

Adafruit BMP388 and BMP390 - Precision Barometric Pressure and Altimeter

Created by Kattni Rembor

https://learn.adafruit.com/adafruit-bmp388-bmp390-bmp3xx

Last updated on 2023-09-07 10:05:41 AM EDT

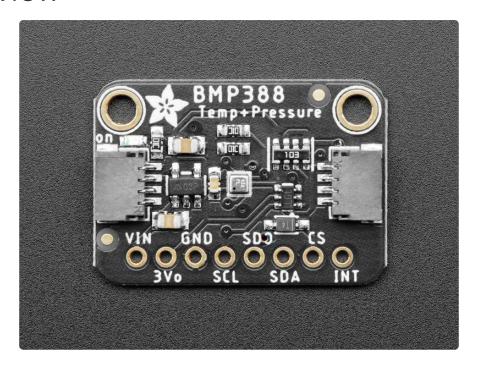
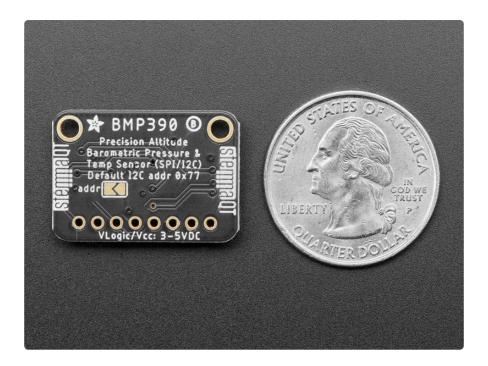

© Adafruit Industries Page 1 of 40

Table of Contents

Overview	3
Pinouts	6
• Power Pins	
• SPI Logic pins	
• I2C Logic pins	
Address Jumper	
Assembly	9
Prepare the header strip:	
Add the breakout board:	
And Solder!	
Arduino	12
• I2C Wiring	
• SPI Wiring	
Download Adafruit_BMP3XX library	
Load DemoExample Code	
* Example code	
Arduino Docs	19
Python & CircuitPython	19
CircuitPython Microcontroller Wiring	
Python Computer Wiring	
CircuitPython Installation of BMP3XX Library	
Python Installation of BMP3XX Library	
CircuitPython & Python UsageFull Example Code	
• Full Example Code	
Python Docs	28
WipperSnapper	29
What is WipperSnapper	
• Wiring	
• Usage	
Downloads	36
• Files	
Schematic and Fab Print for BMP390	
Schematic and Fab Print for BMP388 STEMMA QT Version	
Schematic and Fab Print for BMP388 Original Version 2D Market of BMP300	
• 3D Model of BMP390 • 3D Model of BMP388 QT	
TO MICHEL OF DIME 200 AT	

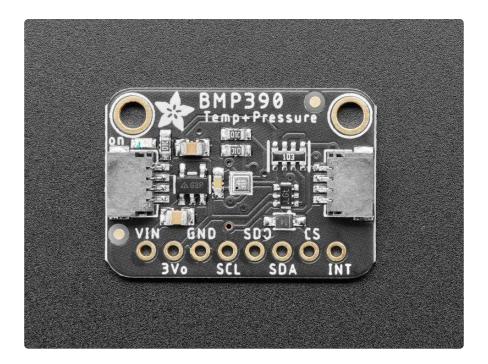
© Adafruit Industries Page 2 of 40


Overview

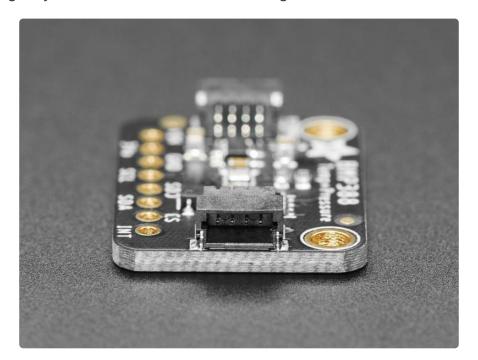
Bosch has been a leader in barometric pressure sensors, from the BMP085 (). BMP18 O (), and BMP280 ()... now we've got the next generation, the Adafruit BMP388 and BMP390 Precision Barometric Pressure sensors. As you would expect, this sensor is similar to its earlier versions but even better. The BMP3xx has better precision than the BMP2xx series which makes it excellent for environmental sensing or as a precision altimeter. It can even be used in either I2C and SPI configurations.

The BMP3xx is the next-generation of sensors from Bosch, and is the upgrade to the BMP280 - with a low altitude noise as low as 0.1m and the same fast conversion time. And like the previous BMP280, you can use I2C or SPI. For simple easy wiring, go with I2C. If you want to connect a bunch of sensors without worrying about I2C address collisions, go with SPI.

© Adafruit Industries Page 3 of 40



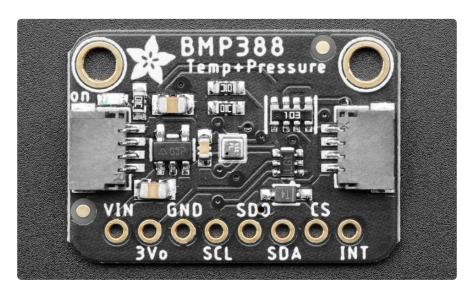
- \bullet This BMP388 sensor has a relative accuracy of 8 Pascals, which translates to about $\pm~0.5$ meter of altitude
- \bullet This BMP390 sensor has a relative accuracy of 3 Pascals, which translates to about $\pm\,0.25$ meter of altitude


Compare to the BMP280's 12 Pascal/ ±1 meter!

The datasheet sort of implies they intend this sensor to be used for drones and quadcopters, to keep altitude stable, but you could also use this for wearables or any project that wants to track height-above-sea-level. Note that for absolute height you'll still need to enter in the barometric pressure at sea level, if the weather changes, but that's true of every altimeter sensor that uses pressure. You can also measure temperature with $\pm 0.5^{\circ}$ C accuracy.

© Adafruit Industries Page 4 of 40

Nice sensor right? So we made it easy for you to get right into your next project. The surface-mount sensor is soldered onto a PCB and comes with a 3.3V regulator and level shifting so you can use it with a 3V or 5V logic microcontroller without worry.


We also made these boards in the <u>STEMMA QT form factor</u> (), making them easy to interface with. The <u>STEMMA QT connectors</u> () on either side are compatible with the <u>S</u> <u>parkFun Qwiic</u> () I2C connectors. This allows you to make solderless connections between your development board and the BMP390 or to chain it with a wide range of other sensors and accessories using a compatible cable ().

© Adafruit Industries Page 5 of 40

There are two versions of this board - the STEMMA QT version shown above, and the original header-only version shown below. Code works the same on both!

Pinouts

© Adafruit Industries Page 6 of 40

The BMP388 and BMP390 have the same exact pinout even though the names are a little different!

Power Pins

- Vin this is the power pin. Since the sensor chip uses 3 VDC, we have included a voltage regulator on board that will take 3-5VDC and safely convert it down.
 To power the board, give it the same power as the logic level of your microcontroller - e.g. for a 5V micro like Arduino, use 5V
- 3Vo this is the 3.3V output from the voltage regulator, you can grab up to 100mA from this if you like
- GND common ground for power and logic

SPI Logic pins

All pins going into the breakout have level shifting circuitry to make them 3-5V logic level safe. Use whatever logic level is on Vin!

• SCK - This is the SPI Clock pin, its an input to the chip and can use 3 - 5V logic.

© Adafruit Industries Page 7 of 40

- SDO this is the Serial Data Out / Microcontroller In Sensor Out pin, for data sent from the BMP3xx to your processor. Logic level is 3.3V output, so can be read by 5V microcontrollers.
- SDA this is the Serial Data In / Microcontroller Out Sensor In pin, for data sent from your processor to the BMP3xx. Its an input to the chip and can use 3 5V logic. (SDI on original version)
- CS this is the Chip Select pin, drop it low to start an SPI transaction. Its an input to the chip and can use 3 5V logic.
- INT this is the Interrupt pin. The BMP3xx can send an output signal to tell you when data is read (we don't use this in our libraries but it is available for your use). The logic level is 3.3V output, so it can be read by 5V microcontrollers.

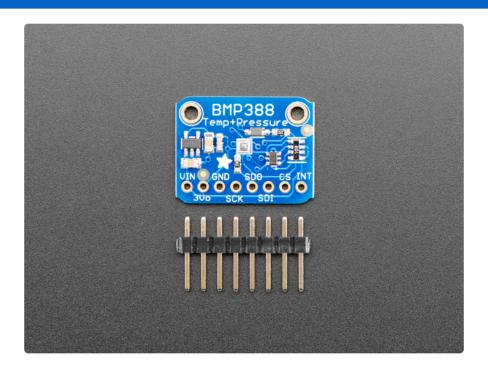
If you want to connect multiple BMP3xx sensors to one microcontroller, have them share the SDI, SDO and SCK pins. Then assign each one a unique CS pin.

I2C Logic pins

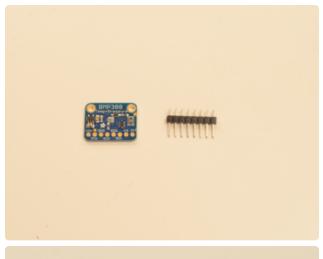
- SCK this is also the I2C clock pin, connect to your microcontroller's I2C clock line.
- SDA this is also the I2C data pin, connect to your microcontroller's I2C data line. (SDI on original version)
- <u>STEMMA QT</u> () These connectors allow you to connectors to dev boards with S TEMMA QT connectors or to other things with various associated accessories ()

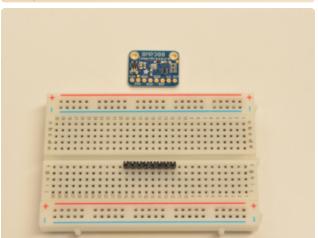
Leave the CS and SDO pins disconnected for I2C use.

Address Jumper

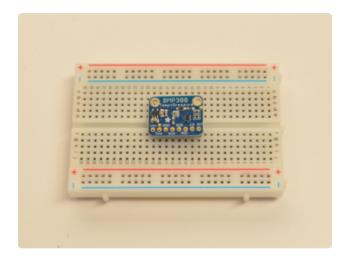

• ADDR - This is the I2C address selection jumper. The default I2C address - when this jumper is disconnected - is 0x77. On the STEMMA QT Versions you can change the I2C address by shorting this jumper. Once shorted the I2C address is 0x76.

Only the versions of these boards with STEMMA QT connectors have the ADDR jumper

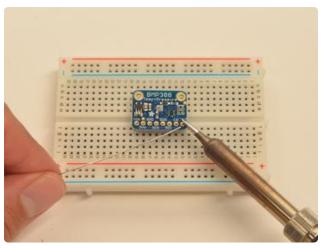

© Adafruit Industries Page 8 of 40

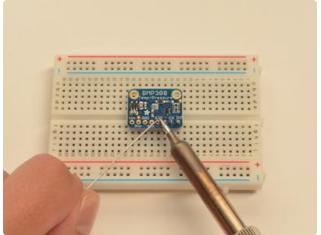

Assembly

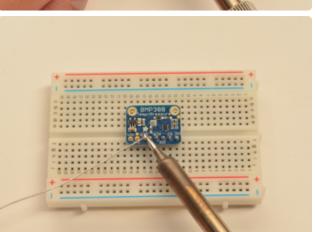
The BMP388 and BMP390 have the same soldering technique even though the names and shapes are a little different!

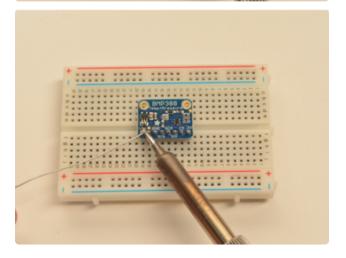

© Adafruit Industries Page 9 of 40

Prepare the header strip:

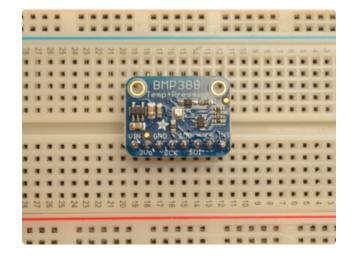

Cut the strip to length if necessary. It will be easier to solder if you insert it into a breadboard - long pins down




Add the breakout board:


Place the breakout board over the pins so that the short pins poke through the breakout pads

© Adafruit Industries Page 10 of 40



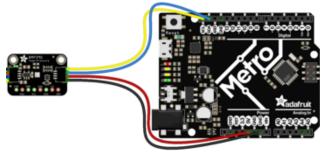
And Solder!

Be sure to solder all 8 pins for reliable electrical contact.

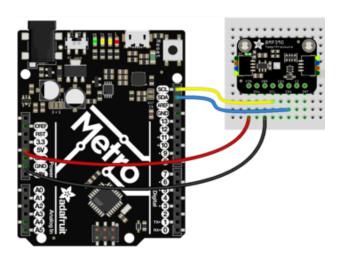
(For tips on soldering, be sure to check out our Guide to Excellent Soldering ()).

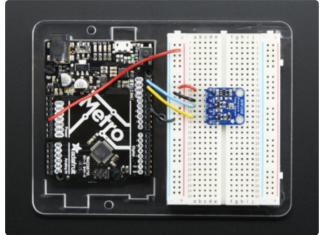
© Adafruit Industries Page 11 of 40

You're done! Check your solder joints visually and continue onto the next steps.


Arduino

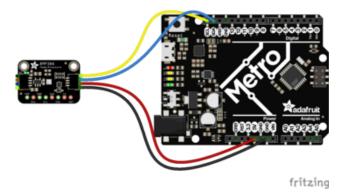
You can easily wire this breakout to any microcontroller, we'll be using an Arduino Uno/328P compatible. For another kind of microcontroller, as long as you have 4 available pins it is possible to 'bit-bang SPI' or you can use two I2C pins, but usually those pins are fixed in hardware. Just check out the library, then port the code.

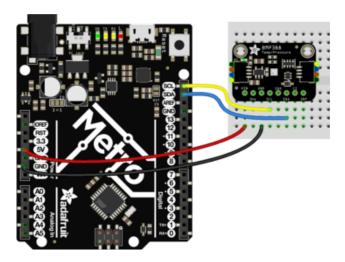

I2C Wiring


Use this wiring if you want to connect via I2C interface:

© Adafruit Industries Page 12 of 40

fritzing

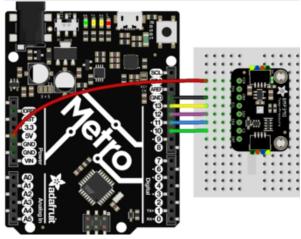




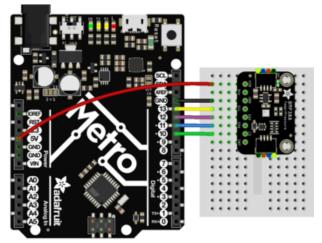
Connect Vin to the power supply, 3-5V is fine. (Red wire on STEMMA QT version.)
Use the same voltage that the microcontroller logic is based off of. For most older Arduinos, that is 5V.
Connect GND to common power/data ground. (Black wire on STEMMA QT version.)

Connect the SCK/SCL pin to the I2C clock SCL pin on your Arduino. (Yellow wire on STEMMA QT version.) On an UNO & '328 based Arduino, this is also known as A5, on a Mega it is also known as digital 21 and on a Leonardo/Micro, digital 3. Connect the SDI/SDA pin to the I2C data SDA pin on your Arduino. (Blue wire on STEMMA QT version.) On an UNO & '328 based Arduino, this is also known as A4, on a Mega it is also known as digital 20 and on a Leonardo/Micro, digital 2.

© Adafruit Industries Page 13 of 40






SPI Wiring

Since this is a SPI-capable sensor, we can use hardware or 'software' SPI. To make wiring identical on all Arduinos, we'll begin with 'software' SPI. The following pins should be used:

© Adafruit Industries Page 14 of 40

Connect Vin to the power supply, 3V or 5V is fine. Use the same voltage that the microcontroller logic is based off of. For most Arduinos, that is 5V.

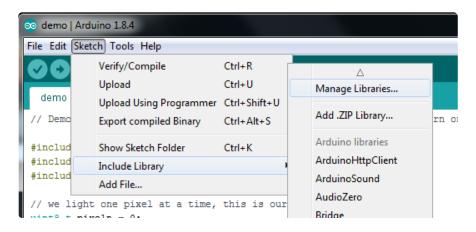
Connect GND to common power/data ground.

Connect the SCK/SCL pin to Digital #13 but any pin can be used later.

Connect the SDO pin to Digital #12 but any pin can be used later.

Connect the SDI/SDA pin to Digital #11 but any pin can be used later.

Connect the CS pin Digital #10 but any pin can be used later.


Later on, once we get it working, we can adjust the library to use hardware SPI if you desire, or change the pins assignments.

Download Adafruit_BMP3XX library

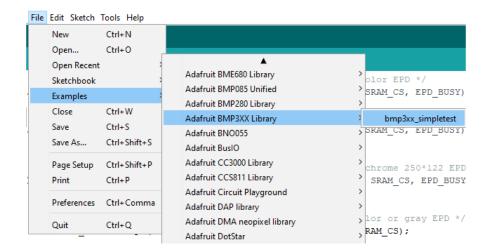
To begin reading sensor data, you will need to <u>install the Adafruit_BMP3XX library</u> (code on our github repository) (). It is available from the Arduino library manager so we recommend using that.

© Adafruit Industries Page 15 of 40

From the IDE open up the library manager...

And type in adafruit bmp3xx to locate the library. Click Install

You'll also need to install the Adafruit Unified Sensor library



We also have a great tutorial on Arduino library installation at: http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

Load Demo

Open up File -> Examples -> Adafruit_BMP3XX -> bmp3xx_simpletest and upload to your Arduino wired up to the sensor.

© Adafruit Industries Page 16 of 40

Depending on whether you are using I2C or SPI, change the pin names and comment or uncomment the following lines.

```
#define BMP_SCK 13
#define BMP_MISO 12
#define BMP_MOSI 11
#define BMP_CS 10

#define SEALEVELPRESSURE_HPA (1013.25)

Adafruit_BMP3XX bmp; // I2C
//Adafruit_BMP3XX bmp(BMP_CS); // hardware SPI
//Adafruit_BMP3XX bmp(BMP_CS, BMP_MOSI, BMP_MISO, BMP_SCK); // Software SPI
```

Once uploaded to your Arduino, open up the serial console at 115200 baud to see data being printed out:

Temperature is calculated in degrees C, you can convert this to F by using the classic F = C * 9/5 + 32 equation.

Pressure is returned in the SI units of Pascals. 100 Pascals = 1 hPa = 1 millibar. Often times barometric pressure is reported in millibar or inches-mercury (Hg). For future reference 1 pascal =0.000295333727 inches of mercury, or 1 inch Hg = 3386.39 Pascal. So if you take the Pascal value of say 100734 and divide by 3389.39 you'll get 29.72 inches-Hg.

You can also calculate Altitude. However, you can only really do a good accurate job of calculating altitude if you know the hPa pressure at sea level for your location and

©Adafruit Industries Page 17 of 40

day! The sensor is quite precise but if you do not have the data updated for the current day, then it can be difficult to get more accurate than 10 meters.

Pass in the current sea level pressure in hPa - so the value will be somewhere around ~1000. You can also test with the generic 1013.25 value.

Example Code

The following example code is part of the standard library. It illustrates how you can retrieve sensor data from the BMP388 for the temperature, pressure and approximate altitude:

```
This is a library for the BMP3XX temperature & pressure sensor
  Designed specifically to work with the Adafruit BMP388 Breakout
  ----> http://www.adafruit.com/products/3966
  These sensors use I2C or SPI to communicate, 2 or 4 pins are required
  to interface.
  Adafruit invests time and resources providing this open source code,
  please support Adafruit and open-source hardware by purchasing products
  from Adafruit!
  Written by Limor Fried & Kevin Townsend for Adafruit Industries.
  BSD license, all text above must be included in any redistribution
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_Sensor.h>
#include "Adafruit_BMP3XX.h"
#define BMP_SCK 13
#define BMP_MISO 12
#define BMP_MOSI 11
#define BMP_CS 10
#define SEALEVELPRESSURE_HPA (1013.25)
Adafruit_BMP3XX bmp;
void setup() {
  Serial.begin(115200);
  while (!Serial);
  Serial.println("Adafruit BMP388 / BMP390 test");
  if (!bmp.begin I2C()) {
                           // hardware I2C mode, can pass in address & alt Wire
  //if (! bmp.begin_SPI(BMP_CS)) { // hardware SPI mode
  //if (! bmp.begin_SPI(BMP_CS, BMP_SCK, BMP_MISO, BMP_MOSI)) { // software SPI
mode
    Serial.println("Could not find a valid BMP3 sensor, check wiring!");
   while (1);
  }
  // Set up oversampling and filter initialization
  bmp.setTemperatureOversampling(BMP3_OVERSAMPLING_8X);
  bmp.setPressureOversampling(BMP3_OVERSAMPLING_4X);
  bmp.setIIRFilterCoeff(BMP3_IIR_FILTER_COEFF_3);
bmp.setOutputDataRate(BMP3_ODR_50_HZ);
```

©Adafruit Industries Page 18 of 40

```
void loop() {
   if (! bmp.performReading()) {
      Serial.println("Failed to perform reading :(");
      return;
   }
   Serial.print("Temperature = ");
   Serial.print(bmp.temperature);
   Serial.println(" *C");

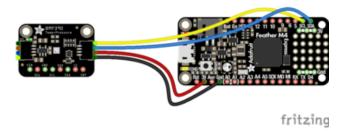
   Serial.print("Pressure = ");
   Serial.print(bmp.pressure / 100.0);
   Serial.print(bmp.pressure / 100.0);
   Serial.print("Approx. Altitude = ");
   Serial.print(bmp.readAltitude(SEALEVELPRESSURE_HPA));
   Serial.println(" m");

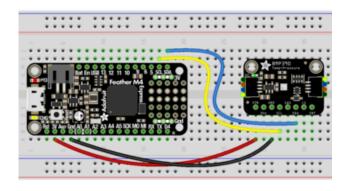
   Serial.println();
   delay(2000);
}
```

Arduino Docs

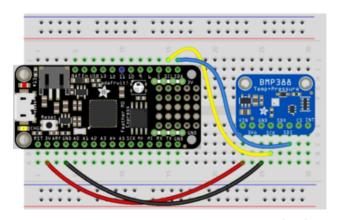
Arduino Docs ()

Python & CircuitPython

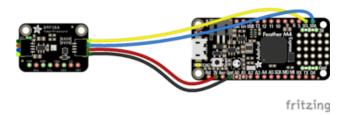

It's easy to use the BMP388 sensor with CircuitPython and the <u>Adafruit CircuitPython</u> <u>BMP3XX</u> () module. This module allows you to easily write Python code that reads the barometric pressure, temperature and more from the sensor.

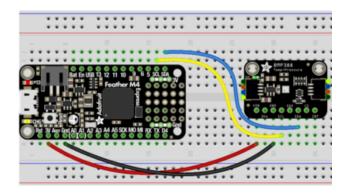

You can use this sensor with any CircuitPython microcontroller board or with a computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-Python compatibility library ().

CircuitPython Microcontroller Wiring

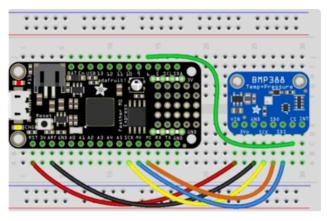

First wire up a BMP3xx to your board as shown below. You can use either I2C or SPI wiring, although it's recommended to use I2C for simplicity. Here's an example of wiring a Feather to the sensor with I2C:

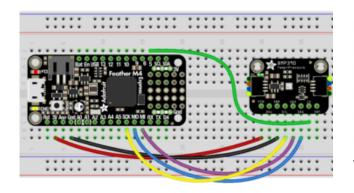
© Adafruit Industries Page 19 of 40



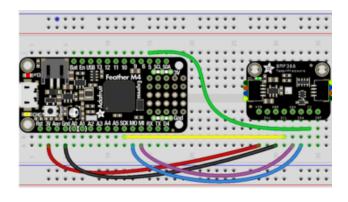

Board 3V to sensor VIN (red wire on STEMMA QT version) Board GND to sensor GND (black wire on STEMMA QT version) Board SCL to sensor SCK/SCL (yellow wire on STEMMA QT version) Board SDA to sensor SDI/SDA (blue wire on STEMMA QT version)

fritzing


© Adafruit Industries Page 20 of 40

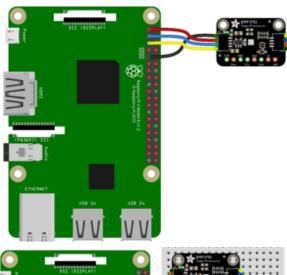


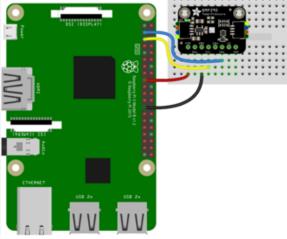
And an example of a Feather wired with hardware SPI:

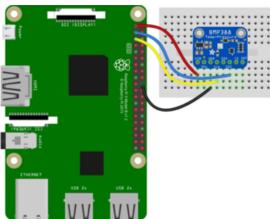

© Adafruit Industries Page 21 of 40

fritzing

Board 3V to sensor VIN
Board GND to sensor GND
Board SCK to sensor SCK/SCL
Board MOSI to sensor SDI/SDA
Board MISO to sensor SDO
Board D5 to sensor CS (or use any other free digital I/O pin)

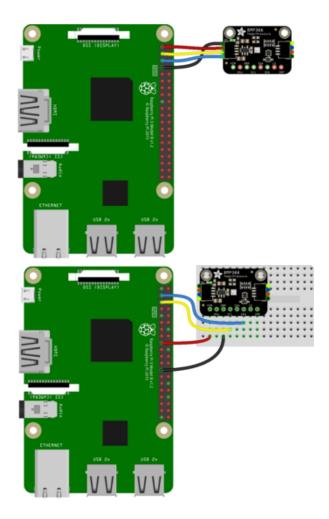



Python Computer Wiring

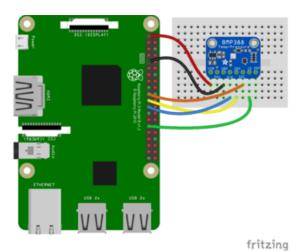

Since there's dozens of Linux computers/boards you can use, we will show wiring for Raspberry Pi. For other platforms, <u>please visit the guide for CircuitPython on Linux to</u> see whether your platform is supported ().

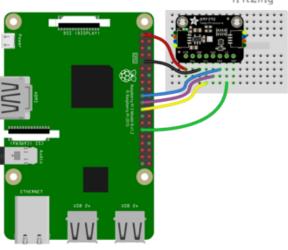
Here's the Raspberry Pi wired with I2C:

© Adafruit Industries Page 22 of 40



fritzing


Pi 3V3 to sensor VIN
Pi GND to sensor GND
Pi SCL to sensor SCK/SCL
Pi SDA to sensor SDI/SDA


© Adafruit Industries Page 23 of 40

And an example on the Raspberry Pi 3 Model B wired with SPI:

© Adafruit Industries Page 24 of 40

The rest

Pi 3V3 to sensor VIN

Pi GND to sensor GND

Pi MOSI to sensor SDI/SDA

Pi MISO to sensor SDO

Pi SCLK to sensor SCK/SCL

Pi #5 to sensor CS (or use any other free GPIO pin)

CircuitPython Installation of BMP3XX Library

You'll need to install the $\underline{\text{Adafruit CircuitPython BMP3XX}}$ () library on your CircuitPython board.

First make sure you are running the <u>latest version of Adafruit CircuitPython</u> () for your board.

© Adafruit Industries Page 25 of 40

Next you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install these libraries from Adafruit's CircuitPython library bundle (). Our CircuitPython starter guide has a great page on how to install the library bundle ().

For non-express boards like the Trinket M0 or Gemma M0, you'll need to manually install the necessary libraries from the bundle:

- adafruit_bmp3xx.mpy
- · adafruit_bus_device

Before continuing, make sure your board's lib folder or root filesystem has the adafruit _bmp3xx.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL ()so you are at the CircuitPython >>> prompt.

Python Installation of BMP3XX Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This may also require enabling I2C on your platform and verifying you are running Python 3. Since each platform is a little different, and Linux changes often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-bmp3xx

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

To demonstrate the usage of the sensor, we'll initialize it and read the pressure, temperature and more from the Python REPL.

If you're using an I2C connection, run the following code to import the necessary modules and initialize the I2C connection with the sensor:

```
import time
import board
import adafruit_bmp3xx
```

©Adafruit Industries Page 26 of 40

```
i2c = board.I2C()
bmp = adafruit_bmp3xx.BMP3XX_I2C(i2c)
```

Or if you're using a SPI connection run this code instead to setup the SPI connection and sensor:

```
import time
import board
import adafruit_bmp3xx
import digitalio
spi = board.SPI()
cs = digitalio.DigitalInOut(board.D5)
bmp = adafruit_bmp3xx.BMP3XX_SPI(spi, cs)
```

Now you're ready to read values from the sensor using any of these properties:

- temperature The sensor temperature in degrees Celsius.
- pressure The pressure in hPa.
- altitude The altitude in meters.

For example to print temperature and pressure:

```
print("Pressure: {:6.1f}".format(bmp.pressure))
print("Temperature: {:5.2f}".format(bmp.temperature))
```

```
>>> print("Pressure: {:6.1f}".format(bmp.pressure))
Pressure: 985.0
>>> print("Temperature: {:5.2f}".format(bmp.temperature))
Temperature: 19.25
```

For altitude, you'll want to set the pressure at sea level for your location to get the most accurate measurement (remember these sensors can only infer altitude based on pressure and need a set calibration point). Look at your local weather report for a pressure at sea level reading and set the sea level pressure property:

```
bmp.sea_level_pressure = 1013.25
```

Then read the **altitude** property for a more accurate altitude reading (but remember this altitude will fluctuate based on atmospheric pressure changes!):

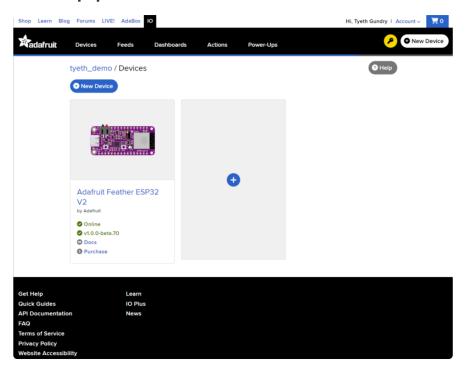
```
print('Altitude: {} meters'.format(bmp.altitude))
```

```
>>> bmp.sea_level_pressure = 1013.25
>>> print('Altitude: {} meters'.format(bmp.altitude))
Altitude: 238.16 meters
```

That's all there is to using the BMP388 sensor with CircuitPython!

© Adafruit Industries Page 27 of 40

Full Example Code


```
# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT
import time
import board
import adafruit_bmp3xx
# I2C setup
i2c = board.I2C() # uses board.SCL and board.SDA
\# i2c = board.STEMMA_I2C() \# For using the built-in STEMMA QT connector on a
microcontroller
bmp = adafruit_bmp3xx.BMP3XX_I2C(i2c)
# SPI setup
# from digitalio import DigitalInOut, Direction
# spi = board.SPI()
# cs = DigitalInOut(board.D5)
# bmp = adafruit_bmp3xx.BMP3XX_SPI(spi, cs)
bmp.pressure_oversampling = 8
bmp.temperature_oversampling = 2
while True:
   print(
        "Pressure: {:6.4f} Temperature: {:5.2f}".format(bmp.pressure,
bmp.temperature)
    time.sleep(1)
```

Python Docs

Python Docs ()

© Adafruit Industries Page 28 of 40

WipperSnapper

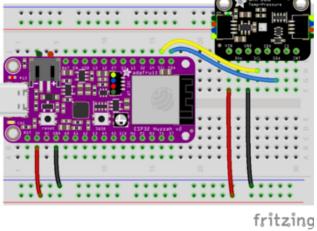
What is WipperSnapper

WipperSnapper is a firmware designed to turn any WiFi-capable board into an Internet-of-Things device without programming a single line of code. WipperSnapper connects to <u>Adafruit IO</u> (), a web platform designed (<u>by Adafruit!</u> ()) to display, respond, and interact with your project's data.

Simply load the WipperSnapper firmware onto your board, add credentials, and plug it into power. Your board will automatically register itself with your Adafruit IO account.

From there, you can add components to your board such as buttons, switches, potentiometers, sensors, and more! Components are dynamically added to hardware, so you can immediately start interacting, logging, and streaming the data your projects produce without writing code.

If you've never used WipperSnapper, click below to read through the quick start guide before continuing.


Quickstart: Adafruit IO WipperSnapper

© Adafruit Industries Page 29 of 40

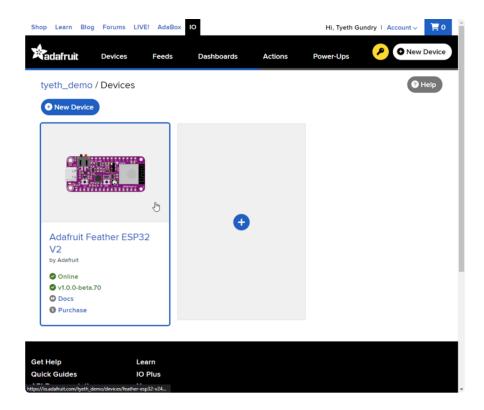
Wiring

First, wire up a BMP388 to your board exactly as follows. Here is an example of the BMP388 wired to an Adafruit ESP32 Feather V2 () using I2C with a STEMMA QT cable (no soldering required) ()

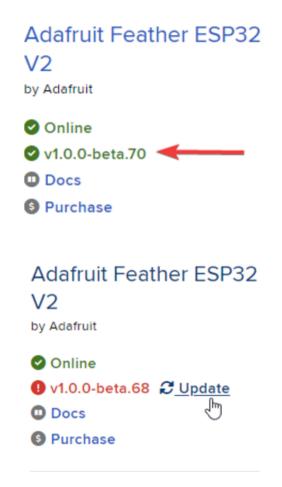
Board 3V to sensor VIN (red wire on STEMMA QT)

Board GND to sensor GND (black wire on STEMMA QT)

Board SCL to sensor SCL (yellow wire on STEMMA QT)


Board SDA to sensor SDA (blue wire on STEMMA QT)

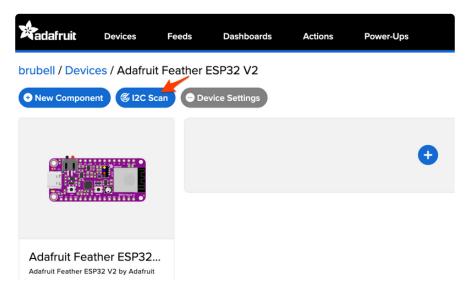
Usage


Connect your board to Adafruit IO Wippersnapper and $\frac{\text{navigate to the}}{\text{WipperSnapper board list ()}}$.

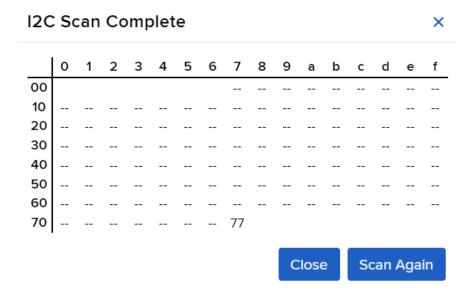
On this page, select the WipperSnapper board you're using to be brought to the board's interface page.

© Adafruit Industries Page 30 of 40

If you do not see your board listed here - you need $\underline{\text{to connect your board to Adafruit}}$ IO () first.


On the device page, quickly check that you're running the latest version of the WipperSnapper firmware.

The device tile on the left indicates the version number of the firmware running on the connected board.

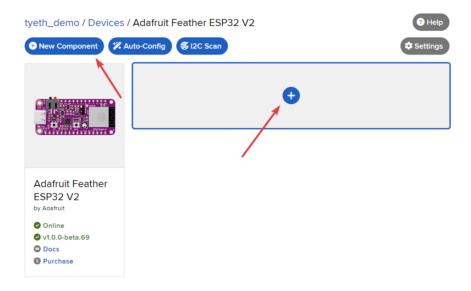

If the firmware version is green with a checkmark - continue with this guide. If the firmware version is red with an exclamation mark "!" - update to the latest WipperSnapper firmware () on your board before continuing.

© Adafruit Industries Page 31 of 40

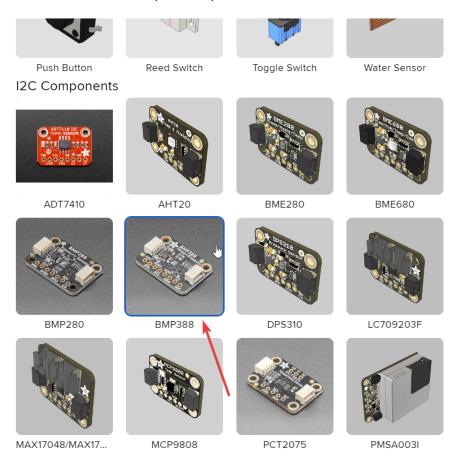
Next, make sure the sensor is plugged into your board and click the I2C Scan button.

You should see the BMP388's default I2C address of 0x77 pop-up in the I2C scan list.

I don't see the sensor's I2C address listed!


First, double-check the connection and/or wiring between the sensor and the board.

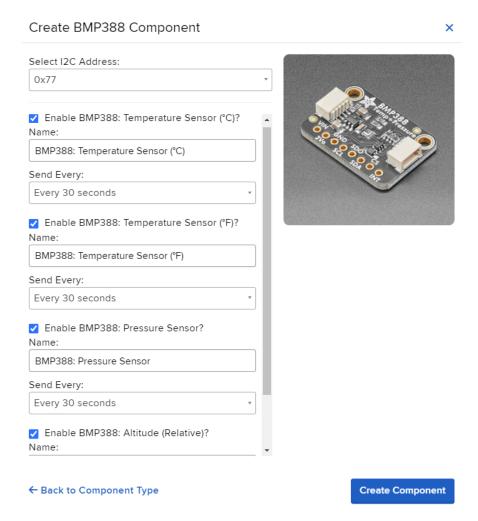
Then, reset the board and let it re-connect to Adafruit IO WipperSnapper.


With the sensor detected in an I2C scan, you're ready to add the sensor to your board.

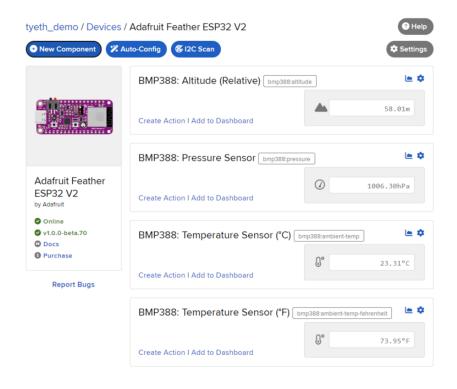
Click the New Component button or the + button to bring up the component picker.

© Adafruit Industries Page 32 of 40

Select the BMP388 from the component picker.

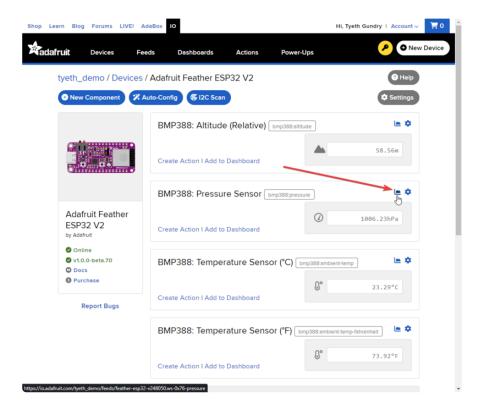


On the component configuration page, the BMP388's sensor address should be listed along with the sensor's settings.

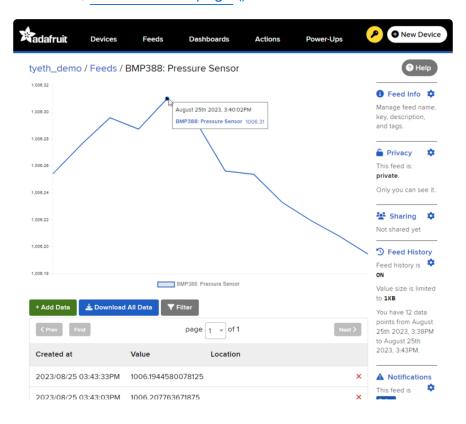

The Send Every option is specific to each sensor's measurements. This option will tell the Feather how often it should read from the BMP388 sensor and send the data to Adafruit IO. Measurements can range from every 30 seconds to every 24 hours.

For this example, set the Send Every interval to every 30 seconds.

© Adafruit Industries Page 33 of 40



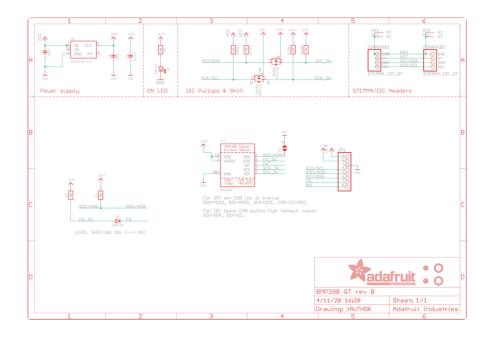
Your device interface should now show the sensor components you created. After the interval you configured elapses, WipperSnapper will automatically read values from the sensor(s) and send them to Adafruit IO.



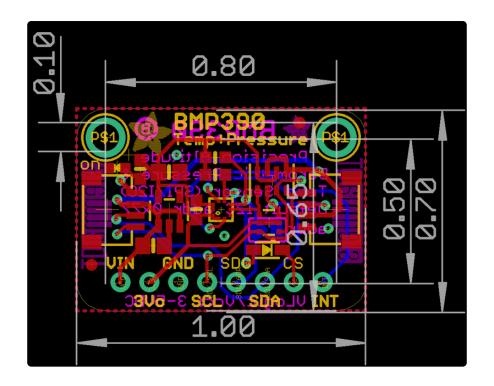
© Adafruit Industries Page 34 of 40

To view the data that has been logged from the sensor, click on the graph next to the sensor name.

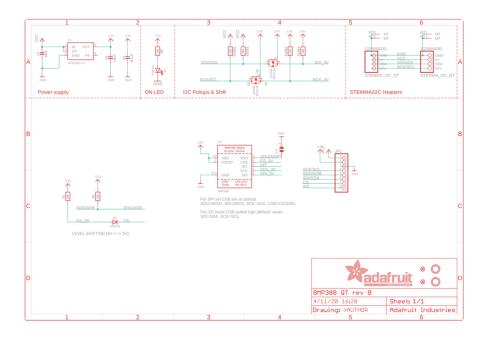
Here you can see the feed history and edit things about the feed such as the name, privacy, webhooks associated with the feed and more. If you want to learn more about how feeds work, check out this page ().

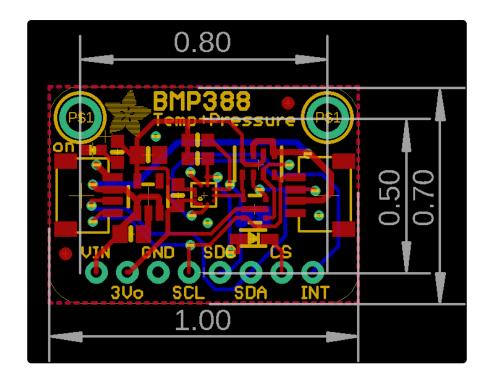

© Adafruit Industries Page 35 of 40

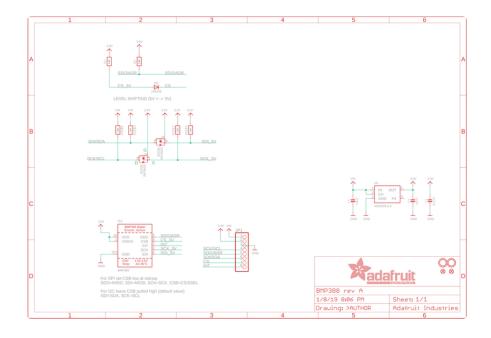
Downloads

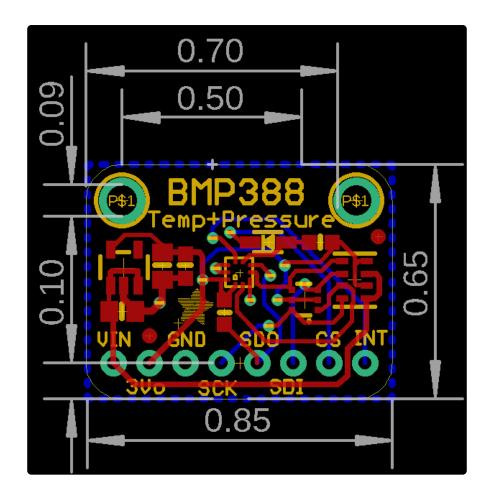

Files

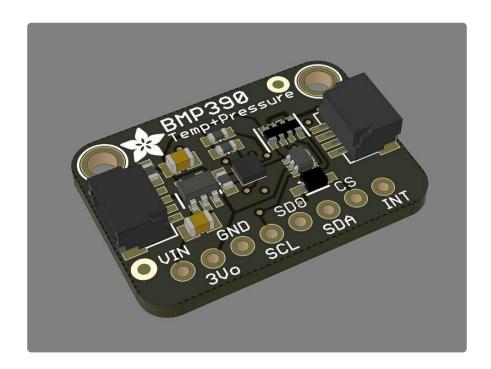
- BMP388 datasheet ()
- BMP390 datasheet ()
- BMP388 STEMMA QT Fritzing object in the Adafruit Fritzing Library ()
- BMP388 Original Version Fritzing object in the Adafruit Fritzing Library ()
- BMP390 Fritzing object in the Adafruit Fritzing Library ()
- EagleCAD PCB files on GitHub ()
- 3D models for BMP388 QT ()
- 3D models for BMP390 QT ()


Schematic and Fab Print for BMP390


© Adafruit Industries Page 36 of 40


Schematic and Fab Print for BMP388 STEMMA QT Version


© Adafruit Industries Page 37 of 40


Schematic and Fab Print for BMP388 Original Version

© Adafruit Industries Page 38 of 40

3D Model of BMP390

© Adafruit Industries Page 39 of 40

3D Model of BMP388 QT

© Adafruit Industries Page 40 of 40