9 of 62

https://www.adafruit.com/products/62
https://www.adafruit.com/products/3349
https://www.adafruit.com/products/3244
https://www.adafruit.com/product/830
https://www.adafruit.com/products/85
https://www.adafruit.com/product/550

Motors and Wheels and Tires

To start, take the two motors, four long

screws, four nuts, and two black panels.

Screw the two black panels onto the

motors.

The metal panels go on the side with the

red and black wires coming out.

Have the hex nuts on the metal panel side

so they don't interfere with the wheel!

The metal panels go on the side with the red and black wires coming out.

Have the hex nuts on the metal panel side so they don't interfere with the wheel!

©Adafruit Industries Page 10 of 62

https://learn.adafruit.com//assets/42117
https://learn.adafruit.com//assets/42117
https://learn.adafruit.com//assets/42118
https://learn.adafruit.com//assets/42118

Take the two wheels, rubber treads, and

2x small screws found in the same bag as

the wheels.

Put the rubber treads on the wheels. This

is a lot of fun!

Fit the wheels onto the white knob on the

motors, they will snap nicely onto the oval

center.

©Adafruit Industries Page 11 of 62

https://learn.adafruit.com//assets/42119
https://learn.adafruit.com//assets/42119
https://learn.adafruit.com//assets/42120
https://learn.adafruit.com//assets/42120
https://learn.adafruit.com//assets/42121
https://learn.adafruit.com//assets/42121
https://learn.adafruit.com//assets/42122
https://learn.adafruit.com//assets/42122

Lower Chassis

Take one of the black chassis layers. All

three layers are identical.

Align it on your table as shown on the left.

Note that the panel is not symmetrical -

look on the left to see that rectangle cut

out? Make sure it's aligned as you see

here!

Attach two of the brass standoffs onto the

black chassis layer.

The standoffs should be screwed into the

second set of holes from the outer edge -

meaning the two interior holes.

Turn over the plate

Attach the white free-wheel into the exterior hole closest to the rectangular opening.

The white free-wheel should be on the opposite side of the chassis of the standoff.

©Adafruit Industries Page 12 of 62

https://learn.adafruit.com//assets/42124
https://learn.adafruit.com//assets/42124
https://learn.adafruit.com//assets/42125
https://learn.adafruit.com//assets/42125

Turn over the plate again

Take your assembled wheels and fit them into the chassis layer.

There are 2 slots on the black panels that you attached to your motor that should fit

perfectly into the chassis layer.

The metal front of the motor will be pointing toward the side of the chassis where you

placed your white freewheel

©Adafruit Industries Page 13 of 62

Prepare the Battery Box

For this step, you will need the AA battery box, 4 x AA batteries, the screwdriver, and

a sheet of 4 rubber bumpers.

First, open each battery box, grab out the screw, insert your batteries, and then screw

the boxes shut. Oh, and make sure you have the boxes switched to the off position.

Now, take the 4 rubber bumpers and place them as shown in the picture below.

Notice how the one bumper on the left side is not in the upper left corner. Important:

don't throw away the leftover piece of bumper material, we are going to use that on

the next step.

©Adafruit Industries Page 14 of 62

Flip the battery box over and place the scrap piece of the bumper material in the

middle. This will help hold the battery box nice and tight between the top and middle

plate of your robot.

Middle Chassis Layer

Place the middle chassis layer onto robot, making sure to fit the motor tabs into the

slots of the layer, then screw in the two brass standoffs.

Do not discard the leftover piece of bumper material.

©Adafruit Industries Page 15 of 62

Take a look at the image below and install the brass stand-offs in the same positions.

You can insert the stand-off screws through the middle plate and hand tighten the

stand-offs while putting a bit of pressure on the screw with your finger. Or, as a tip,

you can screw in the stand-off screws with the flat end of the screwdriver, which can

reach through the holes in the bottom plate.

©Adafruit Industries Page 16 of 62

Once you have the stand-offs in place as shown in the image above, let's place the

battery box in the correct spot as shown in the image below.

Notice the battery box is lined up on the left side of the middle chassis plate. It should

be just in-between the upper left stand-off and the lower left stand-off (not touching

either). This will make sure the on-off switch lines up just right in the hole of the top

plate. Go ahead and install the top plate now as shown here.

©Adafruit Industries Page 17 of 62

See how the on-off switch is now accessible through the top plate? Now let's take just

a minute to route the wires from the motors and the battery box through the chassis

like shown in the image below.

©Adafruit Industries Page 18 of 62

We are getting close! Now let's install the breadboard on top of the robot. Peel off the

backing from the foam sticker on the bottom of the breadboard. Take a look at the

image below and stick it exactly as shown. Be sure to install the breadboard just as

shown in the image below and not sideways or the motor wires won't reach the motor

driver Feather Wing.

©Adafruit Industries Page 19 of 62

Prepare the Electronics

©Adafruit Industries Page 20 of 62

For this next step, a pair of pliers is handy.

First, grab the 6 header pins all attached

together and break them into 3 sets of 2

header pins. Then, grab them in the pliers

like shown here, and then slightly bend

them so they look like the next picture.

If you don't have pliers you can do it with

your fingers (carefully!)

With the breadboard in place, go ahead and grab your stacked Bluefruit Feather, and

Motor Driver FeatherWing and install it in the breadboard with the USB port facing

away from the wires like shown in the image below. Then use your screwdriver and

install the bent header pins like shown in the image. Finally, attach the motor wires

and power wires as shown in the image. It is important that you have the red and

black wires in the correct position. Please reference the image below and triple check

that they are installed correctly.

©Adafruit Industries Page 21 of 62

https://learn.adafruit.com//assets/42139
https://learn.adafruit.com//assets/42139
https://learn.adafruit.com//assets/42140
https://learn.adafruit.com//assets/42140

LiPoly Battery

The AA batteries will supply power to the

motors through the Motor Driver

FeatherWing, but what about power for the

Feather itself? For that, you'll use a LiPoly

battery. It's small, powerful, and very

convenient -- you can charge it simply by

plugging the Feather into a USB charger!

Plug the LiPoly battery into the JST battery

port on the Feather, and then tuck the

battery into the space in the lower level of

the robot. If you like, you can secure it with

double stick foam tape.

©Adafruit Industries Page 22 of 62

https://learn.adafruit.com//assets/42143
https://learn.adafruit.com//assets/42143
https://learn.adafruit.com//assets/42144
https://learn.adafruit.com//assets/42144
https://learn.adafruit.com//assets/42145
https://learn.adafruit.com//assets/42145

Congratulations, you've built your robot!

That's it for the first part of getting your robot assembled and wired. Now, let's get this

robot moving! On to the code!

©Adafruit Industries Page 23 of 62

https://learn.adafruit.com//assets/42146
https://learn.adafruit.com//assets/42146

3D Printed Car Parts

©Adafruit Industries Page 24 of 62

Bonus Body Parts

Want to dress your race car up to look like its Formula E bigger siblings? Add a 3D

printed nose and tail to your mini race car! You can imagine how these wings provide

all the downforce needed to keep a real Formula E car stable and provide the

downforce to prevent lift off!

These models are based on the excellent Formula E Race Car model by petropixel () p

ublished on Thingiverse under Creative Commons license.

I designed the new parts to be printed vertically (nose up for the front piece, tail down

for the back piece) and they each have a groove that can be used to press fit them

onto the race car's middle plate.

You can download the model files here, and then either print them on your own 3D

printer, or send them to a service, such as 3D Hubs, to have them printed for you.

formulaEParts.zip

©Adafruit Industries Page 25 of 62

https://www.thingiverse.com/thing:560767
https://cdn-learn.adafruit.com/assets/assets/000/042/203/original/formulaEParts.zip?1496257656

©Adafruit Industries Page 26 of 62

Once they're done printing, clean off any support material, and then fit them onto the

racer's middle plate.

©Adafruit Industries Page 27 of 62

©Adafruit Industries Page 28 of 62

©Adafruit Industries Page 29 of 62

©Adafruit Industries Page 30 of 62

How Your Race Car Works: The Basics

Before we dig into the more complicated code, let's take a minute to break down the

simple motor controller code, and how it works to control your robot's motors.

Before going any further, make sure you have a basic understanding of how to

program and use an Arduino-compatible Feather microcontroller. Thankfully, we have

a lot of great tutorials on how this whole thing works. Click here to get started with

Arduino (), and then come back to this guide to continue.

Board Support Package and Drivers

For the Feather 32u4, check out the guide for how to install Arduino IDE & add

Adafruit Board () support, then install Feather Board support ()

Before going any further, make sure you have a basic understanding of how to

program and use an Arduino

©Adafruit Industries Page 31 of 62

file:///home/ladyadas-learn-arduino-lesson-number-0
file:///home/ladyadas-learn-arduino-lesson-number-0
file:///home/adafruit-feather-32u4-bluefruit-le/setup
file:///home/adafruit-feather-32u4-bluefruit-le/setup
file:///home/adafruit-feather-32u4-bluefruit-le/using-with-arduino-ide

Libraries

For your robot to work correctly, you will need to install a couple libraries. To install

the libraries, we will use Arduino's handy library manager. Navigate to the library

manager like shown in the screenshot below.

Then, all you need to do is search for the library you want to install. For this mini race

car, start by searching for 'Adafruit Motor Shield', you should see two options like this:

©Adafruit Industries Page 32 of 62

Under the Adafruit Motor Shield V2 Library, select the latest version from the

dropdown, then click the install button.

While we won't need it quite yet, you might as well go ahead and search for 'Adafruit

BluefruitLE nRF51', and install the latest version of that. We will use this library later

on.

DC Motor Test

Now that you have the libraries installed, let's open up the example sketch to try out

the DC motors on your car. You can find the example sketch in the Arduino Examples

menu:

©Adafruit Industries Page 33 of 62

Take a look through this example sketch. Before you upload the code and run it on

your robot, you need to make a change or two. First off, you will need to change what

port the motors are connected to. Let's start by just trying one of the motors. If you

remember when we assembled the robot, we connected the motors to the back of

the motor shield, in ports M3, and M4. So, in the top part of the code, go ahead and

change out the port from 1, to 3 like this:

// Select which 'port' M1, M2, M3 or M4. In this case, M1

Adafruit_DCMotor *myMotor = AFMS.getMotor(3);

// You can also make another motor on port M2

//Adafruit_DCMotor *myOtherMotor = AFMS.getMotor(2);

Place your car on top of a cup or mug so the wheels are not touching the ground.

Select Adafruit Feather 32u4 as the board under the Arduino Tools menu, and upload

this code to your Feather through the USB connector.

Notice how just the one wheel is going forward, then backward. If you update the

code to this:

// Select which 'port' M1, M2, M3 or M4. In this case, M1

Adafruit_DCMotor *myMotor = AFMS.getMotor(4);

// You can also make another motor on port M2

//Adafruit_DCMotor *myOtherMotor = AFMS.getMotor(2);

With the motor port changed to 4, the other motor should now run. That is really the

basics of how we will go about controlling the race car.

Let's Get Moving

Now that you know how to make either motor go forward and backward with the

example sketch, let's learn the rest of the motor controller basics and write a sketch to

get this robot moving. At the top of your sketch, you just need to call out both motors.

To do this, you just need to uncomment the myOtherMotor line of code by removing

the two forward slashes before the code. Then, set the second motor to 3 like so:

// Select which 'port' M1, M2, M3 or M4. In this case, M1

Adafruit_DCMotor *myMotor = AFMS.getMotor(4);

// You can also make another motor on port M3

Adafruit_DCMotor *myOtherMotor = AFMS.getMotor(3);

When you see two forward slashes // in front of text, that is called commenting.

Anything written after the // will be ignored by the Arduino. It is a way to

communicate with whomever is reading your code.

©Adafruit Industries Page 34 of 62

In this case, we have myMotor set to M4, which is our right side motor, and

myOtherMotor is set to M3, our left side motor.

Using the names myMotor, and myOtherMotor makes things really hard for us to

remember which motor is which. So, we can simply change the variable name to

whatever we want. Let's simply call them leftMotor, and rightMotor like this:

// Set up the left motor on port M4

Adafruit_DCMotor *leftMotor = AFMS.getMotor(4);

// Set up the right motor on port M3

Adafruit_DCMotor *rightMotor = AFMS.getMotor(3);

Of course, now that we have changed the variable name, we need to replace any

instance of myMotor with leftMotor , and myOtherMotor with rightMotor .

Before we start driving forward, backward, or turning; we need to tell the motor

controller how fast we want the motors to go. This is done using the setSpeed

function. If we want to make both motors go full speed ahead, we would set them

both to 255 like this:

// Set the speed to start, from 0 (off) to 255 (max speed)

 leftMotor->setSpeed(255);

 rightMotor->setSpeed(255);

To make your robot go forward, all we need to do is tell each motor to go forward like

this:

leftMotor->run(FORWARD); //LEFT MOTOR FULL STEAM AHEAD!

rightMotor->run(FORWARD); //RIGHT MOTOR FULL STEAM AHEAD!

All right, let's put this into a full sketch and give it a shot. For this sketch, Go ahead

and upload this sketch to your robot. I have slowed down the speed for safety, but

you can update to whatever you want. Even though it is slowed down, don't forget to

set your race car on a mug or a cup to keep the wheels off the ground.

/*

This is a test sketch for the Adafruit assembled Motor Shield for Arduino v2

It won't work with v1.x motor shields! Only for the v2's with built in PWM

control

For use with the Adafruit Motor Shield v2

---->http://www.adafruit.com/products/1438

*/

#include <Wire.h>

#include <Adafruit_MotorShield.h>

#include "utility/Adafruit_MS_PWMServoDriver.h"

// Create the motor shield object with the default I2C address

Adafruit_MotorShield AFMS = Adafruit_MotorShield();

// Or, create it with a different I2C address (say for stacking)

©Adafruit Industries Page 35 of 62

// Adafruit_MotorShield AFMS = Adafruit_MotorShield(0x61);

// Set up the left motor on port M4

Adafruit_DCMotor *leftMotor = AFMS.getMotor(4);

// Set up the right motor on port M3

Adafruit_DCMotor *rightMotor = AFMS.getMotor(3);

void setup() {

 Serial.begin(9600); // set up Serial library at 9600 bps

 Serial.println("Adafruit Motorshield v2 - Robot Test!");

 AFMS.begin(); // create with the default frequency 1.6KHz

 //AFMS.begin(1000); // OR with a different frequency, say 1KHz

}

void loop() {

 // Set the speed to start, from 0 (off) to 255 (max speed)

 leftMotor->setSpeed(100);

 rightMotor->setSpeed(100);

 leftMotor->run(FORWARD); //LEFT MOTOR FULL STEAM AHEAD!

 rightMotor->run(FORWARD); //RIGHT MOTOR FULL STEAM AHEAD!

}

Ok, so we have the robot going forward. To put the robot in reverse, you just need to

change FORWARD to BACKWARD . Turning is just as easy. To turn right, you just need to

turn off the right motor, and go FORWARD with the left motor. This brings us to the next

bit of motor controller code you need to know, RELEASE . Instead of FORWARD , or

BACKWARD , you can also use RELEASE . RELEASE is like pulling the plug on the

motor. It will ignore speeds, and direction, and just stop what it is doing. The code for

RELEASE looks like this:

leftMotor->run(RELEASE);

rightMotor->run(RELEASE);

If we take that to our sketch, we can now make the robot turn in circles by releasing

the right motor, and going forward with the left motor:

/*

This is a test sketch for the Adafruit assembled Motor Shield for Arduino v2

It won't work with v1.x motor shields! Only for the v2's with built in PWM

control

For use with the Adafruit Motor Shield v2

---->http://www.adafruit.com/products/1438

*/

#include <Wire.h>

#include <Adafruit_MotorShield.h>

#include "utility/Adafruit_MS_PWMServoDriver.h"

// Create the motor shield object with the default I2C address

Adafruit_MotorShield AFMS = Adafruit_MotorShield();

// Or, create it with a different I2C address (say for stacking)

Is your race car still not going forward? Be sure to flip the switch on your battery

box to 'on'

©Adafruit Industries Page 36 of 62

// Adafruit_MotorShield AFMS = Adafruit_MotorShield(0x61);

// Set up the left motor on port M4

Adafruit_DCMotor *leftMotor = AFMS.getMotor(4);

// Set up the right motor on port M3

Adafruit_DCMotor *rightMotor = AFMS.getMotor(3);

void setup() {

 Serial.begin(9600); // set up Serial library at 9600 bps

 Serial.println("Adafruit Motorshield v2 - Robot Test!");

 AFMS.begin(); // create with the default frequency 1.6KHz

 //AFMS.begin(1000); // OR with a different frequency, say 1KHz

}

void loop() {

 // Set the speed to start, from 0 (off) to 255 (max speed)

 leftMotor->setSpeed(100);

 rightMotor->setSpeed(100);

 leftMotor->run(FORWARD); //LEFT MOTOR FULL STEAM AHEAD!

 rightMotor->run(RELEASE); //RIGHT MOTOR FULL STOP!

}

That just about covers the basics, now let's take this to the next level...

Code for Your Race Car

To take this robot to the next level, we are going to modify James De Vito's awesome

code for the similar Red Robot Rover (). In his code, he has multiple control methods

where you can either use the Bluefruit App controller or use your phone's

accelerometer to drive your robot. For this example, I am going to simplify things and

we will just use the control pad. This will free up the four auxiliary buttons for some

customization which we will cover in a couple steps.

Libraries

For this code to work, we will need a couple libraries. See the previous step on a

really easy way to install these libraries using the Arduino Library manager.

First up is the Adafruit BLE library. Learn more about this library and download it

here. ()

Next, we will need the Adafruit MotorShield library. Learn more about this library and

download it here. ()

©Adafruit Industries Page 37 of 62

file:///home/bluefruit-feather-robot/code
file:///home/bluefruit-feather-robot/code
file:///home/adafruit-feather-32u4-bluefruit-le/installing-ble-library
file:///home/adafruit-feather-32u4-bluefruit-le/installing-ble-library
file:///home/adafruit-motor-shield-v2-for-arduino/install-software
file:///home/adafruit-motor-shield-v2-for-arduino/install-software

The Code

Once you have the libraries installed, you will need to download the updated code.

Click the button below to download. Then, double-click the archive to unzip it, and

then move the MiniRaceCar folder to your Arduino sketches directory.

MiniRaceCar.zip

If you take a good look through this code, you will see it isn't so much more

complicated than what we learned in the previous step. There is some complicated

code that deals with the Bluetooth connection to your mobile device (which we will

use in the next step). This version of the sketch also includes code for reading and

streaming the temperature and humidity sensor data, which we'll look at a bit more

later.

One neat feature we added is a way to slowly speed up the motors to full speed so it

doesn't pop a wheelie when you take off going forward with this bit of code:

// speed up the motors

 for (int speed=0; speed < maxspeed; speed+=5) {

 L_MOTOR->setSpeed(speed);

 R_MOTOR->setSpeed(speed);

 delay(5); // 250ms total to speed up

 }

We just use a simple for loop to slowly ramp up the speed until it hits max speed. Lear

n more about for loops here ().

Driving Your Race Car

Now it is time to take control of your robot. We will be using the Adafruit Bluefruit LE

Connect app. Go ahead and download it on your preferred device.

Bluefruit app for iOS

Bluefruit app for Android

Load up the Bluefruit LE Connect app, and the first thing you will see is a list of

available Bluetooth devices to connect to. Find the one that says Adafruit Formula E

Racer, and tap the Connect button.

Here's what it looks like on the iPad version:

©Adafruit Industries Page 38 of 62

https://cdn-learn.adafruit.com/assets/assets/000/042/163/original/MiniRaceCar.zip?1496248945
https://www.arduino.cc/en/Reference/For
https://www.arduino.cc/en/Reference/For
https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect&hl=en

Once you connect, you will see a whole bunch of device information. At the bottom of

the app, tap the Controller button.

On the next screen, you will see some advanced features of the app. For now, click

the Control Pad link.

©Adafruit Industries Page 39 of 62

The Control Pad should load up, presenting four arrow keys, four assignable buttons,

and a small readout for streaming data.

Make sure your race car is unplugged from USB (the LiPoly battery will provide

power), and that the AA battery pack is turned on.

Then, go ahead and use the arrows to drive your rover. Be careful, this little guy is

fast! Be sure to place it on the floor first!

©Adafruit Industries Page 40 of 62

Temperature and Humidity Data

In real-life race cars, monitoring the gearbox temperature is important for

squeezing out the most performance from the car as is possible. As temperatures

rise, oil viscosity becomes thinner, which is great for a time trial, but can be a problem

in a longer race.

Included in your race car kit is the accurate and excellent HTU21D-F Temperature &

Humidity Breakout Board, based on the TE Connectivity sensor. With it, you can

measure the temperature and humidity of your race car, wirelessly! You can stream

this data from the Bluefruit application on your mobile device, even while driving the

car!!

©Adafruit Industries Page 41 of 62

First, you'll connect the sensor to your Feather, and read the data over the serial port.

The HTU21D-F is an I2C sensor. That means it uses the two I2C data/clock wires

available on most microcontrollers, and can share those pins with other sensors as

long as they don't have an address collision.

Power Pins:

Vin - this is the power pin. To power the board, plug it into the 3V pin on your

Feather

GND - common ground for power and logic, plug this into the GND pin on your

Feather

I2C Logic pins:

SCL - I2C clock pin, connect to your Feather's I2C clock line, labeled SCL

SDA - I2C data pin, connect to your Feather's I2C data line, labeled SDA

•

•

•

•

©Adafruit Industries Page 42 of 62

©Adafruit Industries Page 43 of 62

Download Adafruit_HTU21DF

To begin reading sensor data, you will need to download Adafruit_HTU21DF_Library

from our github repository (). You can do that by visiting the github repo and manually

downloading or, easier, download it from within the Arduino IDE. To do so, click on Sk

etch > Include library > Manage libraries... and then within the pop-up window, search

for "adafruit htu21df" then, select the library and click Install.

Load Demo

Open up File->Examples->Adafruit_HTU21DF->HTU21DFtest and upload to your

Feather wired up to the sensor.

Thats it! Now open up the serial monitor window to begin the test.

The HTU21D-F has a default I2C address of 0x40 and cannot be changed!

©Adafruit Industries Page 44 of 62

https://github.com/adafruit/Adafruit_HTU21DF_Library
https://github.com/adafruit/Adafruit_HTU21DF_Library

You can try breathing on the sensor to increase the humidity. The sensor reacts very

fast!

For more details on the sensor, check out the Learning Guide ()!

Bluetooth Data Streaming

The Bluefruit library makes it fairly simple to stream data as if it's going to the Serial

monitor, but is instead traveling through the air to your phone or tablet!

By using the Adafruit BluefruitLE SPI command ble.print(htu.readTemperature()

) instead of Serial.print(htu.readTemperature()) we can watch the device

running the Bluefruit app instead of the computer's serial monitor to see the same

data stream. Magic!

Re-upload the MiniRaceCar.ino sketch to your Feather, then, connect it to the Bluefruit

app and click on the Uart button at the bottom.

Here's what it looks like when running:

©Adafruit Industries Page 45 of 62

file:///home/adafruit-htu21d-f-temperature-humidity-sensor/overview

Plotting

Another great way to asses the changes in temperature and humidity of your race car

over time is by visualizing it on a graph.

The Bluefruit app has a built in data plotter, here's what the data looks like when you

breathe directly on the sensor:

©Adafruit Industries Page 46 of 62

Sensor Placement
If you like, you can use the included Male/

Female 6" jumper wires to extend the

sensor and place it elsewhere on the car.

Perhaps you want a better idea of the

track temperature: place the sensor on the

underside of the vehicle!

©Adafruit Industries Page 47 of 62

https://learn.adafruit.com//assets/42191
https://learn.adafruit.com//assets/42191
https://learn.adafruit.com//assets/42194
https://learn.adafruit.com//assets/42194
https://learn.adafruit.com//assets/42196
https://learn.adafruit.com//assets/42196

Make Your Race Car Autonomous

While it is definitely neat to use your phone to control your racer, it is time to set your

little car free. The first step in making your racer autonomous is to add proximity

sensors so it can avoid obstacles.

The simplest way to do this is to add a couple robot whiskers to sense when it

physically runs into a wall or object. You simply write some code to listen for when the

switch has been triggered, stop, turn around, and go forward again. These Micro

Switches with a wire are perfect for this.

©Adafruit Industries Page 48 of 62

Micro Switch w/Wire - Three Terminals

Micro-switches are often found in arcade

buttons and joysticks but they're also

really handy in any kind of mechatronics

project or when you need a basic sensor.

They are always...

https://www.adafruit.com/product/820

While this is a great way to navigate around obsticles, I prefer to use a something a

bit more intelligent so my little robot doesn't actually have to run into things to

navigate. There are plenty of distance sensor options out there (there is a whole

category of them () on the Adafruit shop), but the sensor I am going to use is the neat

little IR sensor from from Sharp.

Sharp GP2Y0D810Z0F Digital Distance

Sensor with Pololu Carrier

Discontinued - you can grab this Adafruit

VL6180X Time of Flight Distance Ranging

Sensor (VL6180) - STEMMA QT...

https://www.adafruit.com/product/1927

The obvious benefit here is the size, but also the price. This little sensor will sense an

object about 10 centimeters away, and acts like a normal switch. There is a pin on the

board that is normally high and switches to low when it senses an object. Because of

the small size, we can put two of these on our little robot.

Mounting the Sensors

There are a ton of ways you can mount this sensor to your robot. The easiest way

would be to just a bit of double sided foam tape to stick it in place, but I decided to

make a super simple 3D printed mount.

Note, this will not work with the Formula E race car nose part mounted

©Adafruit Industries Page 49 of 62

https://www.adafruit.com/product/820
https://www.adafruit.com/product/820
https://www.adafruit.com/categories/57
https://www.adafruit.com/categories/57
https://www.adafruit.com/product/1927
https://www.adafruit.com/product/1927
https://www.adafruit.com/product/1927

Click Here to Download the Mount

I used a couple M2.5 screws to secure the mounts to the robot (required a drill bit to

clean up the holes in the 3D print). I wired up the left sensor to pin A4, and the right

sensor to pin A5.

The Code

The code to make your robot take advantage of its new eyes is very straight forward.

For now, we are going to focus on the Adafruit MotorShield library.

Learn More About the Adafruit

MotorShield Library

#include <Wire.h>

#include <Adafruit_MotorShield.h>

#include "utility/Adafruit_MS_PWMServoDriver.h"

// Create the motor shield object with the default I2C address

Adafruit_MotorShield AFMS = Adafruit_MotorShield();

// And connect 2 DC motors to port M3 & M4 !

Adafruit_DCMotor *L_MOTOR = AFMS.getMotor(3);

Adafruit_DCMotor *R_MOTOR = AFMS.getMotor(4);

©Adafruit Industries Page 50 of 62

http://www.thingiverse.com/thing:1890509
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/

// And connect the Sharp distance sensors

int leftSensor = A4;

int rightSensor = A5;

void setup() {

 Serial.begin(9600); // set up Serial library at 9600 bps

 Serial.println("Adafruit Motorshield v2 - DC Motor test!");

 pinMode(leftSensor, INPUT); // set up distance sensor pins

 pinMode(rightSensor, INPUT);

 AFMS.begin(); // create with the default frequency 1.6KHz

}

void loop() {

 L_MOTOR->setSpeed(200);

 R_MOTOR->setSpeed(200);

 L_MOTOR->run(FORWARD);

 R_MOTOR->run(FORWARD);

 while (digitalRead(rightSensor) == LOW){

 L_MOTOR->setSpeed(100);

 R_MOTOR->setSpeed(100);

 L_MOTOR->run(BACKWARD);

 R_MOTOR->run(RELEASE);

 }

 while (digitalRead(leftSensor) == LOW){

 L_MOTOR->setSpeed(100);

 R_MOTOR->setSpeed(100);

 L_MOTOR->run(RELEASE);

 R_MOTOR->run(BACKWARD);

 }

}

As you can see from the above code, there isn't a whole lot going on here. All we are

doing is reading one of the distance sensors, and if it senses an object we reverse

the opposite side motor until the object is no longer detected. We also slow things

down quite a bit, as this little robot is so quick it loves to pop wheelies when it starts

and stops quickly.

This is just the beginning of what you can do with distance sensing. The next steps

are up to you. You can integrate this code into the bluetooth controller code to turn

on and off auto mode with a button press. What other ideas can you think of?

©Adafruit Industries Page 51 of 62

Control Your Race Car's Speed

Instead of hard coding a specific speed for your race car, here we will use a couple

different ways to adjust your speed without having to constantly upload new code.

The first way we are going to adjust the speed is with a simple breadboard trim

potentiometer. Pick one up on the Adafruit Shop:

Breadboard trim potentiometer

These are our favorite trim pots, perfect

for breadboarding and prototyping. They

have a long grippy adjustment knob and

with 0.1" spacing, they plug into

breadboards or...

https://www.adafruit.com/product/356

Potentiometers, or Pots for short, are variable resistors that allow us to send different

voltages to the Feather analog pin. Wiring it up is super simple. Just connect one of

the outside pins to a 3.3V pin, and the other outside pin to ground. Then, connect the

middle pin to the A0 pin on the Feather. For a reminder on which pin is which on the

Bluefruit Feather, click here ().

The code to get this all working is incredibly simple. Just copy and paste in the code

below to the top of your main loop.

//Set your motor speed

int reading = analogRead(A0);

L_MOTOR->setSpeed(map(reading, 0, 1023, 0, 255));

R_MOTOR->setSpeed(map(reading, 0, 1023, 0, 255));

So, it should look something like this now:

void loop(void)

{

 //Set your motor speed

 int reading = analogRead(A0);

 L_MOTOR->setSpeed(map(reading, 0, 1023, 0, 255));

 R_MOTOR->setSpeed(map(reading, 0, 1023, 0, 255));

 // read new packet data

 uint8_t len = readPacket(&ble, BLE_READPACKET_TIMEOUT);

 readController();

©Adafruit Industries Page 52 of 62

https://www.adafruit.com/product/356
https://www.adafruit.com/product/356
https://cdn-learn.adafruit.com/assets/assets/000/030/930/large1024/adafruit_products_2889_pinout_v1_0.png?1457306365

}

What we are doing here is reading that analog pin, and the Feather is going to pull a

number from 0 to 1023, depending on which direction the arrow is facing on your pot.

Because the motor controller needs a value from 0 to 255, we are using the map()

function ().

Go ahead and upload this code to your race car, and turn the pot, then press forward

on the controller to see how it works. Keep changing to direction of the arrow on the

pot to adjust the speed.

Using the Controller to Control Speed

If you would rather just control your car's speed using the extra 4 buttons on the

controller, it is also pretty easy to set up. First off, we need to set up a global speed

variable. Anywhere above the sketch setup, add in something like this:

int robotSpeed = 100;

In the main loop, we can then use that variable to set the motor speed using:

L_MOTOR->setSpeed(robotSpeed);

R_MOTOR->setSpeed(robotSpeed);

Then, all we need to do is increment the speed up every time we press the 1 button,

and down every time we press the 3 button.

if(buttnum == 1){

if(robotSpeed <= 245){

robotSpeed = robotSpeed + 10;

 }

}

if(buttnum == 2){

}

if(buttnum == 3){

if(robotSpeed >=10){

robotSpeed = robotSpeed - 10;

}

}

if(buttnum == 4){

}

Here is the whole block of code for you to copy and paste in:

/***

 This is an example for our nRF51822 based Bluefruit LE modules

©Adafruit Industries Page 53 of 62

https://www.arduino.cc/en/Reference/Map
https://www.arduino.cc/en/Reference/Map

 Modified to drive a 3-wheeled BLE Robot Rover! by http://james.devi.to

 Pick one up today in the Adafruit shop!

 Adafruit invests time and resources providing this open source code,

 please support Adafruit and open-source hardware by purchasing

 products from Adafruit!

 MIT license, check LICENSE for more information

 All text above, and the splash screen below must be included in

 any redistribution

***/

#include <string.h>

#include <Arduino.h>

#include <SPI.h>

#if not defined (_VARIANT_ARDUINO_DUE_X_)

 #include <SoftwareSerial.h>

#endif

#include "Adafruit_BLE.h"

#include "Adafruit_BluefruitLE_SPI.h"

#include "Adafruit_BluefruitLE_UART.h"

#include "BluefruitConfig.h"

#include <Wire.h>

#include <Adafruit_MotorShield.h>

// Create the motor shield object with the default I2C address

Adafruit_MotorShield AFMS = Adafruit_MotorShield();

// And connect 2 DC motors to port M3 & M4 !

Adafruit_DCMotor *L_MOTOR = AFMS.getMotor(3);

Adafruit_DCMotor *R_MOTOR = AFMS.getMotor(4);

//Name your RC here

String BROADCAST_NAME = "Adafruit Black Robot Rover";

String BROADCAST_CMD = String("AT+GAPDEVNAME=" + BROADCAST_NAME);

Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ,

BLUEFRUIT_SPI_RST);

// A small helper

void error(const __FlashStringHelper*err) {

 Serial.println(err);

 while (1);

}

// function prototypes over in packetparser.cpp

uint8_t readPacket(Adafruit_BLE *ble, uint16_t timeout);

float parsefloat(uint8_t *buffer);

void printHex(const uint8_t * data, const uint32_t numBytes);

// the packet buffer

extern uint8_t packetbuffer[];

char buf[60];

int robotSpeed = 100;

/**/

/*!

 @brief Sets up the HW an the BLE module (this function is called

 automatically on startup)

*/

/**/

©Adafruit Industries Page 54 of 62

void setup(void)

{

 Serial.begin(9600);

 AFMS.begin(); // create with the default frequency 1.6KHz

 // turn on motors

 L_MOTOR->setSpeed(0);

 L_MOTOR->run(RELEASE);

 R_MOTOR->setSpeed(0);

 R_MOTOR->run(RELEASE);

 Serial.begin(115200);

 Serial.println(F("Adafruit Bluefruit Robot Controller Example"));

 Serial.println(F("---"));

 /* Initialize the module */

 BLEsetup();

 //Set your motor speed (255 Max)

 L_MOTOR->setSpeed(robotSpeed);

 R_MOTOR->setSpeed(robotSpeed);

}

void loop(void)

{

 L_MOTOR->setSpeed(robotSpeed);

 R_MOTOR->setSpeed(robotSpeed);

 // read new packet data

 uint8_t len = readPacket(&ble, BLE_READPACKET_TIMEOUT);

 readController();

}

bool readController(){

 // Buttons

 if (packetbuffer[1] == 'B') {

 uint8_t buttnum = packetbuffer[2] - '0';

 boolean pressed = packetbuffer[3] - '0';

 if (pressed) {

 if(buttnum == 1){

 if(robotSpeed <= 245){

 robotSpeed = robotSpeed + 10;

 }

 }

 if(buttnum == 2){

 }

 if(buttnum == 3){

 if(robotSpeed >=10){

 robotSpeed = robotSpeed - 10;

 }

 }

 if(buttnum == 4){

 }

 if(buttnum == 5){

©Adafruit Industries Page 55 of 62

 L_MOTOR->run(FORWARD);

 R_MOTOR->run(FORWARD);

 }

 if(buttnum == 6){

 L_MOTOR->run(BACKWARD);

 R_MOTOR->run(BACKWARD);

 }

 if(buttnum == 7){

 L_MOTOR->run(RELEASE);

 R_MOTOR->run(FORWARD);

 }

 if(buttnum == 8){

 L_MOTOR->run(FORWARD);

 R_MOTOR->run(RELEASE);

 }

 }

 else {

 L_MOTOR->run(RELEASE);

 R_MOTOR->run(RELEASE);

 }

}

}

void BLEsetup(){

 Serial.print(F("Initialising the Bluefruit LE module: "));

 if (!ble.begin(VERBOSE_MODE))

 {

 error(F("Couldn't find Bluefruit, make sure it's in CoMmanD mode & check

wiring?"));

 }

 Serial.println(F("OK!"));

 /* Perform a factory reset to make sure everything is in a known state */

 Serial.println(F("Performing a factory reset: "));

 if (! ble.factoryReset()){

 error(F("Couldn't factory reset"));

 }

 //Convert the name change command to a char array

 BROADCAST_CMD.toCharArray(buf, 60);

 //Change the broadcast device name here!

 if(ble.sendCommandCheckOK(buf)){

 Serial.println("name changed");

 }

 delay(250);

 //reset to take effect

 if(ble.sendCommandCheckOK("ATZ")){

 Serial.println("resetting");

 }

 delay(250);

 //Confirm name change

 ble.sendCommandCheckOK("AT+GAPDEVNAME");

 /* Disable command echo from Bluefruit */

 ble.echo(false);

 Serial.println("Requesting Bluefruit info:");

 /* Print Bluefruit information */

 ble.info();

 Serial.println(F("Please use Adafruit Bluefruit LE app to connect in Controller

mode"));

©Adafruit Industries Page 56 of 62

 Serial.println(F("Then activate/use the sensors, color picker, game controller,

etc!"));

 Serial.println();

 ble.verbose(false); // debug info is a little annoying after this point!

 /* Wait for connection */

 while (! ble.isConnected()) {

 delay(500);

 }

 Serial.println(F("*****************"));

 // Set Bluefruit to DATA mode

 Serial.println(F("Switching to DATA mode!"));

 ble.setMode(BLUEFRUIT_MODE_DATA);

 Serial.println(F("*****************"));

}

Connecting Your Race Car to Adafruit IO

One of the great things about using the Adafruit Feather system is that you can easily

swap out Feathers and FeatherWings to make your projects do different things. In this

case we are going to use all of the upgrades from the previous steps, but we are

going to swap out the 32u4 Bluefruit LE Feather for a HUZZAH ESP8266 Feather. This

will allow us to connect our race car to Adafruit IO and log the temperature and

humidity, as well as control the race car's speed from afar.

Sign up for Adafruit IO and create your first dashboard.

The first thing to do is head on over to io.adafruit.com () and sign up. Then click on

dashboards in the left sidebar and under the actions dropdown, click create new

dashboard. Name the dashboard whatever you want (like My Race Car), add a

description if you want, and click the create button.

Send data to Adafruit IO

Before we start controlling the race car from Adafruit IO, lets just make sure

everything is working by streaming some temperature and humidity data and

monitoring it on a graph.

If you haven't already, you will need to swap out the Bluefruit Feather for a HUZZAH

Feather. Don't have a HUZZAH Feather? Get one here:

©Adafruit Industries Page 57 of 62

https://io.adafruit.com/

Assembled Feather HUZZAH w/ ESP8266

WiFi With Stacking Headers

Feather is the new development board

from Adafruit, and like its namesake, it is

thin, light, and lets you fly! We designed

Feather to be a new standard for portable

microcontroller...

https://www.adafruit.com/product/3213

Just gently lift off the motor FeatherWing with the wires still attached, and then gently

remove the Bluefruit Feather from the breadboard (be sure to remember where the

pins were located. Install the Feather HUZZAH in the exact same spot and attach the

Motor FeatherWing.

Next, download the following file and open it in the Arduino IDE.

Temp & Humidity Test

If this is your first time using Adafruit IO, on that config page, you will need to enter

your secret key and username into the config tab. On your newly created dashboard,

click on the yellow key icon in the upper right:

On the next page you will find your username and unique key. Copy and paste those

into the corresponding spots on the Config tab. Then, enter your wifi SSID and

password.

Go ahead and upload this to your HUZZAH. Open the Arduino serial terminal and

make sure you connected to AIO, and that data is streaming.

Now, lets add in a graph and view the data in real time. Click the blue '+' icon and

then select the line graph option. On the next page, choose the temperature and

humidity feeds that we just created:

©Adafruit Industries Page 58 of 62

https://www.adafruit.com/product/3213
https://www.adafruit.com/product/3213
https://www.adafruit.com/product/3213
https://cdn-learn.adafruit.com/assets/assets/000/043/866/original/AIO_RaceCar_TH.zip?1499884336

On the next page, name your graph and click save. Feel free to click the green 'Edit

this dashboard' button and drag around your graph, resize, and maybe change the

graph from live to 1 hour. Click 'DONE EDITING' to save your changes. You should now

see data slowly streaming on your graph. Now it's time to control your race car.

There are some minor pin changes between the HUZZAH and Bluefruit Feathers.

Because of this, we need to move the pins for our autonomous sensors. Move the left

sensor to HUZZAH pin 12, and the right sensor to pin 14:

Next, add a slider to your dashboard in the same way that you created the graph. This

time instead of choosing a feed, we are going to create one. In the upper right, name

your feed 'racecarspeed'

Click create, and then name your slider 'Race Car Speed', leave the minimum value at

0, and set the max to 255. Save and add the slider to your dashboard.

We also need to create a button. We are going to use the button to manually ask for

the temperature and humidity instead of constantly streaming. Create a monetary

button and name it 'racecartakereading'

Next, we will upload some modified code and give this all a test. Copy and paste in

the below code over the Temperature and Humidity test code:

// Adafruit IO Temperature & Humidity Example

// Tutorial Link: https://learn.adafruit.com/adafruit-io-basics-temperature-and-

humidity

//

// Adafruit invests time and resources providing this open source code.

©Adafruit Industries Page 59 of 62

// Please support Adafruit and open source hardware by purchasing

// products from Adafruit!

//

// Written by Todd Treece for Adafruit Industries

// Copyright (c) 2016-2017 Adafruit Industries

// Licensed under the MIT license.

//

// All text above must be included in any redistribution.

/************************** Configuration ***********************************/

// edit the config.h tab and enter your Adafruit IO credentials

// and any additional configuration needed for WiFi, cellular,

// or ethernet clients.

#include "config.h"

/************************ Example Starts Here *******************************/

#include <Wire.h>

#include "Adafruit_HTU21DF.h"

#include <Adafruit_MotorShield.h>

// Create the motor shield object with the default I2C address

Adafruit_MotorShield AFMS = Adafruit_MotorShield();

// And connect 2 DC motors to port M3 & M4 !

Adafruit_DCMotor *L_MOTOR = AFMS.getMotor(3);

Adafruit_DCMotor *R_MOTOR = AFMS.getMotor(4);

// set up the 'temperature' and 'humidity' feeds

AdafruitIO_Feed *temperature = io.feed("temperature");

AdafruitIO_Feed *humidity = io.feed("humidity");

AdafruitIO_Feed *racecarspeed = io.feed("racecarspeed");

AdafruitIO_Feed *racecartakereading = io.feed("racecartakereading");

Adafruit_HTU21DF htu = Adafruit_HTU21DF();

int RaceCar_Speed = 10;

// And connect the Sharp distance sensors

int leftSensor = 12;

int rightSensor = 14;

void setup() {

 // start the serial connection

 Serial.begin(115200);

 AFMS.begin(); // create with the default frequency 1.6KHz

 // turn on motors

 L_MOTOR->setSpeed(0);

 L_MOTOR->run(RELEASE);

 R_MOTOR->setSpeed(0);

 R_MOTOR->run(RELEASE);

 pinMode(leftSensor, INPUT); // set up distance sensor pins

 pinMode(rightSensor, INPUT);

 // wait for serial monitor to open

 while(! Serial);

 Serial.println("HTU21D-F test");

 if (!htu.begin()) {

 Serial.println("Couldn't find sensor!");

 while (1);

 }

©Adafruit Industries Page 60 of 62

 // connect to io.adafruit.com

 Serial.print("Connecting to Adafruit IO");

 io.connect();

 // wait for a connection

 while(io.status() < AIO_CONNECTED) {

 Serial.print(".");

 delay(500);

 }

 // we are connected

 Serial.println();

 Serial.println(io.statusText());

 racecarspeed->onMessage(handleSpeed);

 racecartakereading->onMessage(handleReading);

 //Set your motor speed (255 Max)

 L_MOTOR->setSpeed(RaceCar_Speed);

 R_MOTOR->setSpeed(RaceCar_Speed);

}

void loop() {

 // io.run(); is required for all sketches.

 // it should always be present at the top of your loop

 // function. it keeps the client connected to

 // io.adafruit.com, and processes any incoming data.

 io.run();

 L_MOTOR->setSpeed(RaceCar_Speed);

 R_MOTOR->setSpeed(RaceCar_Speed);

 L_MOTOR->run(FORWARD);

 R_MOTOR->run(FORWARD);

 if (digitalRead(rightSensor) == LOW){

 Serial.print("Right Sensor Triggered");

 }

 while (digitalRead(rightSensor) == LOW){

 L_MOTOR->setSpeed(RaceCar_Speed/2);

 R_MOTOR->setSpeed(RaceCar_Speed/2);

 L_MOTOR->run(BACKWARD);

 R_MOTOR->run(RELEASE);

 }

 while (digitalRead(leftSensor) == LOW){

 L_MOTOR->setSpeed(RaceCar_Speed/2);

 R_MOTOR->setSpeed(RaceCar_Speed/2);

 L_MOTOR->run(RELEASE);

 R_MOTOR->run(BACKWARD);

 }

}

void handleSpeed(AdafruitIO_Data *data) {

 // convert the data to integer

 RaceCar_Speed = data->toInt();

 Serial.print("speed: ");

 Serial.println(RaceCar_Speed);

}

void handleReading(AdafruitIO_Data *data) {

 float celsius = htu.readTemperature();

 float fahrenheit = (celsius * 1.8) + 32;

©Adafruit Industries Page 61 of 62

 Serial.print("celsius: ");

 Serial.print(celsius);

 Serial.println("C");

 Serial.print("fahrenheit: ");

 Serial.print(fahrenheit);

 Serial.println("F");

 // save fahrenheit (or celsius) to Adafruit IO

 temperature->save(fahrenheit);

 Serial.print("humidity: ");

 Serial.print(htu.readHumidity());

 Serial.println("%");

 // save humidity to Adafruit IO

 humidity->save(htu.readHumidity());

}

Upload the above code (make sure you have your config file the same as before).

Prop your race car up off the ground and try sliding the speed slider. The wheel

speed should go from off to full speed.

You should also be able to press the Take Reading button and see data show up on

your graph. Feel free to add some other dashboard blocks like the gauge to show the

current temperature and humidity. Organize your dashboard the way you want. Here

is how I organized mine:

What else can you control with AIO on your race car? How about adding in a piezo

buzzer and creating a horn? Maybe a button to put your race car in reverse? Tell us

what you did to your race car in the Adafruit Forums ().

©Adafruit Industries Page 62 of 62

https://forums.adafruit.com

	My Mini Race Car
	Table of Contents
	Introduction
	Unboxing Your Mini Race Car Kit
	Assembling and Wiring Your Mini Race Car
	3D Printed Car Parts
	How Your Race Car Works: The Basics
	Code for Your Race Car
	Driving Your Race Car
	Temperature and Humidity Data
	Make Your Race Car Autonomous
	Control Your Race Car's Speed
	Connecting Your Race Car to Adafruit IO

	Introduction
	Unboxing Your Mini Race Car Kit
	Kit Contents
	Feather, USB Cable, & Batteries
	Car Chassis & Assembly Tools
	Prototyping Parts and Components
	Assembling and Wiring Your Mini Race Car
	Motors and Wheels and Tires
	Lower Chassis
	Turn over the plate
	Turn over the plate again

	Prepare the Battery Box
	Middle Chassis Layer

	Prepare the Electronics
	LiPoly Battery

	3D Printed Car Parts
	Bonus Body Parts
	How Your Race Car Works: The Basics
	Board Support Package and Drivers
	Libraries
	DC Motor Test
	Let's Get Moving

	Code for Your Race Car
	Libraries
	The Code

	Driving Your Race Car
	Temperature and Humidity Data
	Power Pins:
	I2C Logic pins:

	Download Adafruit_HTU21DF
	Load Demo
	Bluetooth Data Streaming
	Plotting
	Sensor Placement

	Make Your Race Car Autonomous
	Mounting the Sensors
	The Code

	Control Your Race Car's Speed
	Using the Controller to Control Speed

	Connecting Your Race Car to Adafruit IO
	Sign up for Adafruit IO and create your first dashboard.
	Send data to Adafruit IO

