

CMOS Presettable **Up/Down Counters** (Dual Clock With Reset)

High-Voltage Types (20-Volt Rating) CD40192 - BCD Type CD40193 - Binary Type

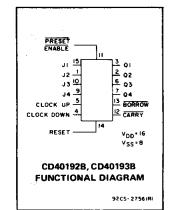
CD40192B Presettable BCD Up/ Down Counter and the CD40193B Presettable Binary Up/Down Counter each consist of 4 synchronously clocked, gated "D" type flip-flops connected as a counter. The inputs consist of 4 individual jam lines, a PRESET ENABLE control, individual CLOCK UP and CLOCK DOWN signals and a master RE-SET. Four buffered Q signal outputs as well as CARRY and BORROW outputs for multiple-stage counting schemes are provided.

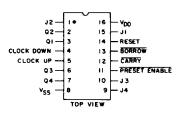
The counter is cleared so that all outputs are in a low state by a high on the RE-SET line. A RESET is accomplished asynchronously with the clock. Each output is individually programmable asynchronously with the clock to the level on the corresponding jam input when the PRESET **ENABLE** control is low.

The counter counts up one count on the positive clock edge of the CLOCK UP signal provided the CLOCK DOWN line is high. The counter counts down one count on the positive clock edge of the CLOCK DOWN signal provided the CLOCK UP line is high.

The CARRY and BORROW signals are high when the counter is counting up or down. The CARRY signal goes low one-half clock cycle after the counter reaches its maximum count in the count-up mode. The BORROW signal goes low one-half clock cycle after the counter reaches its minimum count in the count-down mode. Cascading of multiple packages is easily accomplished without the need for additional external circuitry by tying the BORROW and CARRY outputs to the CLOCK DOWN and CLOCK UP inputs, respectively, of the succeeding counter package.

The CD40192B and CD40193B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).


CD40192B, CD40193B Types


Features:

- Individual clock lines for counting up or counting down
- Synchronous high-speed carry and borrow propagation delays for cascading
- Asynchronous reset and preset capability
- Medium-speed operation—f_{CL} = 8 MHz (typ.) @ 10 V
- 5-V, 10-V, and 15-V parametric ratings Standardized, symmetrical output
- characteristics
- 100% tested for guiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package temperature range; 100 nA at 18 V and 25°C
- Noise margin over full package temperature range:
 - 1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Up/down difference counting
- Multistage ripple counting
- Synchronous frequency dividers
- A/D and D/A conversion
- Programmable binary or BCD counting

TERMINAL ASSIGNMENT

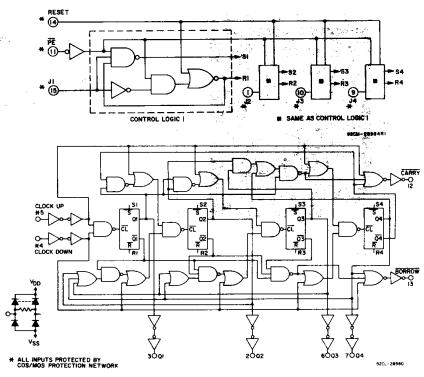


Fig. 1 — CD40192B logic diagram (BCD).

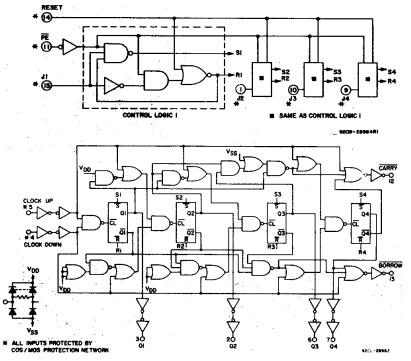
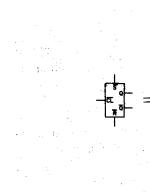
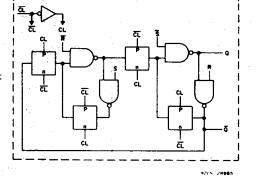




Fig. 2 — CD40193B logic diagram (binary).

