

Is Now Part of

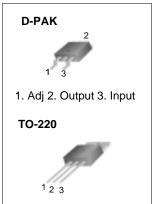
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

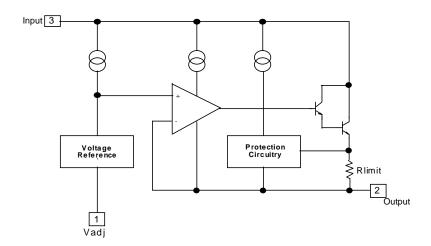
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

KA317M


3-Terminal 0.5A Positive Adjustable Regulator

Features


- Output Current in Excess of 0.5A
- Output Adjustable Between 1.2V and 37V
- Internal Thermal Overload Protection
- · Internal Short Circuit Current Limiting
- Output Transistor Safe Area Compensation
- Floating Operation for High Voltage Applications

Description

The KA317M is a 3-Terminal adjustable positive voltage regulator capable of supplying in excess of 500mA over an output voltage range of 1.2V to 37V. This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage.

Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Output Voltage Differential	Vı - Vo	40	V
Power Dissipation	PD	Internally limited	W
Thermal Resistance Junction-Air D-PAK (Note1,2)	RθJA	100	°C/W
Operating Junction Temperature Range	Tj	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~+125	°C

Electrical Characteristics

(VI-VO=5V, IO= 0.1A, 0° C \leq TJ \leq + 125 $^{\circ}$ C, PDMAX = 7.5W, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Line Regulation (Note3)	Rline	$T_A = +25^{\circ}C, 3V \le V_I - V_O \le 40V$	-	0.01	0.04	%/ V	
		$3V \le V_I - V_O \le 40V$	-	0.02	0.07		
Load Regulation (Note3)	Rload	$T_A = + 25$ °C, 10 mA $\leq I_O \leq 0.5$ A $V_O \leq 5$ V $V_O \geq 5$ V	-	5 0.1	25 0.5	mV %/ VO	
		$10mA \le I_O \le 0.5A$ $V_O \le 5V$ $V_O \ge 5V$	-	20 0.3	70 1.5	mV %/ VO	
Adjustment Pin Current	IADJ	•	-	50	100	uA	
Adjustment Pin Current Change	Δladj	$3V \le V_I - V_O \le 40V$ $10mA \le I_O \le 0.5A, P_D < P_{DMAX}$	-	0.2	5	uA	
Reference Voltage	VREF	$3V < V_I - V_O < 40V$ 10mA $\leq I_O \leq 0.5A$, $P_D < P_{DMAX}$	1.20	1.25	1.30	V	
Temperature Stability	STT	-	-	0.7	-	%/ Vo	
Minimum Load Current to Maintain Regulation	IL(MIN)	VI - VO = 40V	-	3.5	10	mA	
Maximum Output Current	I _{O(MAX)}	VI - VO ≤15V, PD < PDMAX	0.5	0.9	-	Α	
		V _I - V _O = 40V P _D < P _{DMAX} , T _A =+ 25°C	0.15	0.25	-		
RMS Noise, % of Vout	eN	T _A = +25°C, 10Hz < f < 10KHz	-	0.003	-	%/ Vo	
Ripple Rejection	RR	VO = 10V, f = 120Hz without CADJ CADJ = 10uF (Note4)	66	65 80	-	dB	
Long-Term Stability	ST	T _J =+ 125°C, 1000Hours	-	0.3	1	%/1000Hrs	

Note:

- Thermal resistance test board Size: 76.2mm * 114.3mm * 1.6mm(1S0P) JEDEC standard: JESD51-3, JESD51-7
- 2. Assume no ambient airflow.
- 3. Load and Line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
- 4. CADJ, when used, is connected between the adjustment pin and ground.

Typical Performance Characteristics

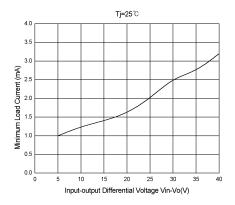


Figure 1. Minimum Load Current

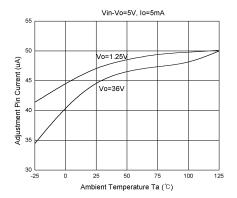


Figure 3. Adjustment Pin Current vs. Temperature

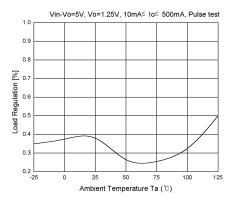


Figure 5. Load Regulation vs. Temperature

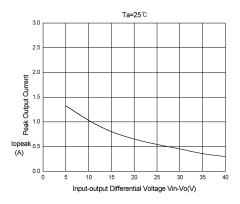


Figure 2. Peak Output Current vs. Input-Output Differential Voltage

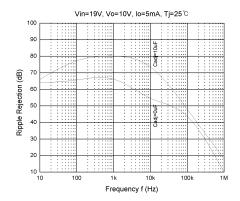


Figure 4. Ripple Rejection vs. Frequency

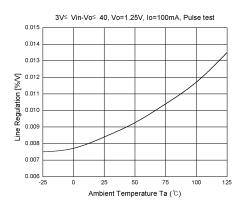


Figure 6. Line Regulation vs. Temperature

Typical Performance Characteristics (Continued)

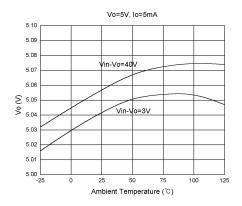


Figure 7. Outputvoltage vs. Temperature



Figure 8. Thermal Shutdown

Typical Application

Figure 1. 15V Electronic Shutdown Regulator

D1 protects the device during an input short circuit.

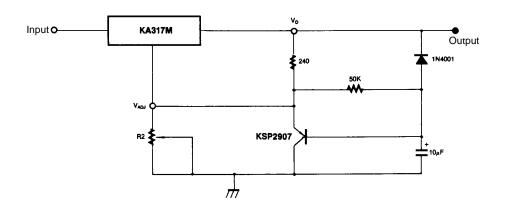
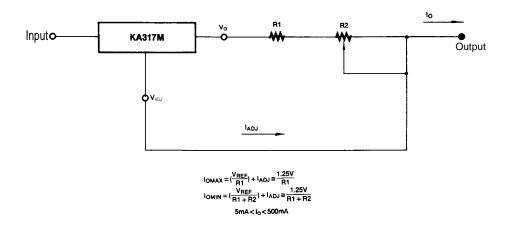
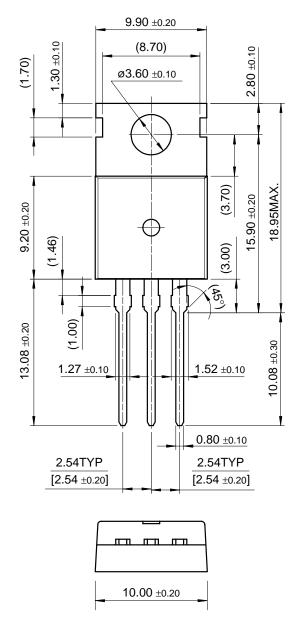
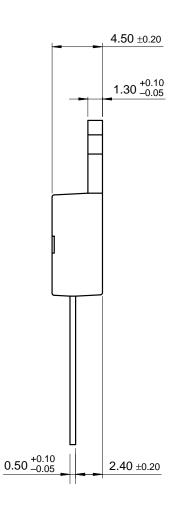


Figure 2. Slow Turn-On Regulator




Figure 3. Current Regulator


Mechanical Dimensions

Package

Dimensions in millimeters

TO-220

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

D-PAK 6.60 ±0.20 0.70 ±0.20 5.34 ± 0.30 2.30 ± 0.10 (0.50) (0.50)(4.34) 0.50 ± 0.10 0.60 ± 0.20 6.10 ± 0.20 0.91 ± 0.10 9.50 ± 0.30 2.70 ± 0.20 MIN0.55 0.80 ±0.20 0.89 ±0.10 MAX0.96 0.76 ±0.10 0.50 ± 0.10 1.02 ±0.20 2.30TYP 2.30TYP [2.30±0.20] [2.30±0.20] 2.30 ±0.20 6.60 ±0.20 (5.34)(0.70) (5.04)(0.90)(1.00) (1.50)(3.05) 6.10 ± 0.20 (2XR_{0.25}) 9.50 ± 0.30 2.70 ± 0.20 (0.10) 0.76 ± 0.10

Ordering Information

Product Number	Package	Operating Temperature
KA317M	TO-220	0 ~ 125 °C
KA317MR	D-PAK	0 ~ 125 C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative