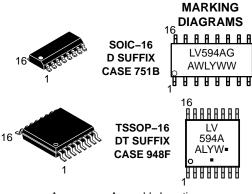
8-Bit Shift Register with Output Register

The MC74LV594A is an 8-bit shift register designed for 2 V to 6.0 V V_{CC} operation. The device contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Separate clocks (RCLK, SRCLK) and direct overriding clear (\overline{RCLR} , \overline{SRCLR}) inputs are provided on the shift and storage registers. A serial output (Q_{H^*}) is provided for cascading purposes.

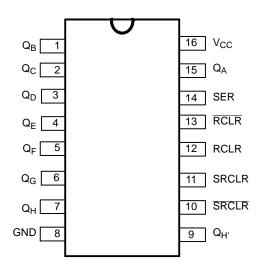
The shift-register (SRCLK) and storage-register (RCLK) clocks are positive-edge triggered. If the clocks are tied together, the shift register always is one clock pulse ahead of the storage register.


Features

- 2.0 V to 6.0 V V_{CC} Operation
- Low Input Current: 1.0 μA
- Max t_{pd} of 6.5 ns at 5 V
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot) > 2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- Support Mixed-Mode Voltage Operation on All Ports
- 8-Bit Serial-In, Parallel-Out Shift Registers With Storage
- Independent Direct Overriding Clears on Shift and Storage Registers
- Independent Clocks for Shift and Storage Registers
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com



A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or = Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

FUNCTION TABLE

		INPUTS			FUNCTION
SER	SRCLK	SRCLR	RCLK	RCLR	FUNCTION
Х	Х	L	Х	Χ	Shift register is cleared.
L	1	Н	Х	Х	First stage of shift register goes low. Other stages store the data of previous stage, respectively.
Н	1	Н	Х	Х	First stage of shift register goes high. Other stages store the data of previous stage, respectively.
L	1	Н	Х	Х	Shift register state is not changed.
Х	Х	X	X	L	Storage register is cleared.
Х	Х	X	1	Н	Shift register data is stored in the storage register.
Х	Х	Х	1	Н	Storage register state is not changed.

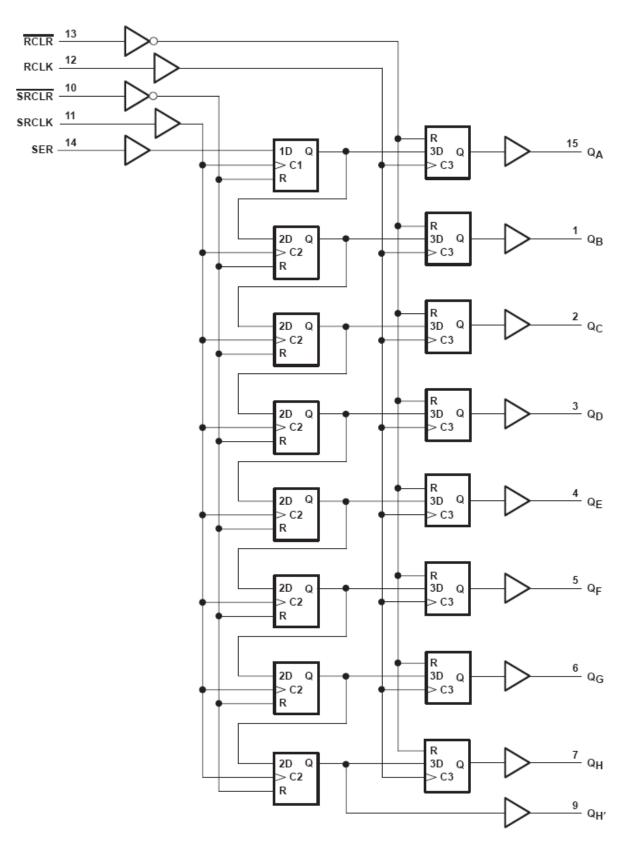


Figure 1. Logic Diagram

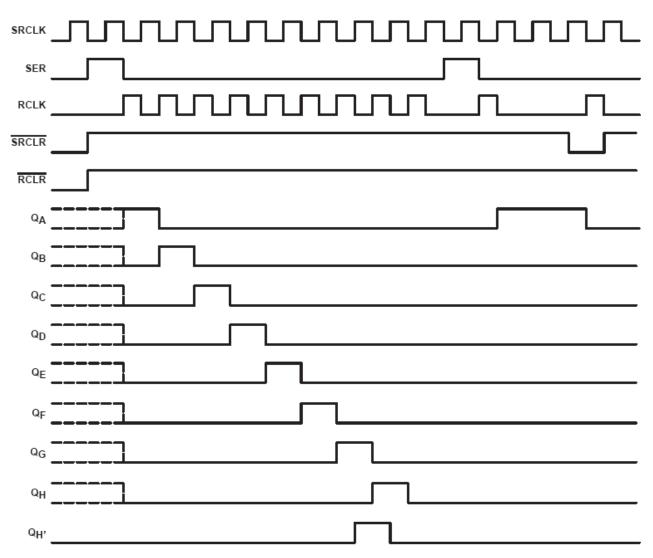


Figure 2. Timing Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LV594ADR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC74LV594ADTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage Active Mode (Note 1)	-0.5 to $V_{CC} + 0.5$	V
	High Impedance or Power-Off Mode	-0.5 to +7.0	
I _{IK}	DC Input Clamp Current	±20	mA
I _{OK}	DC Output Clamp Current	±35	mA
I _{IN}	DC Input Current	±20	mA
IO	DC Output Source / Sink Current	±35	mA
I _{CC}	DC Supply Current per Supply Pin	±75	mA
I _{GND}	DC Ground Current per Ground Pin	±75	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
TL	Lead temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction temperature under Bias	+150	°C
θ_{JA}	Thermal Resistance SOIC TSSOP	112 148	°C
P _D	Power Dissipation in Still Air at SOIC TSSOP	500 450	mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 30% – 35%	UL-94-VO (0.125 in)	
V _{ESD}	ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	> 3000 >400 N/A	V
I _{Latchup}	Latchup Performance Above V _{CC} and Below GND at 85°C (Note 5)	±300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. I_{O} absolute maximum rating must be observed.
- 2. Tested to EIA/JESD22-A114-A.
- 3. Tested to EIA/JESD22-A115-A.
- Tested to JESD22-C101-A.
 Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS (Note 6)

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
VI	DC Input Voltage (Referenced to GND)	0	V _{CC}	V
Vo	DC Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Free–Air Temperature	- 55	+85	°C
t _r , t _f	Input Rise or Fall Rate V_{CC} = 2.0 V V_{CC} = 4.5 V V_{CC} = 6.0 V	0 0 0	1000 500 400	nS

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

6. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS

				Guaranteed Limits						
				7	T _A = 25°C	;	T _A = -55°			
Symbol	Parameter	Conditions	V _{CC} , (V)	Min	Тур	Max	Min	Max	Unit	
.,	Minimum		2.0	1.5			1.5		.,	
V_{IH}	High-Level In- put Voltage		2.3 – 6.0	0.7 x V _{CC}			0.7 x V _{CC}		V	
	Maximum		2.0			0.5		0.5		
V_{IL}	Low-Level In- put Voltage		2.3 – 6.0			0.3 x V _{CC}		0.3 x V _{CC}	V	
		$V_{IN} = V_{IH}$ or V_{IL}								
	Minimum High-Level Output Voltage	I _{oH} = -50 μA	2.0 – 6.0	V _{CC} - 0.1			V _{CC} – 0.1			
V_{OH}		I _{oH} = -2 mA	2.3	2			2		V	
		I _{oH} = -6 mA	3.0	2.48			2.48			
		I _{oH} = −12 mA	4.5	3.8			3.8			
		$V_{IN} = V_{IH}$ or V_{IL}								
	Maximum	I _{oH} = 50 μA	2.0 – 6.0			0.1		0.1		
V_{OL}	Low-Level	I _{oH} = 2 mA	2.3			0.4		0.4	V	
	Output Voltage	I _{oH} = 6 mA	3.0			0.44		0.44		
		I _{oH} = 12 mA	4.5			0.55		0.55		
I _{IN}	Maximum In- put Leakage Current	V _I = V _{CC} or GND	6.0		±0.1		±1		μΑ	
I _{CC}	Maximum Sup- ply Current	$V_I = V_{CC}$ or GND, $I_O = 0$ A	6.0			8.0		80	μΑ	
CI	Input Capacit- ance	V _I = V _{CC} or GND	3.3		3.5				pF	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TIMING SPECIFICATIONS (See Figure 3)