TRUTH TABLE

	CLOCK UP	CLOCK DOWN	PRESET	RESET	ACTION
1	1	1	1	0	COUNT UP
	<u> </u>	1	1	0	NO COUNT
	1	$\boldsymbol{\boldsymbol{\sum}}$	1	0	COUNT DOWN
	1		1	0	NO COUNT
	X	X	0	0	PRESET
	×	X	X	1	RESET

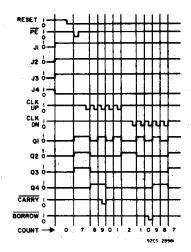


Fig. 3 - CD40192B timing diagram.

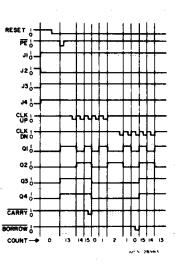
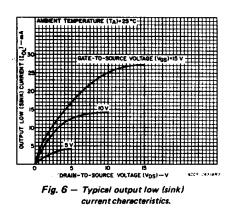



Fig. 5 — CD40193B timing diagram.

3

CD40192B, CD40193B Types

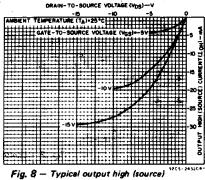
LIMITS

UNITS

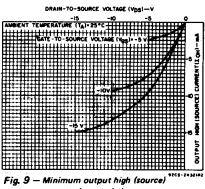
v

MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY-VOLTAGE RANGE, (VDD)
Voltages referenced to VSS Terminal)0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS
DC INPUT CURRENT, ANY ONE INPUT
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55°C to +100°C
For T _A = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW
DEVICÉ DISSIPATION PER OUTPUT TRANSISTOR
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
OPERATING-TEMPERATURE RANGE (TA)55°C to +125°C
STORAGE TEMPERATURE RANGE (Tsig)65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max

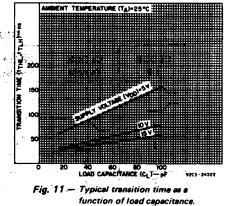
RECOMMENDED OPERATING CONDITIONS at T_A = 25°C (unless otherwise specified)


For maximum reliability, nominal operating conditions should be selected so that operation is

.


always within the following ranges.

CHARACTERISTIC


VOLTAGE 9205 Fig. Minimum output low (sink) current characteristics.

current characteristics.

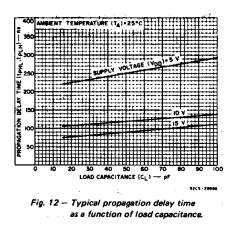
current characteristics.

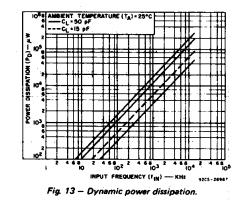
(V) Min. Max. 3 18 Supply Voltage Range (For T_A = Full Temp. Range) _ 80 5

VDD

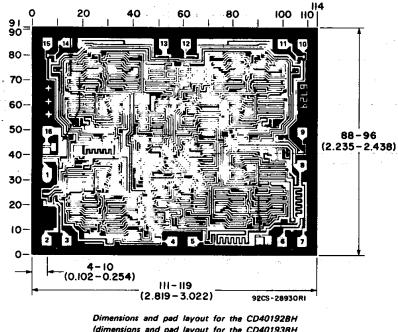
Bass such Times	5	80	: <u> </u>		
Removal Time: RESET or PE	10	40	- 1	ns	
	15	30	The second	A A SEC	. A
Pulse Width:	5	480	-		
RESET	10	300		ns	
	15	260			
	5	240	-		
PE	10	170	÷ 1	ns	
	15	140	-		
	5	180	-		
CLOCK	10	90		ns	ŀ
·	15	60	·		
	5		2		ľ
Clock Input Frequency: Photosec	10	DC	4	MHz	
	15		5.5		
	5		15		1
Clock Rise & Fall Time	10	_	15	μs	
the state of the s	15	_	5		Ι.

<u>े</u> ć,

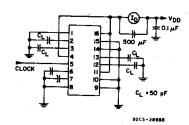

41.4


32.7

CLOCK RE SI


STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	CONE	NTIO	IS	LIMI	LIMITS AT INDICATED TEMPERATURES (°C)						UNITS
ISTIC	Vo	VIN	VDD				<u>,</u>		+25		
-	. (V)	(V)	(V)	55	40	+85	+125	Min.	Typ.	Max.	
Quiescent Device		0,5	5	5	5	150	150	· · _ ·	0.04	5	
Current,		0,10	10	10	10	300	300	2 - 1	0.04	10	
IDD Max.	-	0,15	15	20	20	600	600	-	0.04	20	μA
	-	0,20	20	100	100	3000	3000	· _ ·	0.08	100	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-	
(Sink) Current IOL Min.	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	
	1.5	0,15	15	4.2	4	2.8	2.4	34.	6.8	-	7
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	0.36	-0.51	-1	-	mA
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1,15	-1:6	-3.2	-	
Current, IOH Min.	9,5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-	
IOH WITTE	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:	-	0,5	5	0.05				-	0	0.05	
Low-Level, Vol. Max.	-	0,10	10		0	.05		-	0	0.05	
VUL Max.	-	0,15	15		0	.05		. - -	0	0.05	. V.
Output Voltage:		0,5	5		4	.95		4.95	5	<u> </u>	- V <
High-Level,	-	0,10	10		9	.95		9.95	10	-	
VOH Min.	-	0,15	15		14	1.95		14.95	15	-	
Input Low	0.5, 4.5	. –	5		1	1.5			<u> </u>	1.5	-
Voltage,	1, 9	-	10			3				3	
VIL Max.	1.5,13.5	-	15			4			—	4	
Input High	0.5, 4.5		5		3	3.5		3.5	<u> </u>	-	V
Voltage,	1, 9	-	.10			7		7	_	+	
VIH Min.	1,5,13.5	-	15	[11		11		-	
Input Current IIN Max.	-	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μA




Dimensions and pad layout for the CD401928H (dimensions and pad layout for the CD401938H are identical).

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25^oC Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

CHARACTERISTIC	VDD		UNITS		
	(V)	Min.	Тур.	Max.	
Proposition Delay Time to a the	5	-	250	500	
Propagation Delay Time tpHL, tpLH: CLOCK UP or CLOCK DOWN to Q, RESET to Q	10	-	120	240	ns
CLOCK UP OF CLOCK DOWN to U, RESET to U	15	-	90	180	
	5	-	200	400	
PE to Q	10	-	100	200	ns
	15	-	70	140	
· · · · · · · · · · · · · · · · · · ·	5	_	160	320	
CLOCK UP to CARRY, CLOCK DOWN to BORROW	10	·	80	160	ns
	15	-	60	120	
	5	-	300	600	
RESET or PE to BORROW or CARRY	10	-	150	300	ns
	15		110	220	
·	5	-	100	200	
Transition Time, t _{THL} , t _{TLH}	10	-	50	100	ns
	15		40	80	
	5	⊧ –	40	80	
Min. Removal Time, t _{rem} * RESET or PE	10	-	20	40	ns
·	15	<u> </u>	15	30	
	5	-	240	480	
Min. Pulse Width, tw RESET	10	-	150	300	ns
	15		130	260	
	5	-	120	240	
PE	10	-	85	170	ns
· · · · · · · · · · · · · · · · · · ·	15		70	140	
	5	→	90	180	
CLOCK	10	- ⁻	45	90	ns
	15	-	30	60	
	5	2	.4	. –	
Max. Clock Input Frequency, fCL	10	4	8	- 1	MHz
	15	5.5	11	-	
	5	-	- 1	15	
Clock Rise & Fall Time, t _r , t _f	10		; -	15	μs
	15	-		5	
Input Capacitance, C _{IN} :				i	
RESET	ļ	<u> </u>	10	15	pF
All Other Inputs		-	5	7.5	pF

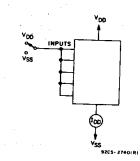
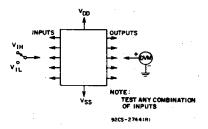
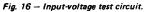
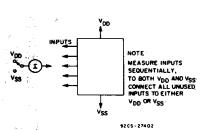
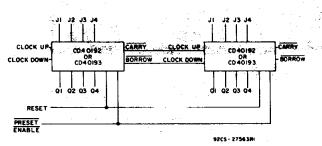





Fig. 15 - Quiescent-device-current test circuit.



see timing Fig. 17 – Input current test circuit.

* The time required for RESET or PRESET ENABLE control to be removed before clocking (see timing diagram, Fig. 10.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
CD40192BE	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD40192BE	Samples
CD40192BF	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD40192BF	Samples
CD40192BF3A	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD40192BF3A	Samples
CD40192BNSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD40192B	Samples
CD40193BE	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD40193BE	Samples
CD40193BF3A	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	CD40193BF3A	Samples
CD40193BNSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD40193B	Samples
CD40193BNSRE4	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD40193B	Samples
CD40193BPW	LIFEBUY	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0193B	
CD40193BPWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0193B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

www.ti.com

PACKAGE OPTION ADDENDUM

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

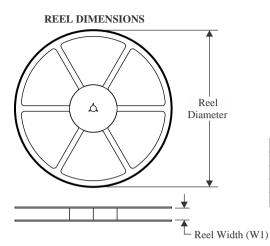
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

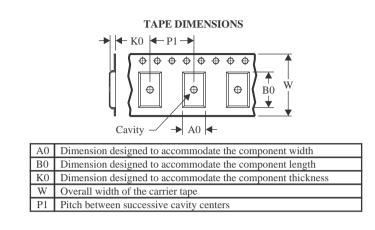
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD40192B, CD40192B-MIL, CD40193B, CD40193B-MIL :

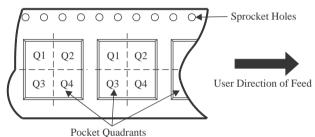
- Catalog : CD40192B, CD40193B
- Military : CD40192B-MIL, CD40193B-MIL

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

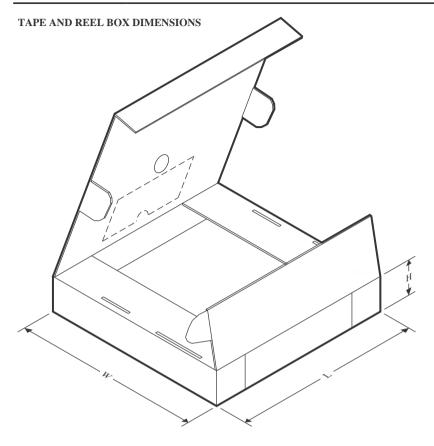


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

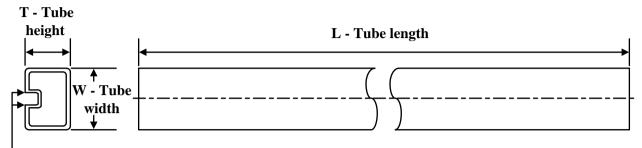

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD40192BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD40193BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD40193BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

1-Jul-2023

*All dimensions are nominal

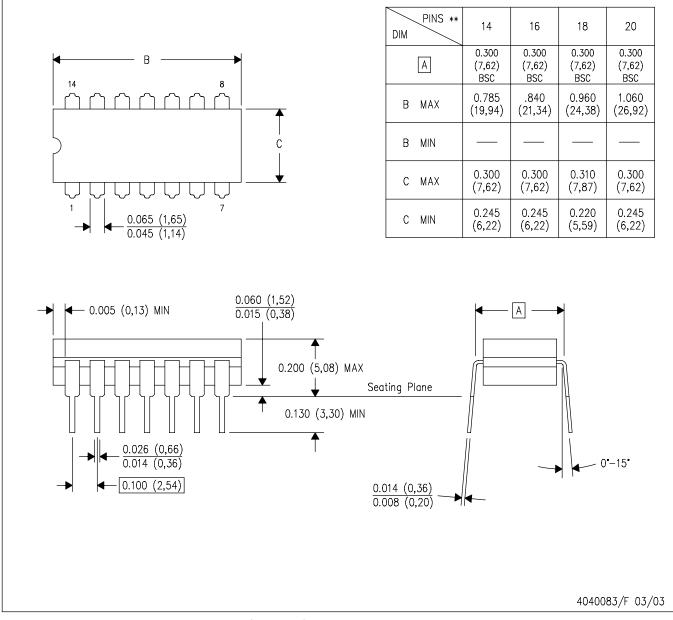

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD40192BNSR	SO	NS	16	2000	356.0	356.0	35.0
CD40193BNSR	SO	NS	16	2000	356.0	356.0	35.0
CD40193BPWR	TSSOP	PW	16	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

1-Jul-2023

TUBE


- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CD40192BE	N	PDIP	16	25	506	13.97	11230	4.32
CD40192BE	N	PDIP	16	25	506	13.97	11230	4.32
CD40193BE	N	PDIP	16	25	506	13.97	11230	4.32
CD40193BE	N	PDIP	16	25	506	13.97	11230	4.32
CD40193BPW	PW	TSSOP	16	90	530	10.2	3600	3.5

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

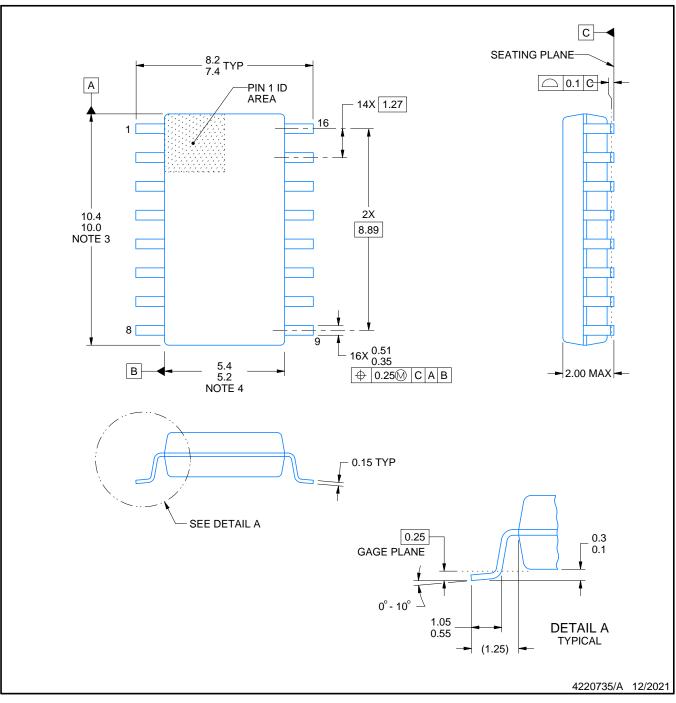
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


NS0016A

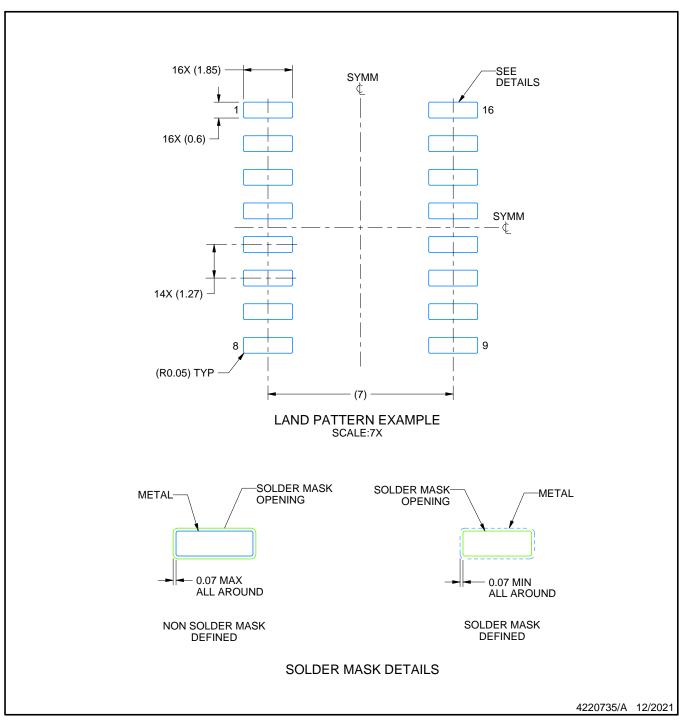
PACKAGE OUTLINE

SOP - 2.00 mm max height

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- Per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.



NS0016A

EXAMPLE BOARD LAYOUT

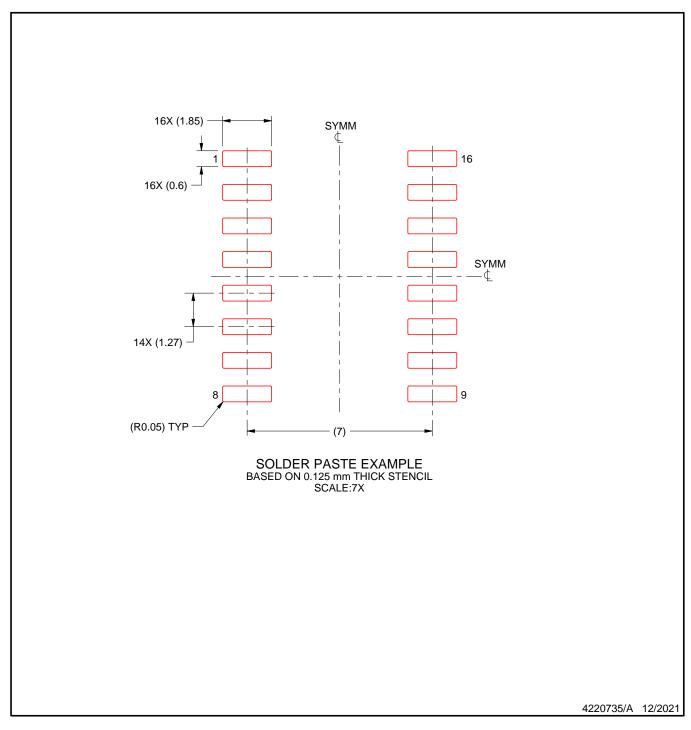
SOP - 2.00 mm max height

SOP

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



NS0016A

EXAMPLE STENCIL DESIGN

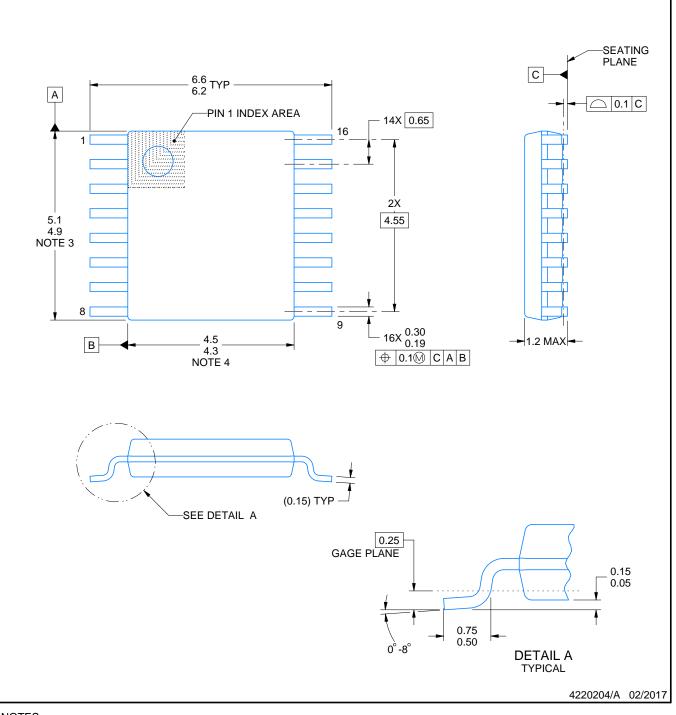
SOP - 2.00 mm max height

SOP

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.


PW0016A

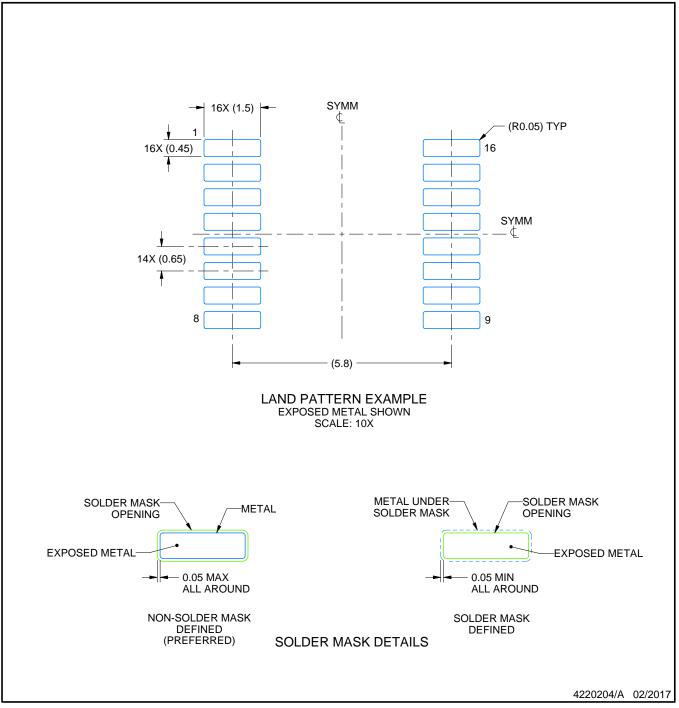
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

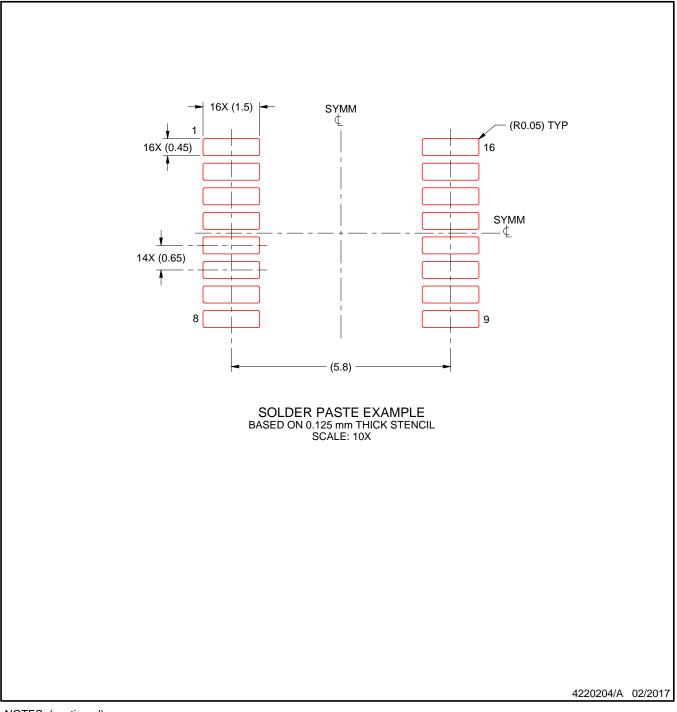
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated