

Analog Feedback Servos

Created by Bill Earl

https://learn.adafruit.com/analog-feedback-servos

Last updated on 2023-08-29 02:22:46 PM EDT

©Adafruit Industries Page 1 of 19

3

5

9

12

13

15

17

Table of Contents

About Servos and Feedback

• What is a Servo?

• Open and Closed Loops

Using Feedback

• Reading the feedback

• Calibrating the feedback

• Using feedback in your code

• Seeking to a position

• Finding out where you are

Servos as Input Devices

• To run the Servo Record/Play Demo Sketch:

Using With CircuitPython

• Wiring

• Reading the feedback

Calibrating The Feedback

Finding and Seeking

Servo Record and Play

©Adafruit Industries Page 2 of 19

About Servos and Feedback

What is a Servo?
The word 'servo' means more than just those little RC Servo Motors we usually think

of. Servo is a general term for a closed loop control system using negative feedback.

The cruise control in a car is one example of a servo system. It measures your speed

and feeds that back into a control circuit which adjusts the accelerator to maintain

speed.

For the familiar RC Servo motor, the position of the output shaft is measured and fed

back to the internal control circuit which adjusts current to the motor to maintain

position.

Open and Closed Loops
An "Open Loop" system has no feedback, so there is no way to verify that it is

performing as expected. A common expression among control engineers is "You can't

control what you can't measure.".

©Adafruit Industries Page 3 of 19

A "Closed Loop" system can use the feedback signal to adjust the speed and

direction of the motor to achieve the desired result. In the case of an RC servo motor,

the feedback is in the form of a potentiometer (pot) connected to the output shaft of

the motor. The output of the pot is proportional to the position of the servo shaft.

The problem with controlling a standard RC servo motor from a microcontroller is that

it is 'closed loop' inside the servo motor case, but 'open loop' with respect to your

microcontroller. You can tell the servo control circuit how you want the shaft

positioned, but you have no way to confirm if or when this actually happens.

©Adafruit Industries Page 4 of 19

The Feedback Servos allow you to close this outer loop by providing the feedback

signal to the microcontroller too!

Using Feedback

If a servo motor does what it is told to do, why do we need feedback?

RC servos usually do what they are told to do, but there are many cases where a

servo motor might not. These can include:

Insufficient motor size

Insufficient power supply

Physical interference

Electrical interference

loose connection

In these cases, feedback could alert you to the problem.

But even if the servo is adequately sized and functioning normally, it still takes some

time to respond to a position command, and in many applications it is just as

•

•

•

•

•

©Adafruit Industries Page 5 of 19

important to know when the position is reached.

This following code snippet is from the "Sweep" example in the Servo library. Note the

arbitrary 15 millisecond delay after

"myservo.write(val)".

void loop()

{

 val = analogRead(potpin); // reads the value of the potentiometer

(value between 0 and 1023)

 val = map(val, 0, 1023, 0, 179); // scale it to use it with the servo (value

between 0 and 180)

 myservo.write(val); // sets the servo position according to the

scaled value

 delay(15); // waits for the servo to get there

}

Without feedback, most servo programming has to make some assumptions about

how long a particular move will take. Adding fixed-time delays to servo code works

OK for simple applications, but can result in slow and/or jerky performance when

trying to coordinate multiple servo motions or interactions between servos and other

sensors or actuators.

Or worse: If the delays are not long enough, your servos may not reach the desired

position in time. This can cause malfunctions and/or damage to your project. Timing

problems are a big problem in battery-powered projects because the motors will run

slower as the battery power fades.

©Adafruit Industries Page 6 of 19

Reading the feedback
The feedback signal is tapped off the position pot attached to the servo shaft. You

can connect the white feedback wire to any of the analog input pins and read the

feedback value using analogRead().

 int feedback = analogRead(feedbackPin);

Calibrating the feedback
The raw feedback signal is a voltage. In order to convert that voltage into a

meaningful position, we need to calibrate it to the servo. By reading the feedback

values at two known positions, we can interpolate the expected feedback values for

every position in between.

The following bit of code does just that. If you call "calibrate" in your setup function, it

will perform the calibration on the two points you specify. These servos operate over

a range of about 0 to 180 degrees. For maximum accuracy, you should choose the

minPos and maxPos calibration points based on the range of motion required in your

project.

#include <Servo.h>

Servo myservo;

// Control and feedback pins

int servoPin = 9;

int feedbackPin = A0;

// Calibration values

int minDegrees;

int maxDegrees;

int minFeedback;

int maxFeedback;

int tolerance = 2; // max feedback measurement error

/*

 This function establishes the feedback values for 2 positions of the servo.

 With this information, we can interpolate feedback values for intermediate

positions

*/

void calibrate(Servo servo, int analogPin, int minPos, int maxPos)

{

 // Move to the minimum position and record the feedback value

 servo.write(minPos);

 minDegrees = minPos;

 delay(2000); // make sure it has time to get there and settle

 minFeedback = analogRead(analogPin);

 // Move to the maximum position and record the feedback value

 servo.write(maxPos);

 maxDegrees = maxPos;

 delay(2000); // make sure it has time to get there and settle

 maxFeedback = analogRead(analogPin);

}

©Adafruit Industries Page 7 of 19

void setup()

{

 myservo.attach(servoPin);

 calibrate(myservo, feedbackPin, 20, 160); // calibrate for the 20-160 degree

range

}

void loop()

{

}

Using feedback in your code
Now that we have a calibrated feedback signal, we can easily convert between servo

position and feedback voltages in our code.

Seeking to a position

The following bit of code will seek to a position and return as soon as we reach it.

There is no need to add an arbitrary delay to the code because the feedback signal

will tell us exactly when we get there!

void Seek(Servo servo, int analogPin, int pos)

{

 // Start the move...

 servo.write(pos);

 // Calculate the target feedback value for the final position

 int target = map(pos, minDegrees, maxDegrees, minFeedback, maxFeedback);

 // Wait until it reaches the target

 while(abs(analogRead(analogPin) - target) > tolerance){} // wait...

}

Finding out where you are

Another great thing about feedback is: You don't need to write code to remember the

last position command you sent to the servo (assuming it got there). If you want to

find out what position your servo is in, you can simply ask it!

Once you have calibrated your servo with the calibration function above, this bit of

code will tell you the current position (in degrees) of your servo:

int getPos(int analogPin)

{

 return map(analogRead(analogPin), minFeedback, maxFeedback, minDegrees,

maxDegrees);

}

©Adafruit Industries Page 8 of 19

The ability to simply read the servo position opens up the possibility of using it as an

input device as well. The next page will show you how.

Servos as Input Devices

Another neat feature of feedback servos is that they can be used as an input device

too! The Servo Record/Play Demo lets you record a series of servo movements, then

it will replay them back for you! The recorded positions are saved in EEPROM, so they

will be remembered even after resetting or powering down the Arduino

To run this demo, first wire up your Servo as in the Fritzing diagram below:

Components used:

Arduino Uno (http://adafru.it/50)

Feedback Servo (http://adafru.it/1404)

2x pushbuttons (http://adafru.it/1119)

LED (http://adafru.it/299)(most any 3 or 5mm led will work)

220 ohm resistor

Misc. jumpers (http://adafru.it/758)

Breadboard (http://adafru.it/64)

•

•

•

•

•

•

•

©Adafruit Industries Page 9 of 19

http://www.adafruit.com/products/50
http://www.adafruit.com/products/1404
http://www.adafruit.com/products/1119
http://www.adafruit.com/products/299
http://www.adafruit.com/products/758
http://www.adafruit.com/products/64

Next, download the example sketch from Github using this button:

// SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries

//

// SPDX-License-Identifier: MIT

// Example code for recording and playing back servo motion with a

// analog feedback servo

// http://www.adafruit.com/products/1404

#include <Servo.h>

#include <EEPROM.h>

#define CALIB_MAX 512

#define CALIB_MIN 100

#define SAMPLE_DELAY 25 // in ms, 50ms seems good

uint8_t recordButtonPin = 12;

uint8_t playButtonPin = 7;

uint8_t servoPin = 9;

uint8_t feedbackPin = A0;

uint8_t ledPin = 13;

Servo myServo;

void setup() {

 Serial.begin(9600);

 pinMode(recordButtonPin, INPUT);

 digitalWrite(recordButtonPin, HIGH);

 pinMode(playButtonPin, INPUT);

 digitalWrite(playButtonPin, HIGH);

 pinMode(ledPin, OUTPUT);

