

Transistor - N-Channel, Logic Level, Enhancement Mode Field Effect

FDN337N

General Description

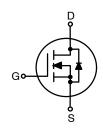
SUPERSOT — 3 N-Channel logic level enhancement mode power field effect transistors are produced using **onsemi**'s proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMCIA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

- 2.2 A, 30 V
 - $R_{DS(on)} = 0.065 \Omega$ @ $V_{GS} = 4.5 V$
 - $R_{DS(on)} = 0.082 \Omega @ V_{GS} = 2.5 V$
- Industry Standard Outline SOT-23 Surface Mount Package Using Proprietary SUPERSOT-3 Design for Superior Thermal and Electrical Capabilities
- High Density Cell Design for Extremely Low R_{DS(on)}
- Exceptional on-Resistance and Maximum DC Current Capability
- This Device is Pb–Free and Halogen Free

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$ unless otherwise noted.


Symbol	Parameter	Ratings	Unit
V _{DSS}	Drain-Source Voltage	30	V
V _{GSS}	V _{GSS} Gate-Source Voltage - Continuous		V
I _D	Drain/Output Current - Continuous	2.2	Α
	Drain/Output Current - Pulsed	10	
P_{D}	Maximum Power Dissipation (Note 1a)	0.5	W
	Maximum Power Dissipation (Note 1b)	0.46	
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

 $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Ratings	Unit
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	250	°C/W
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case (Note 1)	75	°C/W

SOT-23-3 CASE 527AG

MARKING DIAGRAM

&E = Designates Space

&Y = Binary Calendar Year Coding Scheme

618 = Specific Device Code

&G = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FDN337N	SOT-23-3 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARAC	CTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I_D = 250 μA	30	_	_	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	41	_	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	-	-	1	μΑ
		$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V},$ $T_{J} = 55^{\circ}\text{C}$	-	-	10	
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 8 V, V _{DS} = 0 V	-	-	100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	V _{GS} = -8 V, V _{DS} = 0 V	-	_	-100	nA
ON CHARAC	TERISTICS (Note 2)	•	•	•		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.4	0.7	1	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	-2.3	-	mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 4.5 V, I _D = 2.2 A	-	0.054	0.065	Ω
		$V_{GS} = 4.5 \text{ V}, I_D = 2.2 \text{ A},$ $T_J = 125^{\circ}\text{C}$	-	0.08	0.11	
		V _{GS} = 2.5 V, I _D = 2 A	-	0.07	0.082	
I _{D(on)}	On-State Drain Current	V _{GS} = 4.5 V, V _{DS} = 5 V	10	_	_	Α
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 2.2 A	-	13	_	S
YNAMIC CH	IARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$	-	300	_	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	-	145	-	
C _{rss}	Reverse Transfer Capacitance		-	35	-	
WITCHING	CHARACTERISTICS (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 5 \text{ V}, I_D = 1 \text{ A},$	-	4	10	ns
t _r	Turn-On Rise Time	V_{GS} = 4.5 V, R_{GEN} = 6 Ω	-	10	18	
t _{d(off)}	Turn-Off Delay Time		-	17	28	
t _f	Turn-Off Fall Time		-	4	10	
Qg	Total Gate Charge	$V_{DS} = 10 \text{ V}, I_D = 2.2 \text{ A},$	-	7	9	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 4.5 V	-	1.1	-	
Q_{gd}	Gate-Drain Charge		- 1.9		-	
DRAIN-SOUI	RCE DIODE CHARACTERISTICS AND MA	AXIMUM RATINGS				
I _S	Maximum Continuous Drain-Source Diod	le Forward Current	-	-	0.42	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 0.42 A (Note 2)	-	0.65	1.2	٧

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE:

1. R_{0,JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. Typical $R_{\theta JA}$ using the board layouts shown below on FR-4 PCB in a still air environment:

a) 250°C/W when mounted on a 0.02 in² pad of 2 oz. copper.

b) 270°C/W when mounted on a 0.001 in $^2\ pad$ of 2 oz. copper.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FDN337N

TYPICAL CHARACTERISTICS

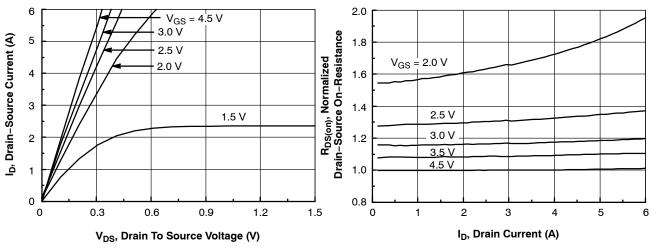


Figure 1. On-Region Characteristics

Figure 2. On-Resistance Variation with Drain **Current and Gate Voltage**

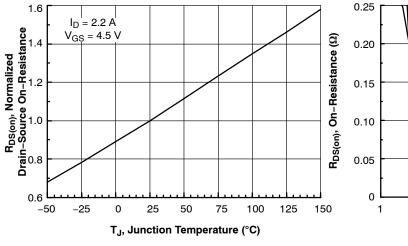


Figure 3. On-Resistance Variation with Temperature

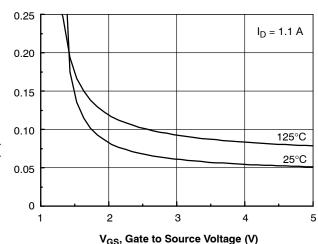


Figure 4. On-Resistance Variation with Gate-to-Source Voltage

-55°C

1.0

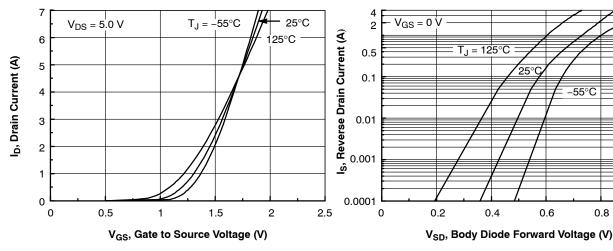


Figure 5. Transfer Characteristics

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

FDN337N

TYPICAL CHARACTERISTICS (continued)

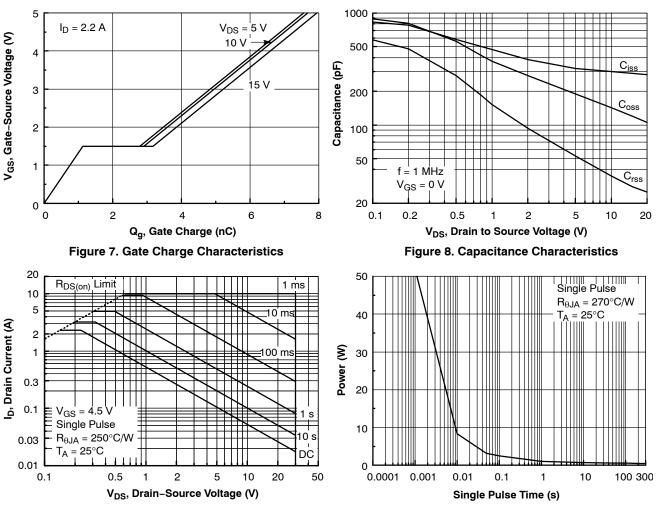
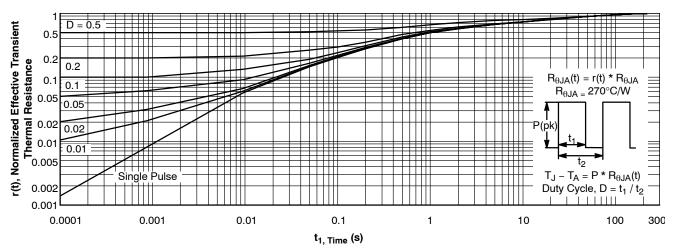
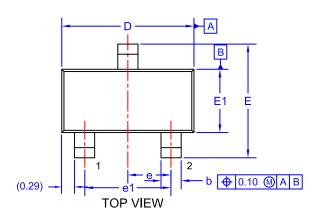



Figure 9. Maximum Safe Operating Area

Figure 10. Single Pulse Maximum Power Dissipation

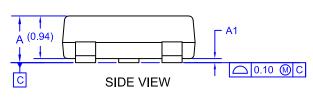
Figure 11. Transient Thermal Response Curve

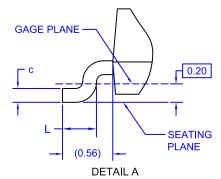

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

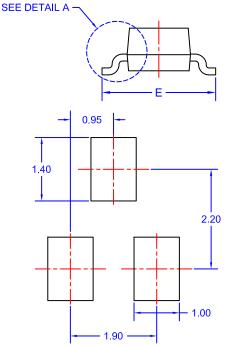
SUPERSOT is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

SOT-23/SUPERSOT™-23, 3 LEAD, 1.4x2.9 CASE 527AG ISSUE A

DATE 09 DEC 2019




NOTES: UNLESS OTHERWISE SPECIFIED


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
 ALL DIMENSIONS ARE IN MILLIMETERS.
- ALL DIMENSIONS ARE IN MILLIMETERS.
 DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.

DIM	MIN.	NOM.	MAX.
Α	0.85	0.95	1.12
A1	0.00	0.05	0.10
b	0.370	0.435	0.508
С	0.085	0.150	0.180
D	2.80	2.92	3.04
Е	2.31	2.51	2.71
E1	1.20	1.40	1.52

e 0.95 BSC
e1 1.90 BSC
L 0.33 0.38 0.43

LAND PATTERN RECOMMENDATION*

*FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRMID.

GENERIC MARKING DIAGRAM*

XXXM•

XXX = Specific Device Code
M = Month Code

■ = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON34319E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23/SUPERSOT-23, 3 LEAD, 1.4X2.9		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales