Intel® Core™ i3-3227U Processor

3M Cache, 1.90 GHz

Specifications

CPU Specifications

Supplemental Information

Processor Graphics

Package Specifications

Ordering and Compliance

Retired and discontinued

Intel® Core™ i3-3227U Processor (3M Cache, 1.90 GHz) FC-BGA12F, Tray

  • MM# 923708
  • Spec Code SR0XF
  • Ordering Code AV8063801119500
  • Shipping Media TRAY
  • Stepping L1
  • MDDS Content IDs 708210

Trade compliance information

  • ECCN 3A991
  • CCATS NA
  • US HTS 8542310001

PCN Information

SR0XF

Compatible Products

Intel® 7 Series Chipsets

Product Name PCI Express Revision USB Revision TDP Sort Order Compare
All | None
Mobile Intel® QM77 Express Chipset 2.0 3.0/2.0 4.1 W 67864
Mobile Intel® QS77 Express Chipset 2.0 3.0/2.0 3.6 W 67867
Mobile Intel® HM77 Express Chipset 2.0 3.0/2.0 4.1 W 67884
Mobile Intel® UM77 Express Chipset 2.0 3.0/2.0 3 W 67887
Mobile Intel® HM76 Express Chipset 2.0 3.0/2.0 4.1 W 67889
Mobile Intel® HM75 Express Chipset 2.0 2.0 4.1 W 67891

Drivers and Software

Latest Drivers & Software

Downloads Available:
All

Name

Intel® Graphics Driver for Windows* [15.33]

Intel® HD Graphics Driver for Windows XP* (exe)

Intel® HD Graphics Driver for Windows XP* 64 (exe)

Support

Processor Number

The Intel processor number is just one of several factors—along with processor brand, system configurations, and system-level benchmarks—to be considered when choosing the right processor for your computing needs. Read more about interpreting Intel® processor numbers or Intel® processor numbers for the Data Center.

Lithography

Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.

Total Cores

Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).

Total Threads

Where applicable, Intel® Hyper-Threading Technology is only available on Performance-cores.

Processor Base Frequency

Processor Base Frequency describes the rate at which the processor's transistors open and close. The processor base frequency is the operating point where TDP is defined. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.

Cache

CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.

Bus Speed

A bus is a subsystem that transfers data between computer components or between computers. Types include front-side bus (FSB), which carries data between the CPU and memory controller hub; direct media interface (DMI), which is a point-to-point interconnection between an Intel integrated memory controller and an Intel I/O controller hub on the computer’s motherboard; and Quick Path Interconnect (QPI), which is a point-to-point interconnect between the CPU and the integrated memory controller.

TDP

Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates when operating at Base Frequency with all cores active under an Intel-defined, high-complexity workload. Refer to Datasheet for thermal solution requirements.

Launch Date

The date the product was first introduced.

Servicing Status

Intel Servicing provides functional and security updates for Intel processors or platforms, typically utilizing the Intel Platform Update (IPU).

See "Changes in Customer Support and Servicing Updates for Select Intel® Processors" for more information on servicing.

End of Servicing Updates Date

At the End of Servicing Updates (ESU) milestone, Intel concludes servicing the broad market.
Intel reserves the right to change any ESU date.
See "Changes in Customer Support and Servicing Updates for Select Intel® Processors" for more information on servicing.

Embedded Options Available

“Embedded Options Available” indicates the SKU is typically available for purchase for 7 years from the launch of the first SKU in the Product family and may be available for purchase for a longer period of time under certain circumstances. Intel does not commit or guarantee product Availability or Technical Support by way of roadmap guidance. Intel reserves the right to change roadmaps or discontinue products, software and software support services through standard EOL/PDN processes. Product certification and use condition information can be found in the Production Release Qualification (PRQ) report for this SKU. Contact your Intel representative for details.

Max Memory Size (dependent on memory type)

Max memory size refers to the maximum memory capacity supported by the processor.

Memory Types

Intel® processors come in four different types: Single Channel, Dual Channel, Triple Channel, and Flex Mode. Maximum supported memory speed may be lower when populating multiple DIMMs per channel on products that support multiple memory channels.

Max # of Memory Channels

The number of memory channels refers to the bandwidth operation for real world application.

Max Memory Bandwidth

Max Memory bandwidth is the maximum rate at which data can be read from or stored into a semiconductor memory by the processor (in GB/s).

ECC Memory Supported

ECC Memory Supported indicates processor support for Error-Correcting Code memory. ECC memory is a type of system memory that can detect and correct common kinds of internal data corruption. Note that ECC memory support requires both processor and chipset support.

Processor Graphics

Processor Graphics indicates graphics processing circuitry integrated into the processor, providing the graphics, compute, media, and display capabilities. Processor graphics brands include Intel® Iris® Xe Graphics, Intel® UHD Graphics, Intel® HD Graphics, Iris® Graphics, Iris® Plus Graphics, and Iris® Pro Graphics. See the Intel® Graphics Technology for more information.

Intel® Iris® Xe Graphics only: to use the Intel® Iris® Xe brand, the system must be populated with 128-bit (dual channel) memory. Otherwise, use the Intel® UHD brand.

Graphics Base Frequency

Graphics Base frequency refers to the rated/guaranteed graphics render clock frequency in MHz.

Graphics Max Dynamic Frequency

Graphics max dynamic frequency refers to the maximum opportunistic graphics render clock frequency (in MHz) that can be supported using Intel® HD Graphics with Dynamic Frequency feature.

Graphics Output

Graphics Output defines the interfaces available to communicate with display devices.

Intel® Quick Sync Video

Intel® Quick Sync Video delivers fast conversion of video for portable media players, online sharing, and video editing and authoring.

Intel® InTru™ 3D Technology

Intel® InTru™ 3D Technology provides stereoscopic 3-D Blu-ray* playback in full 1080p resolution over HDMI* 1.4 and premium audio.

Intel® Flexible Display Interface (Intel® FDI)

The Intel® Flexible Display Interface is an innovative path for two independently controlled channels of integrated graphics to be displayed.

Intel® Clear Video HD Technology

Intel® Clear Video HD Technology, like its predecessor, Intel® Clear Video Technology, is a suite of image decode and processing technologies built into the integrated processor graphics that improve video playback, delivering cleaner, sharper images, more natural, accurate, and vivid colors, and a clear and stable video picture. Intel® Clear Video HD Technology adds video quality enhancements for richer color and more realistic skin tones.

PCI Express Revision

PCI Express Revision is the supported version of the PCI Express standard. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCI Express versions support different data rates.

PCI Express Configurations

PCI Express (PCIe) Configurations describe the available PCIe lane configurations that can be used to link to PCIe devices.

Max # of PCI Express Lanes

A PCI Express (PCIe) lane consists of two differential signaling pairs, one for receiving data, one for transmitting data, and is the basic unit of the PCIe bus. Max # of PCI Express Lanes is the total number of supported lanes.

Sockets Supported

The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.

TJUNCTION

Junction Temperature is the maximum temperature allowed at the processor die.

Intel® Turbo Boost Technology

Intel® Turbo Boost Technology dynamically increases the processor's frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.

Intel® Hyper-Threading Technology

Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.

Intel® 64

Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Instruction Set

An instruction set refers to the basic set of commands and instructions that a microprocessor understands and can carry out. The value shown represents which Intel’s instruction set this processor is compatible with.

Instruction Set Extensions

Instruction Set Extensions are additional instructions which can increase performance when the same operations are performed on multiple data objects. These can include SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions).

Intel® My WiFi Technology

Intel® My WiFi Technology enables wireless connection of an UltrabookTM or laptop to WiFi-enabled devices such as printers, stereos, etc.

4G WiMAX Wireless Technology

4G WiMAX Wireless Technology provides broadband Internet access at speeds up to four times faster than 3G.

Idle States

Idle States (C-states) are used to save power when the processor is idle. C0 is the operational state, meaning that the CPU is doing useful work. C1 is the first idle state, C2 the second, and so on, where more power saving actions are taken for numerically higher C-states.

Enhanced Intel SpeedStep® Technology

Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.

Intel® Demand Based Switching

Intel® Demand Based Switching is a power-management technology in which the applied voltage and clock speed of a microprocessor are kept at the minimum necessary levels until more processing power is required. This technology was introduced as Intel SpeedStep® Technology in the server marketplace.

Thermal Monitoring Technologies

Thermal Monitoring Technologies protect the processor package and the system from thermal failure through several thermal management features. An on-die Digital Thermal Sensor (DTS) detects the core's temperature, and the thermal management features reduce package power consumption and thereby temperature when required in order to remain within normal operating limits.

Intel® Fast Memory Access

Intel® Fast Memory Access is an updated Graphics Memory Controller Hub (GMCH) backbone architecture that improves system performance by optimizing the use of available memory bandwidth and reducing the latency of the memory accesses.

Intel® Flex Memory Access

Intel® Flex Memory Access facilitates easier upgrades by allowing different memory sizes to be populated and remain in dual-channel mode.

Intel® Identity Protection Technology

Intel® Identity Protection Technology is a built-in security token technology that helps provide a simple, tamper-resistant method for protecting access to your online customer and business data from threats and fraud. Intel® IPT provides a hardware-based proof of a unique user’s PC to websites, financial institutions, and network services; providing verification that it is not malware attempting to login. Intel® IPT can be a key component in two-factor authentication solutions to protect your information at websites and business log-ins.

Intel® AES New Instructions

Intel® AES New Instructions (Intel® AES-NI) are a set of instructions that enable fast and secure data encryption and decryption. AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology for safer computing is a versatile set of hardware extensions to Intel® processors and chipsets that enhance the digital office platform with security capabilities such as measured launch and protected execution. It enables an environment where applications can run within their own space, protected from all other software on the system.

Execute Disable Bit

Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.

Anti-Theft Technology

Intel® Anti-Theft Technology (Intel® AT) helps keep your laptop safe and secure in the event that it’s ever lost or stolen. Intel® AT requires a service subscription from an Intel® AT–enabled service provider.

Intel® Virtualization Technology (VT-x)

Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.

Intel® Virtualization Technology for Directed I/O (VT-d)

Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.

Intel® VT-x with Extended Page Tables (EPT)

Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.

Tray Processor

Intel ships these processors to Original Equipment Manufacturers (OEMs), and the OEMs typically pre-install the processor. Intel refers to these processors as tray or OEM processors. Intel doesn't provide direct warranty support. Contact your OEM or reseller for warranty support.