 Serial.println("Servo RecordPlay");

}

void loop() {

 if (! digitalRead(recordButtonPin)) {

 delay(10);

 // wait for released

 while (! digitalRead(recordButtonPin));

 delay(20);

©Adafruit Industries Page 10 of 19

 // OK released!

 recordServo(servoPin, feedbackPin, recordButtonPin);

 }

 if (! digitalRead(playButtonPin)) {

 delay(10);

 // wait for released

 while (! digitalRead(playButtonPin));

 delay(20);

 // OK released!

 playServo(servoPin, playButtonPin);

 }

}

void playServo(uint8_t servoPin, uint8_t buttonPin) {

 uint16_t addr = 0;

 Serial.println("Playing");

 myServo.attach(servoPin);

 while (digitalRead(buttonPin)) {

 uint8_t x = EEPROM.read(addr);

 Serial.print("Read EE: "); Serial.print(x);

 if (x == 255) break;

 // map to 0-180 degrees

 x = map(x, 0, 254, 0, 180);

 Serial.print(" -> "); Serial.println(x);

 myServo.write(x);

 delay(SAMPLE_DELAY);

 addr++;

 if (addr == 512) break;

 }

 Serial.println("Done");

 myServo.detach();

 delay(250);

}

void recordServo(uint8_t servoPin, uint8_t analogPin, uint8_t buttonPin) {

 uint16_t addr = 0;

 Serial.println("Recording");

 digitalWrite(ledPin, HIGH);

 pinMode(analogPin, INPUT);

 while (digitalRead(buttonPin)) {

 uint16_t a = analogRead(analogPin);

 Serial.print("Read analog: "); Serial.print(a);

 if (a < CALIB_MIN) a = CALIB_MIN;

 if (a > CALIB_MAX) a = CALIB_MAX;

 a = map(a, CALIB_MIN, CALIB_MAX, 0, 254);

 Serial.print(" -> "); Serial.println(a);

 EEPROM.write(addr, a);

 addr++;

 if (addr == 512) break;

 delay(SAMPLE_DELAY);

 }

 if (addr != 512) EEPROM.write(addr, 255);

 digitalWrite(ledPin, LOW);

 Serial.println("Done");

 delay(250);

}

©Adafruit Industries Page 11 of 19

To run the Servo Record/Play Demo Sketch:

Upload servo_recordplay to the arduino

press the top button to start recording. (The LED should light up.)

Press the top button once more to stop recording.

Press the bottom button to replay.

You can press the green button as many times as you want.

To record a new sequence, go back to step 2.

Watch the video below to see it in operation:

Using With CircuitPython

All of the general discussion from the previous sections still apply. Here we simply

provide CircuitPython () versions of the Arduino examples.

For the basics on using servos with CircuitPython, checkout the information in the

Essentials guide:

CircuitPython Servo

The following examples show usage with a Feather RP2040 () and the code is written

for the pins shown. Use with a different CircuitPython board should be possible, but

may require updating the code for the specific pins used.

Wiring

The example codes are based on the wiring shown below for connecting the servo:

SERVO POWER wire to USB

SERVO GROUND wire to GND

SERVO SIGNAL wire to A1

SERVO FEEDBACK (WHITE) wire to A3

1.

2.

3.

4.

5.

6.

You can record up to 512 samples (about 12.8 seconds worth). When you reach

the limit, the led will go out and recording will stop automatically.

•

•

•

•

©Adafruit Industries Page 12 of 19

https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/circuitpython-essentials/circuitpython-servo
https://www.adafruit.com/product/4884

Reading the feedback

The basic mechanism is the same as before - simply connect the feedback to an

analog input and read the value. To learn more about reading analog inputs, see the

Essentials guide:

CircuitPython Analog In

All that is needed is to setup an analog input and get its value. Here's a simple code

snippet that does that:

FEEDBACK_PIN = board.A3

feedback = AnalogIn(FEEDBACK_PIN)

position = feedback.value

The examples that follow will show this in more detail.

Calibrating The Feedback

You can use the program below to help determine the feedback values that

correspond to your servo's range of motion.

If you want to calibrate over a difference angle range, change these lines at the top.

However, 0 and 180 are the maximum limits.

©Adafruit Industries Page 13 of 19

https://learn.adafruit.com/circuitpython-essentials/circuitpython-analog-in

Calibration setup

ANGLE_MIN = 0

ANGLE_MAX = 180

When the code runs, it will print out the analog reading values that correspond to the

min/max angles. Write these values down - they'll be used in the other examples.

SPDX-FileCopyrightText: 2023 Carter Nelson for Adafruit Industries

#

SPDX-License-Identifier: MIT

Example code for calibrating analog feedback values to servo range

import time

import board

import pwmio

from analogio import AnalogIn

from adafruit_motor import servo

Pin setup

SERVO_PIN = board.A1

FEEDBACK_PIN = board.A3

Calibration setup

ANGLE_MIN = 0

ANGLE_MAX = 180

Setup servo

pwm = pwmio.PWMOut(SERVO_PIN, duty_cycle=2 ** 15, frequency=50)

servo = servo.Servo(pwm)

servo.angle = None

Setup feedback

feedback = AnalogIn(FEEDBACK_PIN)

print("Servo feedback calibration.")

Helper function to average analog readings

def read_feedback(samples=10, delay=0.01):

 reading = 0

 for _ in range(samples):

 reading += feedback.value

 time.sleep(delay)

 return int(reading/samples)

Move to MIN angle

print("Moving to {}...".format(ANGLE_MIN), end="")

servo.angle = ANGLE_MIN

time.sleep(2)

print("Done.")

feedback_min = read_feedback()

Move to MAX angle

print("Moving to {}...".format(ANGLE_MAX), end="")

servo.angle = ANGLE_MAX

time.sleep(2)

print("Done.")

feedback_max = read_feedback()

Print results

print("="*20)

print("Feedback MIN = {}".format(feedback_min))

print("Feedback MAX = {}".format(feedback_max))

print("="*20)

©Adafruit Industries Page 14 of 19

Deactivate servo

servo.angle = None

When the code runs, it will print out the analog reading values that correspond to the

min/max angles.

In the output above, the two values of interest are 15377 and 42890. Write these

values down - they'll be used in the other examples.

Finding and Seeking

This example shows how to find the current position and use that to "seek" to a

specific angle. Be sure to run the calibration program from the previous section first

and change these lines at the top of the code with your servo's values:

Calibration setup

CALIB_MIN = 15377

CALIB_MAX = 42890

If you calibrated over a different range of angles, also change those lines to match.

Here's the complete code listing:

SPDX-FileCopyrightText: 2023 Carter Nelson for Adafruit Industries

#

SPDX-License-Identifier: MIT

Example code for using analog feedback value to seek a position

import time

import board

import pwmio

from analogio import AnalogIn

from simpleio import map_range

from adafruit_motor import servo

Demo angles

angles = [0, 180, 0, 45, 180]

Pin setup

SERVO_PIN = board.A1

©Adafruit Industries Page 15 of 19

FEEDBACK_PIN = board.A3

Calibration setup

CALIB_MIN = 15377

CALIB_MAX = 42890

ANGLE_MIN = 0

ANGLE_MAX = 180

Setup servo

pwm = pwmio.PWMOut(SERVO_PIN, duty_cycle=2 ** 15, frequency=50)

servo = servo.Servo(pwm)

servo.angle = None

Setup feedback

feedback = AnalogIn(FEEDBACK_PIN)

def get_position():

 '''Turns analog feedback raw ADC value into angle.'''

 return map_range(feedback.value, CALIB_MIN, CALIB_MAX, ANGLE_MIN, ANGLE_MAX)

def seek_position(position, tolerance=2):

 '''Move to specified angle and wait until move is complete.'''

 servo.angle = position

 while abs(get_position() - position) > tolerance:

 pass

print("Servo feedback seek example.")

for angle in angles:

 print("Moving to {}...".format(angle), end="")

 start = time.monotonic()

 seek_position(angle)

 end = time.monotonic()

 print("Done. Move took {} seconds.".format(end-start))

 print("Pausing for 1 second.")

 time.sleep(1)

Deactivate servo

print("Finished. Deactivating servo.")

servo.angle = None

When the code runs, the servo will move to the specified angles. The amount of time

it took to get there will also be shown.

©Adafruit Industries Page 16 of 19

Servo Record and Play

This example will let you record servo positions that you manually move to and then

play them back. A few extra hardware items are needed:

2x push buttons

1x LED, any color

1x resistor, 220ohm (or anything higher)

Here's a Fritzing diagram of the wiring setup.

Button functions are:

Left button (yellow wire) - start/stop recording. The LED will be ON during

recording.

Right button (blue wire) - start/stop play back of recorded positions.

Be sure to run the calibration program first and change these lines at the top of the

code with your servo's values.

Record setup

CALIB_MIN = 15377

CALIB_MAX = 42890

Here's the complete code listing:

SPDX-FileCopyrightText: 2023 Carter Nelson for Adafruit Industries

#

SPDX-License-Identifier: MIT

Example code for recording and playing back servo motion with a

analog feedback servo

•

•

•

•

•

©Adafruit Industries Page 17 of 19

pylint: disable=redefined-outer-name

import time

import board

import pwmio

import keypad

from simpleio import map_range

from adafruit_motor import servo

from analogio import AnalogIn

from digitalio import DigitalInOut, Direction

Pin setup

RECORD_PIN = board.D10

PLAY_PIN = board.D9

LED_PIN = board.D13

SERVO_PIN = board.A1

FEEDBACK_PIN = board.A3

Record setup

CALIB_MIN = 15377

CALIB_MAX = 42890

ANGLE_MIN = 0

ANGLE_MAX = 180

SAMPLE_COUNT = 512

SAMPLE_DELAY = 0.025

Setup buttons

buttons = keypad.Keys((RECORD_PIN, PLAY_PIN), value_when_pressed=False, pull=True)

Setup LED

led = DigitalInOut(LED_PIN)

led.direction = Direction.OUTPUT

led.value = False

Setup servo

pwm = pwmio.PWMOut(SERVO_PIN, duty_cycle=2 ** 15, frequency=50)

servo = servo.Servo(pwm)

servo.angle = None

Setup feedback

feedback = AnalogIn(FEEDBACK_PIN)

Servo positions stored here

position = [None]*SAMPLE_COUNT

print("Servo RecordPlay")

def play_servo():

 print("Playing...", end="")

 count = 0

 while True:

 print(".", end="")

 event = buttons.events.get()

 if event:

 if event.pressed and event.key_number == 1:

 break

 angle = position[count]

 if angle is None:

 break

 servo.angle = angle

 count += 1

 if count >= SAMPLE_COUNT:

 break

 time.sleep(SAMPLE_DELAY)

 print("Done.")

 servo.angle = None

 time.sleep(0.250)

def record_servo():

©Adafruit Industries Page 18 of 19

 for i in range(len(position)):

 position[i] = None

 servo.angle = None

 led.value = True

 print("Recording...", end="")

 count = 0

 while True:

 print(".", end='')

 event = buttons.events.get()

 if event:

 if event.pressed and event.key_number == 0:

 break

 position[count] = map_range(feedback.value, CALIB_MIN, CALIB_MAX, ANGLE_MIN,

ANGLE_MAX)

 count += 1

 if count >= SAMPLE_COUNT:

 break

 time.sleep(SAMPLE_DELAY)

 led.value = False

 print("Done.")

 time.sleep(0.250)

while True:

 event = buttons.events.get()

 if event:

 if event.pressed:

 if event.key_number == 0:

 record_servo()

 elif event.key_number == 1:

 play_servo()

Once running, press and release the record button. Now grab the servo arm and

move it around gently and not too fast. You can stop recording by pressing the record

button again. Otherwise recording will continue until the entire record buffer is filled

up.

To play back what you have recorded, simply press the play button.

©Adafruit Industries Page 19 of 19

	Analog Feedback Servos
	Table of Contents
	About Servos and Feedback
	Using Feedback
	Servos as Input Devices
	Using With CircuitPython
	Calibrating The Feedback
	Finding and Seeking
	Servo Record and Play

	About Servos and Feedback
	What is a Servo?
	Open and Closed Loops
	Using Feedback
	Reading the feedback
	Calibrating the feedback
	Using feedback in your code
	Seeking to a position
	Finding out where you are

	Servos as Input Devices
	To run the Servo Record/Play Demo Sketch:

	Using With CircuitPython
	Wiring
	Reading the feedback

	Calibrating The Feedback
	Finding and Seeking
	Servo Record and Play