				T _A = 25°C		T _A = -55°C to 125°C		
Symbol	Parameter	Conditions	V _{CC} , (V)	Min	Max	Min Max		Unit
t _W	Pulse Duration	RCLK or SRCLK	2.3 – 2.7	7		7.5		ns
		High or Low	3.0 – 3.6	5.5		5.5		
			4.5 – 5.5	5		5		
		RCLR or SRCLR Low	2.3 – 2.7	6		6.5		
			3.0 – 3.6	5		5		
			4.5 – 5.5	5.2		5.2		
			2.3 – 2.7	5.5		5.5		
		SER before SRCLK↑	3.0 – 3.6	3.5		3.5		
			4.5 – 5.5	3		3		
			2.3 – 2.7	8		9		
		SRCLK↑ before RCLK↑	3.0 – 3.6	8		8.5		
			4.5 – 5.5	5		5		
		SRCLR Low before RCLK↑	2.3 – 2.7	8.5		9.5		
t_{SU}	Setup Time	RCLK	3.0 – 3.6	8		9		ns
			4.5 – 5.5	5		5		
		SRCLR High (Inactive) before	2.3 – 2.7	6		6.8		
		SRCLK1	3.0 – 3.6	4.2		4.8		
			4.5 – 5.5	2.9		3.3		
		RCLR High (Inactive) before RCLK↑	2.3 – 2.7	6.7		7.6		
		Delore RGLK	3.0 – 3.6	4.6		5.3		
			4.5 – 5.5	3.2		3.7		
_			2.3 – 2.7	1.5		1.5		
t_{H}	Hold Time	SER after SRCLK↑	3.0 – 3.6	1.5		1.5		ns
			4.5 – 5.5	2		2		

AC CHARACTERISTICS (See Figure 3)

						Gua	ranteed Li	mits		
		Load Condi-				T _A = 25°C	;		55°C to 5°C	
Symbol	Paraeter	tions	Input to Output	V _{CC} , (V)	Min	Тур	Max	Min	Max	Unit
				2.3 – 2.7	65	80		45		
		C _L = 15 pF		3.0 – 3.6	80	120		70		
				4.5 – 5.5	135	170		115		1
f_{MAX}				2.3 – 2.7	50	51		40		MHz
		C _L = 50 pF		3.0 – 3.6	70	74		55		1
				4.5 – 5.5	115	120		90		1
				2.3 – 2.7			27.5	1	32.5	
			RCLK to Q _A –Q _H	3.0 – 3.6			18	1	22.5	1
		0 455	~A ~H	4.5 – 5.5			12	1	15	1
		$C_L = 15 pF$		2.3 – 2.7			27.5	1	32	1
			SRCLK to Q _H	3.0 – 3.6			18	1	22	1
Propagation			4.5 – 5.5			12.5	1	12	1	
t _{PLH}	H Delay Low to High			2.3 – 2.7		22.1	25.0	1	30.0	- ns
		0 50 - 5	RCLK to Q _A -Q _H	3.0 – 3.6		15.6	17.5	1	21.0	
			~A	4.5 – 5.5		11.5	12.5	1	15.5	
	$C_L = 50 pF$		2.3 – 2.7		21.6	25.5	1	29.5		
			SRCLK to QH'	3.0 – 3.6		15.2	18.0	1	21.0	
				4.5 – 5.5		10.9	12.5	1	15.0	
				2.3 – 2.7			23	1	27.5	
			RCLK to Q _A -Q _H	3.0 – 3.6			15.5	1	19	
			₩A WH	4.5 – 5.5			11	1	14	
			SRCLK to Q _H	2.3 – 2.7			23.5	1	27	
				3.0 – 3.6			16	1	19	
		0 45 5		4.5 – 5.5			11	1	13.5	
		$C_L = 15 pF$		2.3 – 2.7			20.5	1	25	
			RCLR to Q _A -Q _H	3.0 – 3.6			14.5	1	17.5	
			-A -H	4.5 – 5.5			10	1	12	
				2.3 – 2.7				1	23	
			SRCLR to Q _H	3.0 – 3.6			13	1	16	
	Propagation			4.5 – 5.5			9	1	11	
t _{PHL}	Delay High to Low			2.3 – 2.7		19.7	23.0	1	27.0	ns
			RCLK to Q _A -Q _H	3.0 – 3.6		14.0	16.5	1	19.5	
			-A -H	4.5 – 5.5		10.1	11.5	1	13.5	
				2.3 – 2.7		18.4	21.5	1	25.0	
	ĺ		SRCLK to Q _H	3.0 – 3.6		13.1	15.0	1	18.0	1
	ĺ	0 50 5		4.5 – 5.5		9.0	10.5	1	12.5	1
	ĺ	$C_L = 50 pF$		2.3 – 2.7		25.7	30.0	1	35.0	1
	ĺ		RCLR to Q _A –Q _H	3.0 – 3.6		17.6	20.0	1	24.5	
	ĺ		≪ A ≪H	4.5 – 5.5		12.2	13.5	1	17.0	1
	ĺ	SRCLR to Q _H		2.3 – 2.7		25.3	30.0	1	34	
	ĺ		SRCLR to Q _H	3.0 – 3.6		17.3	20.0	1	24.0	
						11.9	14.0	1	16.5	1

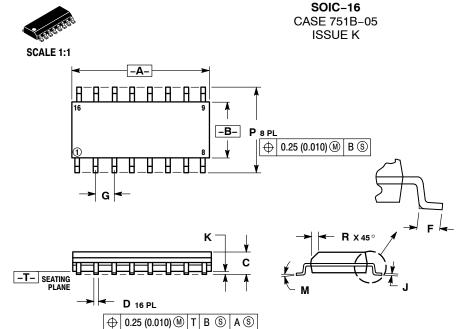
NOISE CHARACTERISTICS, V_{CC} = 3.3 V, C_L = 50 pF, T_A = 25°C

Symbol	Parameter	Min	Тур	Max	Unit
V _{OL(P)}	Quiet Output, Maximum Dynamic V _{OL}		0.8	8.0	V
V _{OL(V)}	Quiet Output, Minimum Dynamic V _{OL}		-0.1	-0.8	V
V _{OH(V)}	Quiet Output, Minimum Dynamic V _{OH}		2.8		V
V _{IH(D)}	High-Level Dynamic Input Voltage	2.31			V
$V_{IL(D)}$	Low-Level Dynamic Input Voltage			0.99	V

POWER DISSIPATION CHARACTERISTICS, T_{A} = $25^{\circ}C$

Symbol	Parameter	Test Conditions	V _{CC} (V)	Тур	Unit
C _{PD}	Power Dissipation Capacitance	f = 10 MHz	3.3	93	pF
			5	112	

PARAMETER MEASUREMENT INFORMATION



NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z_O = 50 Ω, t_r ≤ 3 ns, t_f ≤ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tpzL and tpzH are the same as ten.
- G. tpHL and tpLH are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	METERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	9.80	10.00	0.386	0.393		
В	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27	BSC	0.050	BSC		
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7°	0°	7°		
P	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

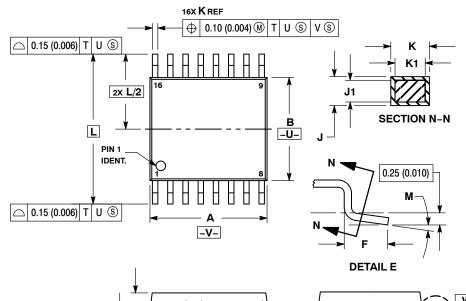
STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
PIN 1.	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE	#1	
2.	BASE	2.	ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION		BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.	ANODE	7.		7.	COLLECTOR, #4		
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4		
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	EMITTER, #3		
13.	BASE	13.	CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	OOL DEDING	COOTDONT
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDERING	FOOTPRINT
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	BASE, #1		8X
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1		i.40 — →
								- 0	.40
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				10% 1.12
2.	DRAIN, #1		CATHODE	2.	COMMON DRAIN (OUTPU	Τ\		1	16
3.	DRAIN, #2	3.		3.	COMMON DRAIN (OUTPU			, L .	'0
3. 4.	DRAIN, #2	3. 4.	CATHODE	3. 4.	GATE P-CH	1)		- —	
4. 5.	DRAIN, #2	4. 5.	CATHODE	4. 5.	COMMON DRAIN (OUTPU	Τ\		, , , , , , , , , , , , , , , , , , , 	
5. 6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPU		16	5X 1 -	
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPU		0.5	58	, L
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH	•,			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPU	T)			
11.	GATE, #3	11.		11.	COMMON DRAIN (OUTPU				
12.	SOURCE, #3	12.		12.	COMMON DRAIN (OUTPU				
13.	GATE, #2	13.		13.	GATE N-CH	.,			
14.	SOURCE, #2	14.		14.	COMMON DRAIN (OUTPU	T)			V PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPU				1 <u>+=</u> 1- 1
16.	SOURCE, #1		ANODE	16.	SOURCE N-CH	.,			
								□ 8	9 + - + -
									~
									' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
									DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-16		PAGE 1 OF 1				

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

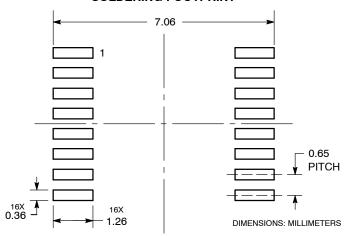
☐ 0.10 (0.004)

D


-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006


NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
C		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.18	0.28	0.007	0.011
7	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
Ы	6.40 BSC		0.252 BSC	
М	0 °	8 °	0 °	8 °

SOLDERING FOOTPRINT

G

GENERIC MARKING DIAGRAM*

168888888 XXXX XXXX **ALYW** 188888888

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1	

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales