BFR30LT1, BFR31LT1

JFET Amplifiers

N-Channel

Features

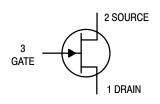
• Pb-Free Package is Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Gate – Source Voltage	V_{GS}	25	Vdc

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation (Note 1) T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

- Device mounted on FR4 glass epoxy printed circuit board using the recommended footprint.
- 2. Alumina = $0.4 \times 0.3 \times 0.024$ in 99.5% alumina.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

SOT-23 CASE 318 STYLE 10

x = 1 or 2 M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
BFR30LT1	SOT-23	3000/Tape & Reel
BFR30LT1G	SOT-23 (Pb-Free)	3000/Tape & Reel
BFR31LT1	SOT-23	3000/Tape & Reel
BFR31LT1G	SOT-23 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BFR30LT1, BFR31LT1

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

	Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			-			-
Gate Reverse Current	(V _{GS} = 10 Vdc, V _{DS} = 0)		I _{GSS}	_	0.2	nAdc
Gate Source Cutoff Voltage	$(I_D = 0.5 \text{ nAdc}, V_{DS} = 10 \text{ Vdc})$	BFR30 BFR31	V _{GS(OFF)}	- -	5.0 2.5	Vdc
Gate Source Voltage	$(I_D = 1.0 \text{ mAdc}, V_{DS} = 10 \text{ Vdc})$ $(I_D = 50 \mu\text{Adc}, V_{DS} = 10 \text{ Vdc})$	BFR30 BFR31 BFR30 BFR31	V _{GS}	-0.7 - - -	-3.0 -1.3 -4.0 -2.0	Vdc
ON CHARACTERISTICS						
Zero – Gate – Voltage Drain Cu	$(V_{DS} = 10 \text{ Vdc}, V_{GS} = 0)$	BFR30 BFR31	I _{DSS}	4.0 1.0	10 5.0	mAdc
SMALL-SIGNAL CHARACTE	RISTICS		•			•
Forward Transconductance ($I_D = 1.0 \text{ mAdc}$, $V_{DS} = 10 \text{ Vol}$) ($I_D = 200 \mu \text{Adc}$, $V_{DS} = 10 \text{ Vol}$)	,	BFR30 BFR31 BFR30 BFR31	Yfs	1.0 1.5 0.5 0.75	4.0 4.5 –	mmhos
Output Admittance ($I_D = 1.0 \text{ mAdc}$, $V_{DS} = 10 \text{ Volume}$ ($I_D = 200 \mu \text{Adc}$, $V_{DS} = 10 \text{ Volume}$	•	BFR30 BFR31	Yos	40 20	25 15	μmhos
Input Capacitance	, 5	$(I_D = 1.0 \text{ mAdc}, V_{DS} = 10 \text{ Vdc}, f = 1.0 \text{ MHz})$ $(I_D = 200 \mu\text{Adc}, V_{DS} = 10 \text{ Vdc}, f = 1.0 \text{ MHz})$		- -	5.0 4.0	pF
Reverse Transfer Capacitance	e $(I_D = 1.0 \text{ mAdc}, V_{DS} = 10 \ (I_D = 200 \mu\text{Adc}, V_{DS} = 10 \ \)$,	C _{rss}	_ _	1.5 1.5	pF

TYPICAL CHARACTERISTICS

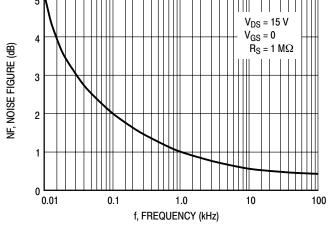


Figure 1. Noise Figure versus Frequency

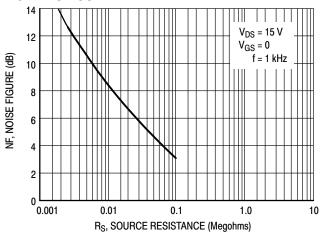


Figure 2. Noise Figure versus Source Resistance

BFR30LT1, BFR31LT1

TYPICAL CHARACTERISTICS

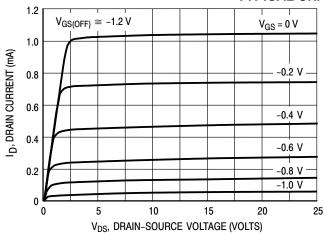


Figure 3. Typical Drain Characteristics

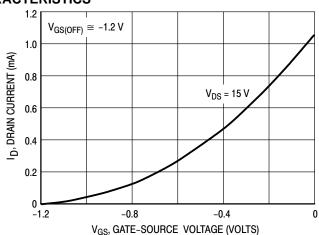


Figure 4. Common Source Transfer Characteristics

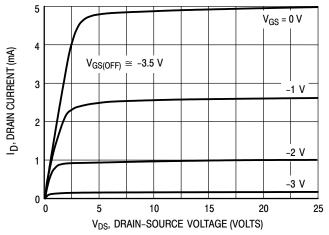


Figure 5. Typical Drain Characteristics

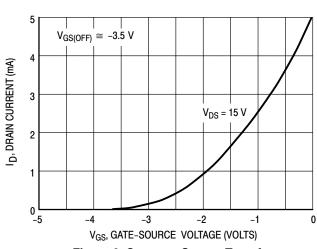


Figure 6. Common Source Transfer Characteristics

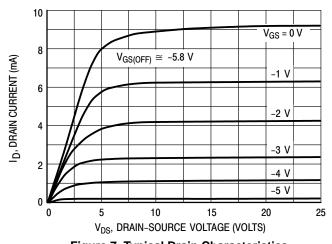


Figure 7. Typical Drain Characteristics

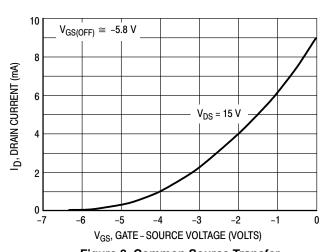


Figure 8. Common Source Transfer Characteristics

Note: Graphical data is presented for dc conditions. Tabular data is given for pulsed conditions (Pulse Width = 630 ms, Duty Cycle = 10%). Under dc conditions, self heating in higher I_{DSS} units reduces I_{DSS}.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales