

Adafruit pIRkey

Created by lady ada

https://learn.adafruit.com/adafruit-pirkey-python-programmable-infrared-usb-adapter

Last updated on 2023-08-29 03:43:24 PM EDT

©Adafruit Industries Page 1 of 15

3

6

7

9

14

Table of Contents

Overview

Pinouts

• USB Connector

• Microcontroller

• Reset Button

• DotStar LED

• Infrared Receiver

pIRKey & CircuitPython

• What is CircuitPython?

• Why Does This Product Use CircuitPython?

• I'm Intrigued! Please Sign Me Up For Your Newsletter

Getting Started

• Step 0. Install Windows 7 Drivers

• Step 1. Install Mu

• Step 2. Plug in pIRKey and open Mu REPL

• Detecting & Matching Codes

• Adding Keyboard Output

Downloads

• Files

• Schematic

• Fabrication Print

©Adafruit Industries Page 2 of 15

Overview

The pIRkey adds an IR remote receiver to any computer, laptop, tablet...any computer

or device with a USB port that can use a keyboard. This little board slides into any

USB A port, and shows up as an every-day USB keyboard. The onboard ATSAMD21

microcontroller listens for IR remote signals and converts them to keypresses, mouse

movements, or even USB serial output.

Infrared is our favorite wireless protocol - no antennas, certifications, pairings,

passwords, or special tools required. Works everywhere in the world and very

©Adafruit Industries Page 3 of 15

intuitive - everyone's got an IR remote in their home! Our original IRkey () was a small

USB-pluggable microcontroller board with an IR receiver, an Attiny85 microcontroller

and indicator LED. When certain remote control commands were received, the IRkey

would send corresponding keyboard presses. It was great, but was not easy to

customize - you had to use the remote we sold it work.

The pIRkey is an improvement on our original IRkey product, by adding a p for python.

Now that we have CircuitPython available for the tiny ATSAMD21E processor, we

swapped it for the ATtiny85, giving a huge boost in power and a working Python

interpreter on board as well. This means its super easy to reprogram, customize or

adapt it to whatever Infrared-reading needs you may have

©Adafruit Industries Page 4 of 15

https://www.adafruit.com/product/1560

When you plug it in, the pIRkey shows up as a triple device: USB disk drive to store

code, USB serial for debugging and Python interactive command line, and USB

keyboard/mouse that can transmit keypresses or mouse movements.

By default we ship with some very simple example code to read NEC remotes but you

can use any remote that has about 38KHz output frequency which is 99% of remote

controls. Here's some ideas: you could use pIRkey to remotely start/stop a program,

shut down a computer, control a smart phone or tablet mounted far away, make

adaptive controls, etc.

©Adafruit Industries Page 5 of 15

Pinouts

pIRKey is pretty simple so you don't actually have a lot of pinout requirements!

USB Connector

On the left is a PCB-mount USB connector, just plug it right into any USB-A port. the 4

gold plated pads have Ground, D+, D- and 5V power. The 5V power is regulated

down and used to power the pIRKey. The D+/D- is what the onboard chip uses to

send/receive data

Microcontroller

The chip used here is the ATSAMD21E18 - the same chip in our Trinket M0 and

Gemma M0. It has 256KB of flash, 32 KB of RAM and runs at 48MHz. We pre-load

CircuitPython but you could also use Arduino if you like, just select Trinket M0 as the

board type.

Reset Button

You can reset the board or put it into bootloader mode using the Reset button. One

click resets. Double-click puts into bootloader mode. In bootloader mode, the small

DotStar LED will turn green on successful USB enumeration, or red on failure

©Adafruit Industries Page 6 of 15

DotStar LED

We put a small RGB LED on board. This is great for helping the user know if the IR

command was read properly, what the status is, or changing modes.

In CircuitPython you can communicate with the DotStar over the

board.APA102_MOSI and board.APA102_SCK pins

Infrared Receiver

At the end is a lensed IR receiver module, it will read IR light, amplify if necessary and

filter out the 38 KHz sub-carrier so you just get pulses when light is detected, making

it a lot easier on the pIRkey!

Note that even though it is tuned to 38 KHz, you can use about 30 KHz to 46 KHz

without too much difficulty, its not a very precise filter on purpose since low cost IR

remotes have a lot of drift.

In CircuitPython you can read data over the board.REMOTEIN pin

pIRKey & CircuitPython

The pIRKey comes with CircuitPython installed on it.

tl;dr? It's extremely fast and easy to program and customize your pIRkey behavior

using CircuitPython - much easier and faster than trying to use Arduino as we do not

have to compile every time. All you have to do is edit the file on the little disk drive.

Also, CircuitPython has native HID keyboard/mouse support so its perfect for pIRkeys

simple IR in -> Keyboard out setup.

©Adafruit Industries Page 7 of 15

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and

learning to program on low-cost microcontroller boards. It makes getting started

easier than ever with no upfront desktop downloads needed. Once you get your

board set up, open any text editor, and get started editing code. It's that simple.

Why Does This Product Use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is

a board with a microcontroller chip that's essentially an itty-bitty all-in-one computer.

The board you're holding is a microcontroller board! CircuitPython is easy to use

because all you need is that little board, a USB cable, and a computer with a USB

connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the

file, and it runs immediately. There is no compiling, no downloading and no

uploading needed.

You're new to programming. CircuitPython is designed with education in mind.

It's easy to start learning how to program and you get immediate feedback from

the board.

Easily update your code. Since your code lives on the disk drive, you can edit it

whenever you like, you can also keep multiple files around for easy

experimentation.

The serial console and REPL. These allow for live feedback from your code and

interactive programming.

File storage. The internal storage for CircuitPython makes it great for data-

logging, playing audio clips, and otherwise interacting with files.

Strong hardware support. There are many libraries and drivers for sensors,

breakout boards and other external components.

It's Python! Python is the fastest-growing programming language. It's taught in

schools and universities. CircuitPython is almost-completely compatible with

Python. It simply adds hardware support.

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 15

I'm Intrigued! Please Sign Me Up For Your

Newsletter

Since pIRKey is a tool not a full dev-board, we're not going to put a full CircuitPython

tutorial here. Instead we recommend you read our excellent guides:

Adafruit's Welcome To CircuitPython https://learn.adafruit.com/welcome-to-

circuitpython/ ()

Adafruit's CircuitPython Essentials Guide https://learn.adafruit.com/circuitpython-

essentials ()

Getting Started

The biggest challenge with making a USB device that reads IR commands is that

there's a ton of different IR remote types and encodings. Even if we pre-programmed

it to recognize the most popular brands, we could miss support for a remote you

have.

For that reason, we decided to have decoding support for NEC remotes (the most

popular encoding we've encountered) and then for other remotes, show you how to

set up custom decoded types

Let's get started!

Step 0. Install Windows 7 Drivers

If you're using Windows 7, use the link below to download the driver package. You will

not need to install drivers on Mac, Linux or Windows 10.

Download Adafruit Windows 7

Driver Installer

Step 1. Install Mu

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

•

•

©Adafruit Industries Page 9 of 15

file:///home/welcome-to-circuitpython/
file:///home/welcome-to-circuitpython/
file:///home/circuitpython-essentials
file:///home/circuitpython-essentials
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers*.exe

console is built right in so you get immediate feedback from your board's serial

output!

Even if you plan on using your pIRKey on a tablet or phone, you still need to do the

programming/customization part on a desktop computer

Follow our guide to install Mu on

Windows/Mac/Linux

Step 2. Plug in pIRKey and open Mu REPL

Now you're ready! Plug in the pIRKey into your computer. If you are using Windows 7,

make sure you install the drivers above. After the pIRKey is plugged in, you'll get a

disk drive with the code and some examples & documentation.

Now start Mu.

Select Adafruit Mode if you're asked. Then click the REPL button, you should see

something like the following:

Press Control D to restart the program

©Adafruit Industries Page 10 of 15

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

Now find your IR remote control and click some buttons. You'll see the received data

printed out!

These are the raw data pulses that correspond to each button. The number of pulses

and the quantity in each array may vary

For example, on our NEC remote, the Play Pause button will send the following

[9072, 4512, 627, 511, 647, 490, 620, 516, 626, 511, 630, 507, 623,

515, 627, 509, 601, 537, 625, 1624, 627, 1623, 628, 1626, 629, 1618,

629, 1621, 630, 1620, 631, 506, 625, 1625, 638, 1612, 658, 479, 714,

423, 625, 513, 628, 508, 633, 504, 627, 510, 631, 506, 656, 481, 629,

1621, 630, 1620, 651, 1601, 630, 1618, 633, 1617, 634, 1616, 626,

1624, 625]

And the Volume Up button will send

[9068, 4510, 601, 540, 601, 531, 600, 537, 605, 532, 599, 538, 603,

533, 599, 538, 602, 535, 596, 1652, 599, 1650, 601, 1649, 602, 1648,

608, 1642, 604, 1649, 602, 532, 599, 1650, 601, 541, 621, 1626, 594,

542, 631, 505, 630, 508, 629, 511, 630, 502, 628, 508, 633, 1621,

603, 533, 625, 1620, 632, 1618, 633, 1617, 639, 1610, 637, 1613, 628,

1622, 629]

Note these look the same but they're not the exact same codes

Detecting & Matching Codes

Now you have a selection of codes you want to match. We'll be using the two codes

above but use whatever your remote output!

©Adafruit Industries Page 11 of 15

Save this sketch to your pIRkey disk drive, named code.py

SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries

#

SPDX-License-Identifier: MIT

import board

import pulseio

import adafruit_dotstar

import adafruit_irremote

led = adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1)

decoder = adafruit_irremote.GenericDecode()

pulsein = pulseio.PulseIn(board.REMOTEIN, maxlen=200, idle_state=True)

Expected pulse, pasted in from previous recording REPL session:

key1_pulses = [0] # PUT YOUR PULSECODES HERE!

key2_pulses = [1] # PUT YOUR PULSECODES HERE!

print('IR listener')

Fuzzy pulse comparison function:

def fuzzy_pulse_compare(pulse1, pulse2, fuzzyness=0.2):

 if len(pulse1) != len(pulse2):

 return False

 for i in range(len(pulse1)):

 threshold = int(pulse1[i] * fuzzyness)

 if abs(pulse1[i] - pulse2[i]) > threshold:

 return False

 return True

Create pulse input and IR decoder.

pulsein.clear()

pulsein.resume()

Loop waiting to receive pulses.

while True:

 led[0] = (0, 0, 0) # LED off

 # Wait for a pulse to be detected.

 pulses = decoder.read_pulses(pulsein)

 led[0] = (0, 0, 100) # flash blue

 print("\tHeard", len(pulses), "Pulses:", pulses)

 # Got a pulse set, now compare.

 if fuzzy_pulse_compare(key1_pulses, pulses):

 print("****** KEY 1 DETECTED! ******")

 if fuzzy_pulse_compare(key2_pulses, pulses):

 print("****** KEY 2 DETECTED! ******")

When you save the new python example, the REPL will automatically reload this

example.

Now find these two lines:

key1_pulses = [0] # PUT YOUR PULSECODES HERE!

key2_pulses = [1] # PUT YOUR PULSECODES HERE!

And replace the [0] and [1] with the two pulse sets you detected before. Or you

can use the REPL to press other keys until you get the ones you want.

©Adafruit Industries Page 12 of 15

Ours looks like this when done:

Save to cause the CircuitPython code to reload the new code.

Now when you press those same remote control keys you will get DETECTED

displays!

You can add just about as many codes as you like, from any kind of remote. Just keep

adding keyn_pulses = [....] lines, make sure each key has a different ' n ' - we

like numbering them but whatever makes them unique will work fine. Then at the

bottom add another

if fuzzy_pulse_compare(keyn_pulses, pulses):

 print("****** KEY n DETECTED! ******")

For each key you want to detect, again match the 'n' to the pulses you defined at the

top

©Adafruit Industries Page 13 of 15

Adding Keyboard Output

It's tougher to debug when you have the pIRkey typing stuff into your windows so get

the basic detection script above working well and detecting all the keys you want,

then you can add keyboard output.

For more details on HID keyboard support, check out the CircuitPython Essentials HID

Keyboard & Mouse () guide.

Downloads

Files

EagleCAD PCB files on GitHub ()

TSOP75238 Infrared receiver Datasheet ()

Adafruit Windows 7 Driver bundle ()

Schematic

Click to embiggen

•

•

•

©Adafruit Industries Page 14 of 15

file:///home/circuitpython-essentials/circuitpython-hid-keyboard-and-mouse
file:///home/circuitpython-essentials/circuitpython-hid-keyboard-and-mouse
https://github.com/adafruit/Adafruit-pIRKey-PCB
http://www.vishay.com/docs/82494/tsop752.pdf
https://github.com/adafruit/Adafruit_Windows_Drivers/releases/

Fabrication Print

©Adafruit Industries Page 15 of 15

	Adafruit pIRkey
	Table of Contents
	Overview
	Pinouts
	pIRKey & CircuitPython
	Getting Started
	Downloads

	Overview
	Pinouts
	USB Connector
	Microcontroller
	Reset Button
	DotStar LED
	Infrared Receiver
	pIRKey & CircuitPython
	What is CircuitPython?
	Why Does This Product Use CircuitPython?
	I'm Intrigued! Please Sign Me Up For Your Newsletter
	Getting Started
	Step 0. Install Windows 7 Drivers
	Step 1. Install Mu
	Step 2. Plug in pIRKey and open Mu REPL
	Detecting & Matching Codes
	Adding Keyboard Output
	Downloads
	Files
	Schematic
	Fabrication Print

