

Adafruit Bluefruit LE Shield
Created by lady ada

https://learn.adafruit.com/adafruit-bluefruit-le-shield

Last updated on 2023-08-29 02:41:27 PM EDT

©Adafruit Industries Page 1 of 161

7

10

12

18

20

21

27

31

36

Table of Contents

Overview

• Why Use Adafruit's Module?

• Technical Specifications

Pinouts

• Power Pins

• SPI Pins

• Other Pins

Assembly

• Stack Alert

• Attaching Headers

Wiring

• Default Pinout

• Changing the Default Pinout

Software

Configuration!

• Which board do you have?

• Bluefruit Micro or Feather 32u4 Bluefruit

• Feather M0 Bluefruit LE

• Bluefruit LE SPI Friend

• Bluefruit LE UART Friend or Flora BLE

• Configure the Pins Used

• Common settings:

• Software UART

• Hardware UART

• Mode Pin

• SPI Pins

• Software SPI Pins

• Select the Serial Bus

• UART Based Boards (Bluefruit LE UART Friend & Flora BLE)

• SPI Based Boards (Bluefruit LE SPI Friend)

ATCommand

• Opening the Sketch

• Configuration

• Running the Sketch

BLEUart

• Opening the Sketch

• Configuration

• Running the Sketch

HIDKeyboard

• Opening the Sketch

• Configuration

• Running the Sketch

• Bonding the HID Keyboard

©Adafruit Industries Page 2 of 161

44

51

56

58

60

62

65

68

• Android

• iOS

• OS X

Controller

• Opening the Sketch

• Configuration

• Running the Sketch

• Using Bluefruit LE Connect in Controller Mode

• Streaming Sensor Data

• Control Pad Module

• Color Picker Module

HeartRateMonitor

• Opening the Sketch

• Configuration

• If Using Hardware or Software UART

• Running the Sketch

• nRF Toolbox HRM Example

• CoreBluetooth HRM Example

UriBeacon

• Opening the Sketch

• Configuration

• Running the Sketch

HALP!

AT Commands

• Test Command Mode '=?'

• Write Command Mode '=xxx'

• Execute Mode

• Read Command Mode '?'

Standard AT

• AT

• ATI

• ATZ

• ATE

• +++

General Purpose

• AT+FACTORYRESET

• AT+DFU

• AT+HELP

• AT+NVMWRITE

• AT+NVMREAD

• AT+MODESWITCHEN

Hardware

• AT+BAUDRATE

• AT+HWADC

• AT+HWGETDIETEMP

• AT+HWGPIO

• AT+HWGPIOMODE

©Adafruit Industries Page 3 of 161

75

81

84

101

• AT+HWI2CSCAN

• AT+HWVBAT

• AT+HWRANDOM

• AT+HWMODELED

• AT+UARTFLOW

Beacon

• AT+BLEBEACON

• AT+BLEURIBEACON

• Deprecated: AT+EDDYSTONEENABLE

• AT+EDDYSTONEURL

• AT+EDDYSTONECONFIGEN

• AT+EDDYSTONESERVICEEN

• AT+EDDYSTONEBROADCAST

BLE Generic

• AT+BLEPOWERLEVEL

• AT+BLEGETADDRTYPE

• AT+BLEGETADDR

• AT+BLEGETPEERADDR

• AT+BLEGETRSSI

BLE Services

• AT+BLEUARTTX

• AT+BLEUARTTXF

• AT+BLEUARTRX

• AT+BLEUARTFIFO

• AT+BLEKEYBOARDEN

• AT+BLEKEYBOARD

• AT+BLEKEYBOARDCODE

• Modifier Values

• HID Keyboard Codes

• AT+BLEHIDEN

• AT+BLEHIDMOUSEMOVE

• AT+BLEHIDMOUSEBUTTON

• AT+BLEHIDCONTROLKEY

• AT+BLEHIDGAMEPADEN

• AT+BLEHIDGAMEPAD

• AT+BLEMIDIEN

• AT+BLEMIDIRX

• AT+BLEMIDITX

• AT+BLEBATTEN

• AT+BLEBATTVAL

BLE GAP

• AT+GAPCONNECTABLE

• AT+GAPGETCONN

• AT+GAPDISCONNECT

• AT+GAPDEVNAME

• AT+GAPDELBONDS

• AT+GAPINTERVALS

• AT+GAPSTARTADV

• AT+GAPSTOPADV

• AT+GAPSETADVDATA

©Adafruit Industries Page 4 of 161

108

116

120

127

128

129

132

132

BLE GATT

• GATT Limitations

• AT+GATTCLEAR

• AT+GATTADDSERVICE

• AT+GATTADDCHAR

• AT+GATTCHAR

• AT+GATTLIST

• AT+GATTCHARRAW

Debug

• AT+DBGMEMRD

• AT+DBGNVMRD

• AT+DBGSTACKSIZE

• AT+DBGSTACKDUMP

History

• Version 0.7.7

• Version 0.7.0

• Version 0.6.7

• Version 0.6.6

• Version 0.6.5

• Version 0.6.2

• Version 0.5.0

• Version 0.4.7

• Version 0.3.0

GATT Service Details

• UART Service

UART Service

• Characteristics

• TX (0x0002)

• RX (0x0003)

Factory Reset

• Factory Reset via DFU Pin

• FactoryReset Sample Sketch

• AT+FACTORYRESET

• Factory Reset via FCTR Test Pad

DFU Updates

• Adafruit Bluefruit LE Connect

SDEP (SPI Data Transport)

• SDEP Overview

• SPI Setup

• SPI Hardware Requirements

• IRQ Pin

• SDEP Packet and SPI Error Identifier

• Sample Transaction

• SDEP (Simple Data Exchange Protocol)

• Endianness

• Message Type Indicator

• SDEP Data Transactions

• Message Types

©Adafruit Industries Page 5 of 161

143

149

160

• Existing Commands

• SDEP AT Wrapper Usage

Software Resources

• Bluefruit LE Client Apps and Libraries

• Bluefruit LE Connect (Android/Java)

• Bluefruit LE Connect (iOS/Swift)

• Bluefruit LE Connect for OS X (Swift)

• Bluefruit LE Command Line Updater for OS X (Swift)

• Deprecated: Bluefruit Buddy (OS X)

• ABLE (Cross Platform/Node+Electron)

• Bluefruit LE Python Wrapper

• Debug Tools

• AdaLink (Python)

• Adafruit nRF51822 Flasher (Python)

BLE FAQ

Downloads

• Schematic

• Fabrication Print

©Adafruit Industries Page 6 of 161

Overview

Would you like to add powerful and easy-to-use Bluetooth Low Energy to your robot,

art or other electronics project? Heck yeah! With BLE now included in modern smart

phones and tablets, its fun to add wireless connectivity. So what you really need is the

new Adafruit Bluefruit LE Shield for Arduino!

The Bluefruit LE Shield (http://adafru.it/2746) makes it easy to add Bluetooth Low

Energy connectivity to your Arduino or compatible. Solder in the included headers

and plug right in. It connects to your Arduino or other microcontroller using the

hardware SPI interface (MISO, MOSI, SCK) plus a chip select line (default D8), interrupt

line (default D7) and reset (default D4). You can rearrange any and all the pins if you'd

like, by cutting the jumpers underneath, and soldering jumper wires to your desired

pins.

If you want this in non-shield format, check out the SPI friend (). If you like Serial

communication more than SPI, we also have a breakout can talk UART ()

This multi-function module can do quite a lot! For most people, they'll be very happy

to use the standard Nordic UART RX/TX profile. In this profile, the Bluefruit acts as a

data pipe, that can 'transparently' transmit back and forth from your iOS or Android

device. You can use our iOS App () or Android App () to get started sending data from

your Arduino to your phone quickly and painlessly.

©Adafruit Industries Page 7 of 161

https://www.adafruit.com/products/2746
https://www.adafruit.com/product/2633
https://www.adafruit.com/product/2479
https://www.adafruit.com/product/2479
file:///home/deploy/bluefruit-le-connect-for-ios
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect&hl=en

Why Use Adafruit's Module?

There are plenty of BLE modules out there, with varying quality on the HW design as

well as the firmware.

One of the biggest advantages of the Adafruit Bluefruit LE family is that we wrote all

of the firmware running on the devices ourselves from scratch.

We control every line of code that runs on our modules ... and so we aren't at the

mercy of any third party vendors who may or may not be interested in keeping their

code up to date or catering to our customer's needs.

Because we control everything about the product, we add features that are important

to our customers, can solve any issues that do come up without begging any 3rd

parties, and we can even change Bluetooth SoCs entirely if the need ever arises!

©Adafruit Industries Page 8 of 161

Technical Specifications

ARM Cortex M0 core running at 16MHz

256KB flash memory

32KB SRAM

Transport: SPI at 4MHz with HW IRQ (5 pins required)

5V-safe inputs (Arduino Uno friendly, etc.)

On-board 3.3V voltage regulation

Bootloader with support for safe OTA firmware updates

Easy AT command set to get up and running quickly

•

•

•

•

•

•

•

•

©Adafruit Industries Page 9 of 161

Pinouts

Power Pins

5V: This is the power supply for the module, supply with 3.3-5V power supply

input. This will be regulated down to 3.3V to run the chip

GND: The common/GND pin for power and logic

•

•

©Adafruit Industries Page 10 of 161

SPI Pins

SCK: This is the serial clock pin, by default connected to the Hardware SPI clock

pin on the 2x3 ICSP header

MISO: This is the Microcontroller In Serial Out SPI pin (nRF51 -> Arduino

communication) by default connected to the Hardware SPI MISO pin on the 2x3

ICSP header

MOSI: This is the Microcontroller Out Serial In SPI pin (Arduino -> nRF51

communication) by default connected to the Hardware SPI MOSI pin on the 2x3

ICSP header

CS: This is the Chip Select SPI pin, which is used to indicate that the SPI device

is currently in use. By default connected to digital #8

IRQ: This is the nRF51 -> Arduino 'interrupt' pin that lets the Arduino or MCU

know when data is available on the nRF51, indicating that a new SPI transaction

should be initiated by the Arduino/MCU. By default connected to digital #7

RST: Holding this pin low will put the Bluefruit module into reset. By default

connected to digital #4

Other Pins

SWCLK: This is the SWD clock pin (SWCLK), 3v logic - for advanced hackers!

SWDIO: This is the SWD data pin (SWDIO), 3v logic - for advanced hackers!

•

•

•

•

•

•

•

•

©Adafruit Industries Page 11 of 161

F.RST: This is the factory reset pin. When all else fails and you did something to

really weird out your module, tie this pad to ground while powering up the

module and it will factory reset. You should try the DFU reset method first

though (see that tutorial page).

DFU Button: pushing this button when you power the shield up will force the

Bluefruit LE module to enter a special firmware update mode to update the

firmware over the air.

Once the device is powered up, this pin can also be used to perform a factory

reset. Press the button for >5s until the two LEDs start to blink, then release the

pin (set it to 5V or logic high) and a factory reset will be performed.

Assembly

Stack Alert

•

•

If you want to stack a shield on top of the Bluefruit LE Shield, you'll want to pick

up some stacking headers and use those instead of the plain header shown here!

©Adafruit Industries Page 12 of 161

Wanna stack? This tutorial shows how to

use the plain header to connect to an

Arduino. If you want to use stacking

headers (), don't follow these steps!

Attaching Headers

This step is for all Arduino and compatibles. Please note that we use the hardware SPI

port (the 2x3 pins) for talking to the Bluefruit LE module. If that port is not available

you'll have to jumper the SCK/MOSI/MISO pins to other pins and use 'software SPI'!

Begin by breaking the 36-pin male header

into four pieces: one 10-pin, two 8-pin and

one 6-pin. Stick the header into the

Arduino sockets with the long pins down.

Also place the 2x3 female socket header

into the ICSP header on the right of the

board

©Adafruit Industries Page 13 of 161

https://learn.adafruit.com//assets/28001
https://learn.adafruit.com//assets/28001
https://www.adafruit.com/product/85
https://www.adafruit.com/product/85
https://learn.adafruit.com//assets/28002
https://learn.adafruit.com//assets/28002
https://learn.adafruit.com//assets/28003
https://learn.adafruit.com//assets/28003

Place the shield on top so that all the little

pins stick out through the matching holes

in the shield. It should match up perfectly!

©Adafruit Industries Page 14 of 161

https://learn.adafruit.com//assets/28004
https://learn.adafruit.com//assets/28004

Solder in all the header on the top strips

©Adafruit Industries Page 15 of 161

https://learn.adafruit.com//assets/28005
https://learn.adafruit.com//assets/28005
https://learn.adafruit.com//assets/28006
https://learn.adafruit.com//assets/28006
https://learn.adafruit.com//assets/28007
https://learn.adafruit.com//assets/28007

Don't forget the 6-pin socket!

©Adafruit Industries Page 16 of 161

https://learn.adafruit.com//assets/28008
https://learn.adafruit.com//assets/28008
https://learn.adafruit.com//assets/28009
https://learn.adafruit.com//assets/28009

Now solder in the other strip of header

©Adafruit Industries Page 17 of 161

https://learn.adafruit.com//assets/28010
https://learn.adafruit.com//assets/28010
https://learn.adafruit.com//assets/28011
https://learn.adafruit.com//assets/28011
https://learn.adafruit.com//assets/28012
https://learn.adafruit.com//assets/28012

Check your solder points, all look good?

You can proceed to the next steps

Wiring

Default Pinout

To make things fast, we attached all the pins required to a default pin out. In order to

follow along with the default tutorial wiring, the Bluefruit LE SPI Friend should not be

modified and will use the following pins:

©Adafruit Industries Page 18 of 161

https://learn.adafruit.com//assets/28013
https://learn.adafruit.com//assets/28013

Bluefruit LE SPI Pins

SCK

MISO

MOSI

CS

IRQ

RST

Arduino Pins

Hardware SPI SCK

Hardware SPI MISO

hardware SPI MOSI

8

7

4

We'll be using hardware SPI by default (). Those pins are shared with other digital

pins. For example, it uses the UNO's hardware pins #13, #12 and #11.

If you have an Uno or compatible (Atmega328) with the 2x3 header missing, you can

short the jumpers on the bottom of the shield to hard-connect SCK/MISO/MOSI to

13/12/11.

If you don't want to use the 2x3 hardware SPI for some reason, you can always use so

ftware SPI, which is a tad slower but can use any 3 pins. Just solder jumper wires from

the SCK/MISO/MOSI breakouts to whatever pins you like.

Changing the Default Pinout

The examples sketches may use slightly different pins. If you wish to change the

location of the CS, IRQ or RST pins, open the BluefruitConfig.h file in the example

folder of the example you are using, and change the pin to an appropriate value (See

the Software section of this tutorial for instructions on installing the library):

#define BLUEFRUIT_SPI_CS 8
#define BLUEFRUIT_SPI_IRQ 7
#define BLUEFRUIT_SPI_RST 4

If you want to use software (bitbang) SPI, you can change the SCK, MISO and MOSI

pins using the following macros in the same file:

#define BLUEFRUIT_SPI_SCK 13
#define BLUEFRUIT_SPI_MISO 12
#define BLUEFRUIT_SPI_MOSI 11

The BluefruitConfig.h file can be found in a dedicated tab, as shown below:

©Adafruit Industries Page 19 of 161

https://www.arduino.cc/en/Reference/SPI
https://www.arduino.cc/en/Reference/SPI

For all the example code, we have at the top of the sketch a few different ways you

can communicate with the Bluefruit LE: hardware serial, software serial, hardware SPI

and software SPI.

For the SPI Bluefruit, you cannot use serial. However, you can choose between

hardware and software SPI.

If you want to use hardware SPI, uncomment this chunk of code (and comment out the

other three options)

/* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user selected CS/
IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ,
BLUEFRUIT_SPI_RST);

If you want to use software/bitbang SPI, uncomment the following definition. You can

then use any 6 pins (or 5, if you dont want to use RST)

/* ...software SPI, using SCK/MOSI/MISO user-defined SPI pins and then user
selected CS/IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_SCK, BLUEFRUIT_SPI_MISO,
 BLUEFRUIT_SPI_MOSI, BLUEFRUIT_SPI_CS,
 BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);

Software

In order to try out our demos, you'll need to download the Adafruit BLE library for the

nRF51 based modules such as this one (a.k.a. Adafruit_BluefruitLE_nRF51)

You can check out the code here at github, () but its likely easier to just download by

clicking:

©Adafruit Industries Page 20 of 161

https://github.com/adafruit/Adafruit_BluefruitLE_nRF51

Download

Adafruit_BluefruitLE_nRF51

Rename the uncompressed folder Adafruit_BluefruitLE_nRF51 and check that the Ada

fruit_BluefruitLE_nRF51 folder contains Adafruit_BLE.cpp and Adafruit_BLE.h (as well

as a bunch of other files)

Place the Adafruit_BluefruitLE_nRF51 library folder your arduinosketchfolder/libraries/

folder.

You may need to create the libraries subfolder if its your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use ()

After restarting, check that you see the library folder with examples:

Configuration!

Which board do you have?

There's a few products under the Bluefruit name:

Before you start uploading any of the example sketches, you'll need to

CONFIGURE the Bluefruit interface - there's a lot of options so pay close

attention!

©Adafruit Industries Page 21 of 161

https://github.com/adafruit/Adafruit_BluefruitLE_nRF51/archive/master.zip
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

If you are using the Bluefruit LE Shield

then you have an SPI-connected

NRF51822 module. You can use this with

Atmega328 (Arduino UNO or compatible),

ATmega32u4 (Arduino Leonardo,

compatible) or ATSAMD21 (Arduino Zero,

compatible) and possibly others.

Your pinouts are Hardware SPI, CS = 8,

IRQ = 7, RST = 4

Bluefruit Micro or Feather
32u4 Bluefruit
If you have a Bluefruit Micro or Feather

32u4 Bluefruit LE then you have an

ATmega32u4 chip with Hardware SPI, CS =

8, IRQ = 7, RST = 4

Feather M0 Bluefruit LE
If you have a Feather M0 Bluefruit LE then

you have an ATSAMD21 chip with

Hardware SPI, CS = 8, IRQ = 7, RST = 4

©Adafruit Industries Page 22 of 161

https://learn.adafruit.com//assets/29590
https://learn.adafruit.com//assets/29590
https://learn.adafruit.com//assets/29592
https://learn.adafruit.com//assets/29592
https://learn.adafruit.com//assets/29698
https://learn.adafruit.com//assets/29698

Bluefruit LE SPI Friend
If you have a stand-alone module, you

have a bit of flexibility with wiring however

we strongly recommend Hardware SPI, CS

= 8, IRQ = 7, RST = 4

You can use this with just about any

microcontroller with 5 or 6 pins

Bluefruit LE UART Friend or
Flora BLE
If you have a stand-alone UART module

you have some flexibility with wiring.

However we suggest hardware UART if

possible. You will likely need to use the

flow control CTS pin if you are not using

hardware UART. There's also a MODE pin

You can use this with just about any

microcontroller with at least 3 pins, but

best used with a Hardware Serial/UART

capable chip!

Configure the Pins Used

You'll want to check the Bluefruit Config to set up the pins you'll be using for UART or

SPI

Each example sketch has a secondary tab with configuration details. You'll want to

edit and save the sketch to your own documents folder once set up.

©Adafruit Industries Page 23 of 161

https://learn.adafruit.com//assets/29594
https://learn.adafruit.com//assets/29594
https://learn.adafruit.com//assets/29595
https://learn.adafruit.com//assets/29595
https://learn.adafruit.com//assets/29596
https://learn.adafruit.com//assets/29596

Common settings:

You can set up how much RAM to set aside for a communication buffer and whether

you want to have full debug output. Debug output is 'noisy' on the serial console but

is handy since you can see all communication between the micro and the BLE

//
--
// These settings are used in both SW UART, HW UART and SPI mode
//
--
#define BUFSIZE 128 // Size of the read buffer for
incoming data
#define VERBOSE_MODE true // If set to 'true' enables debug
output

Software UART

If you are using Software UART, you can set up which pins are going to be used for

RX, TX, and CTS flow control. Some microcontrollers are limited on which pins can be

used! Check the SoftwareSerial library documentation for more details

// SOFTWARE UART SETTINGS
#define BLUEFRUIT_SWUART_RXD_PIN 9 // Required for software serial!
#define BLUEFRUIT_SWUART_TXD_PIN 10 // Required for software serial!
#define BLUEFRUIT_UART_CTS_PIN 11 // Required for software serial!
#define BLUEFRUIT_UART_RTS_PIN -1 // Optional, set to -1 if unused

Hardware UART

If you have Hardware Serial, there's a 'name' for it, usually Serial1 - you can set that up

here:

// HARDWARE UART SETTINGS
#ifdef Serial1 // this makes it not complain on compilation if there's no Serial1

©Adafruit Industries Page 24 of 161

 #define BLUEFRUIT_HWSERIAL_NAME Serial1
#endif

Mode Pin

For both hardware and software serial, you will likely want to define the MODE pin.

There's a few sketches that dont use it, instead depending on commands to set/unset

the mode. Its best to use the MODE pin if you have a GPIO to spare!

#define BLUEFRUIT_UART_MODE_PIN 12 // Set to -1 if unused

SPI Pins

For both Hardware and Software SPI, you'll want to set the CS (chip select) line, IRQ

(interrupt request) line and if you have a pin to spare, RST (Reset)

// SHARED SPI SETTINGS
#define BLUEFRUIT_SPI_CS 8
#define BLUEFRUIT_SPI_IRQ 7
#define BLUEFRUIT_SPI_RST 4 // Optional but recommended, set to -1
if unused

Software SPI Pins

If you don't have a hardware SPI port available, you can use any three pins...its a tad

slower but very flexible

// SOFTWARE SPI SETTINGS
#define BLUEFRUIT_SPI_SCK 13
#define BLUEFRUIT_SPI_MISO 12
#define BLUEFRUIT_SPI_MOSI 11

Select the Serial Bus

Once you've configured your pin setup in the BluefruitConfig.h file, you can now

check and adapt the example sketch.

Refer to the table above to determine whether you have SPI or UART controlled

Bluefruits!

©Adafruit Industries Page 25 of 161

The Adafruit_BluefruitLE_nRF51 library supports four different serial bus options,

depending on the HW you are using: SPI both hardware and software type, and UART

both hardware and software type.

UART Based Boards (Bluefruit LE UART Friend & Flora
BLE)

This is for Bluefruit LE UART Friend & Flora BLE boards. You can use either software

serial or hardware serial. Hardware serial is higher quality, and less risky with respect

to losing data. However, you may not have hardware serial available! Software serial

does work just fine with flow-control and we do have that available at the cost of a

single GPIO pin.

For software serial (Arduino Uno, Adafruit Metro) you should uncomment the software

serial contructor below, and make sure the other three options (hardware serial & SPI)

are commented out.

// Create the bluefruit object, either software serial...uncomment these lines
SoftwareSerial bluefruitSS = SoftwareSerial(BLUEFRUIT_SWUART_TXD_PIN,
BLUEFRUIT_SWUART_RXD_PIN);

Adafruit_BluefruitLE_UART ble(bluefruitSS, BLUEFRUIT_UART_MODE_PIN,
 BLUEFRUIT_UART_CTS_PIN, BLUEFRUIT_UART_RTS_PIN);

For boards that require hardware serial (Adafruit Flora, etc.), uncomment the

hardware serial constructor, and make sure the other three options are commented

out

/* ...or hardware serial, which does not need the RTS/CTS pins. Uncomment this line
*/
Adafruit_BluefruitLE_UART ble(BLUEFRUIT_HWSERIAL_NAME, BLUEFRUIT_UART_MODE_PIN);

SPI Based Boards (Bluefruit LE SPI Friend)

For SPI based boards, you should uncomment the hardware SPI constructor below,

making sure the other constructors are commented out:

/* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user selected CS/
IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ,
BLUEFRUIT_SPI_RST);

If for some reason you can't use HW SPI, you can switch to software mode to bit-bang

the SPI transfers via the following constructor:

©Adafruit Industries Page 26 of 161

/* ...software SPI, using SCK/MOSI/MISO user-defined SPI pins and then user
selected CS/IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_SCK, BLUEFRUIT_SPI_MISO,
 BLUEFRUIT_SPI_MOSI, BLUEFRUIT_SPI_CS,
 BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);

ATCommand

The ATCommand example allows you to execute AT commands from your sketch, and

see the results in the Serial Monitor. This can be useful for debugging, or just testing

different commands out to see how they work in the real world. It's a good one to

start with!

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples >

Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE and select atcommand:

This will open up a new instance of the example in the IDE, as shown below:

©Adafruit Industries Page 27 of 161

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware

UART or Software/Hardware SPI. The default is hardware SPI

If using software or hardware Serial UART:

This tutorial does not need to use the MODE pin, make sure you have the mode

switch in CMD mode if you do not configure & connect a MODE pin

Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not

using it! (The Flora has this already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and

the upload process has finished, open up the Serial Monitor via Tools > Serial Monitor,

and make sure that the baud rate in the lower right-hand corner is set to 115200:

•

•

©Adafruit Industries Page 28 of 161

To send an AT command to the Bluefruit LE module, enter the command in the textbox

at the top of the Serial Monitor and click the Send button:

The response to the AT command will be displayed in the main part of the Serial

Monitor. The response from 'ATI' is shown below:

©Adafruit Industries Page 29 of 161

You can do pretty much anything at this prompt, with the AT command set. Try AT+HE

LP to get a list of all commands, and try out ones like AT+HWGETDIETEMP (get

temperature at the nRF51822 die) and AT+HWRANDOM (generate a random number)

©Adafruit Industries Page 30 of 161

BLEUart

The BLEUart example sketch allows you to send and receive text data between the

Arduino and a connected Bluetooth Low Energy Central device on the other end

(such as you mobile phone using the Adafruit Bluefruit LE Connect application for And

roid () or iOS () in UART mode).

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples >

Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE and select bleuart_cmdmode:

This will open up a new instance of the example in the IDE, as shown below:

©Adafruit Industries Page 31 of 161

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware

UART or Software/Hardware SPI. The default is hardware SPI

If using software or hardware Serial UART:

This tutorial does not need to use the MODE pin, make sure you have the mode

switch in CMD mode if you do not configure & connect a MODE pin

Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not

using it! (The Flora has this already done)

•

•

©Adafruit Industries Page 32 of 161

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and

the upload process has finished, open up the Serial Monitor via Tools > Serial Monitor,

and make sure that the baud rate in the lower right-hand corner is set to 115200:

Once you see the request, use the App to connect to the Bluefruit LE module in UART

mode so you get the text box on your phone

Any text that you type in the box at the top of the Serial Monitor will be sent to the

connected phone, and any data sent from the phone will be displayed in the serial

monitor:

©Adafruit Industries Page 33 of 161

You can see the incoming string here in the Adafruit Bluefruit LE Connect app below

(iOS in this case):

©Adafruit Industries Page 34 of 161

The response text ('Why hello, Arduino!') can be seen below:

©Adafruit Industries Page 35 of 161

HIDKeyboard

The HIDKeyboard example shows you how you can use the built-in HID keyboard AT

commands to send keyboard data to any BLE-enabled Android or iOS phone, or other

device that supports BLE HID peripherals.

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples >

Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE and select hidkeyboard:

©Adafruit Industries Page 36 of 161

This will open up a new instance of the example in the IDE, as shown below:

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware

UART or Software/Hardware SPI. The default is hardware SPI

If using software or hardware Serial UART:

This tutorial does not need to use the MODE pin, make sure you have the mode

switch in CMD mode!

•

©Adafruit Industries Page 37 of 161

Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not

using it! (The Flora has this already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and

the upload process has finished, open up the Serial Monitor via Tools > Serial Monitor,

and make sure that the baud rate in the lower right-hand corner is set to 115200:

•

©Adafruit Industries Page 38 of 161

To send keyboard data, type anything into the textbox at the top of the Serial Monitor

and click the Send button.

©Adafruit Industries Page 39 of 161

Bonding the HID Keyboard

Before you can use the HID keyboard, you will need to 'bond' it to your phone or PC.

 The bonding process establishes a permanent connection between the two devices,

meaning that as soon as your phone or PC sees the Bluefruit LE module again it will

automatically connect.

The exact procedures for bonding the keyboard will varying from one platform to

another.

Android

To bond the keyboard on a Bluetooth Low Energy enabled Android device, go to

the Settings application and click the Bluetooth icon.

Inside the Bluetooth setting panel you should see the Bluefruit LE module advertising

itself as Bluefruit Keyboard under the 'Available devices' list:

When you no longer need a bond, or wish to bond the Bluefruit LE module to

another device, be sure to delete the bonding information on the phone or PC,

otherwise you may not be able to connect on a new device!

These screenshots are based on Android 5.0 running on a Nexus 7 2013. The

exact appearance may vary depending on your device and OS version.

©Adafruit Industries Page 40 of 161

Tapping the device will start the bonding process, which should end with the Bluefruit

Keyboard device being moved to a new 'Paired devices' list with 'Connected' written

underneath the device name:

To delete the bonding information, click the gear icon to the right of the device name

and the click the Forget button:

©Adafruit Industries Page 41 of 161

iOS

To bond the keyboard on an iOS device, go to the Settings application on your phone,

and click the Bluetooth menu item.

The keyboard should appear under the OTHER DEVICES list:

Once the bonding process is complete the device will be moved to the MY DEVICES

category, and you can start to use the Bluefruit LE module as a keyboard:

To unbond the device, click the 'info' icon and then select the Forget this Device

option in the menu:

©Adafruit Industries Page 42 of 161

OS X

To bond the keyboard on an OS X device, go to the Bluetooth Preferences window

and click the Pair button beside the Bluefruit Keyboard device generated by this

example sketch:

To unbond the device once it has been paired, click the small 'x' icon beside Bluefruit

Keyboard:

©Adafruit Industries Page 43 of 161

... and then click the Remove button when the confirmation dialogue box pops up:

Controller

The Controller sketch allows you to turn your BLE-enabled iOS or Android device in a

hand-held controller or an external data source, taking advantage of the wealth of

sensors on your phone or tablet.

You can take accelerometer or quaternion data from your phone, and push it out to

your Arduino via BLE, or get the latest GPS co-ordinates for your device without

having to purchase (or power!) any external HW.

Opening the Sketch

To open the Controller sketch, click on the File > Examples >

Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE and select controller:

©Adafruit Industries Page 44 of 161

This will open up a new instance of the example in the IDE, as shown below:

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware

UART or Software/Hardware SPI. The default is hardware SPI

If using software or hardware Serial UART:

This tutorial will also be easier to use if you wire up the MODE pin, you can use

any pin but our tutorial has pin 12 by default. You can change this to any pin. If

•

©Adafruit Industries Page 45 of 161

you do not set the MODE pin then make sure you have the mode switch in CMD

mode

If you are using a Flora or otherwise don't want to wire up the Mode pin, set the

BLUEFRUIT_UART_MODE_PIN to -1 in the configuration tab so that the sketch

will use the +++ method to switch between Command and Data mode!

Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not

using it! (The Flora has this already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and

the upload process has finished, open up the Serial Monitor via Tools > Serial Monitor,

and make sure that the baud rate in the lower right-hand corner is set to 115200:

Using Bluefruit LE Connect in Controller
Mode

Once the sketch is running you can open Adafruit's Bluefruit LE Connect application

(available for Android () or iOS ()) and use the Controller application to interact with

the sketch. (If you're new to Bluefruit LE Connect, have a look at our dedicated

Bluefruit LE Connect learning guide ().)

•

•

©Adafruit Industries Page 46 of 161

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
file:///home/bluefruit-le-connect-for-ios/settings
file:///home/bluefruit-le-connect-for-ios/settings

On the welcome screen, select the Adafruit Bluefruit LE device from the list of BLE

devices in range:

Then from the activity list select Controller:

This will bring up a list of data points you can send from your phone or tablet to your

Bluefruit LE module, by enabling or disabling the appropriate sensor(s).

Streaming Sensor Data

You can take Quaternion (absolute orientation), Accelerometer, Gyroscope,

Magnetometer or GPS Location data from your phone and send it directly to your

Arduino from the Controller activity.

By enabling the Accelerometer field, for example, you should see accelerometer data

update in the app:

©Adafruit Industries Page 47 of 161

The data is parsed in the example sketch and output to the Serial Monitor as follows:

Accel 0.20-0.51 -0.76
Accel 0.22-0.50 -0.83
Accel 0.25-0.51 -0.83
Accel 0.21-0.47 -0.76
Accel 0.27-0.48 -0.82

©Adafruit Industries Page 48 of 161

Note that even though we only print 2 decimal points, the values are received from

the App as a full 4-byte floating point.

Control Pad Module

You can also use the Control Pad Module to capture button presses and releases by

selecting the appropriate menu item:

This will bring up the Control Pad panel, shown below:

Button presses and releases will all be logged to the Serial Monitor with the ID of the

button used:

Button 8 pressed
Button 8 released
Button 3 pressed
Button 3 released

Color Picker Module

You can also send RGB color data via the Color Picker module, which presents the

following color selection dialogue:

©Adafruit Industries Page 49 of 161

This will give you Hexadecimal color data in the following format:

RGB #A42FFF

You can combine the color picker and controller sample sketches to make color-

configurable animations triggered by buttons in the mobile app-- very handy for

©Adafruit Industries Page 50 of 161

wearables! Download this combined sample code (configured for Feather but easy to

adapt to FLORA, BLE Micro, etc.) to get started:

feather_bluefruit_neopixel_animation_controller.zip

HeartRateMonitor

The HeartRateMonitor example allows you to define a new GATT Service and

associated GATT Characteristics, and update the characteristic values using standard

AT commands.

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples >

Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE and select heartratemonitor:

This will open up a new instance of the example in the IDE, as shown below:

©Adafruit Industries Page 51 of 161

https://learn.adafruit.com/system/assets/assets/000/029/260/original/feather_bluefruit_neopixel_animation_controller.zip?1450791688

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware

UART or Software/Hardware SPI. The default is hardware SPI

If Using Hardware or Software UART

This tutorial does not need to use the MODE pin, make sure you have the mode

switch in CMD mode if you do not configure & connect a MODE pin

This demo uses some long data transfer strings, so we recommend defining and

connecting both CTS and RTS to pins, even if you are using hardware serial.

©Adafruit Industries Page 52 of 161

If you are using a Flora or just dont want to connect CTS or RTS, set the pin #define's

to -1 and Don't forget to also connect the CTS pin on the Bluefruit to ground! (The

Flora has this already done)

If you are using RTS and CTS, you can remove this line below, which will slow down

the data transmission

// this line is particularly required for Flora, but is a good idea
 // anyways for the super long lines ahead!
 ble.setInterCharWriteDelay(5); // 5 ms

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and

the upload process has finished, open up the Serial Monitor via Tools > Serial Monitor,

and make sure that the baud rate in the lower right-hand corner is set to 115200:

©Adafruit Industries Page 53 of 161

If you open up an application on your mobile device or laptop that support the

standard Heart Rate Monitor Service (), you should be able to see the heart rate being

updated in sync with the changes seen in the Serial Monitor:

nRF Toolbox HRM Example

The image below is a screenshot from the free nRF Toolbox () application from Nordic

on Android (also available on iOS ()), showing the incoming Heart Rate Monitor data:

©Adafruit Industries Page 54 of 161

https://developer.bluetooth.org/TechnologyOverview/Pages/HRS.aspx
https://play.google.com/store/apps/details?id=no.nordicsemi.android.nrftoolbox&hl=en
https://itunes.apple.com/app/nrf-toolbox/id820906058?mt=8

CoreBluetooth HRM Example

The image below is from a freely available CoreBluetooth sample application () from

Apple showing how to work with Bluetooth Low Energy services and characteristics:

©Adafruit Industries Page 55 of 161

https://developer.apple.com/library/mac/samplecode/HeartRateMonitor/Introduction/Intro.html

UriBeacon

The UriBeacon example shows you how to use the built-in UriBeacon AT commands

to configure the Bluefruit LE module as a UriBeacon advertiser, following Google's

Physical Web UriBeacon () specification.

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples >

Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE and select uribeacon:

This will open up a new instance of the example in the IDE, as shown below. You can

edit the URL that the beacon will point to, from the default http://www.adafruit.com or

just upload as is to test

©Adafruit Industries Page 56 of 161

https://github.com/google/uribeacon

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware

UART or Software/Hardware SPI. The default is hardware SPI

If using software or hardware Serial UART:

This tutorial does not need to use the MODE pin, make sure you have the mode

switch in CMD mode if you do not configure & connect a MODE pin

Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not

using it! (The Flora has this already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and

the upload process has finished, open up the Serial Monitor via Tools > Serial Monitor,

and make sure that the baud rate in the lower right-hand corner is set to 115200:

•

•

©Adafruit Industries Page 57 of 161

At this point you can open the Physical Web Application for Android () or for iOS (),

and you should see a link advertising Adafruit's website:

HALP!

When using the Bluefruit Micro or a Bluefruit LE with
Flora/Due/Leonardo/Micro the examples dont run?

We add a special line to setup() to make it so the Arduino will halt until it sees

you've connected over the Serial console. This makes debugging great but makes

it so you cannot run the program disconnected from a computer.

©Adafruit Industries Page 58 of 161

https://play.google.com/store/apps/details?id=physical_web.org.physicalweb
https://itunes.apple.com/us/app/physical-web/id927653608?mt=8

Solution? Once you are done debugging, remove these two lines from setup()

 while (!Serial);
 delay(500);

I can't seem to "Find" the Bluefruit LE!

Getting something like this?

For UART/Serial Bluefruits:

Check you have the MODE switch in CMD and the MODE pin not wired to

anything if it isnt used!

If you are trying to control the MODE from your micro, make sure you set the

MODE pin in the sketch

Make sure you have RXI and TXO wired right! They are often swapped by

accident

Make sure CTS is tied to GND if you are using hardware serial and not using

CTS

Check the MODE red LED, is it blinking? If its blinking continuously, you might be

in DFU mode, power cycle the module!

If you are using Hardware Serial/Software Serial make sure you know which one

and have that set up

If using SPI Bluefruit:

Make sure you have all 5 (or 6) wires connected properly.

•

•

•

•

•

•

•

©Adafruit Industries Page 59 of 161

If using hardware SPI, you need to make sure you're connected to the hardware

SPI port, which differs depending on the main chipset.

If using Bluefruit Micro:

Make sure you change the RESET pin to #4 in any Config file. Also be sure you

are using hardware SPI to connect!

AT Commands

The Bluefruit LE modules use a Hayes AT-style command set ()to configure the

device.

The advantage of an AT style command set is that it's easy to use in machine to

machine communication, while still being somewhat user friendly for humans.

Test Command Mode '=?'

'Test' mode is used to check whether or not the specified command exists on the

system or not.

Certain firmware versions or configurations may or may not include a specific

command, and you can determine if the command is present by taking the command

name and appending '=?' to it, as shown below

AT+BLESTARTADV=?

If the command is present, the device will reply with 'OK'. If the command is not

present, the device will reply with 'ERROR'.

AT+BLESTARTADV=?
OK\r\n
AT+MISSINGCMD=?
ERROR\r\n

Write Command Mode '=xxx'

'Write' mode is used to assign specific value(s) to the command, such as changing the

radio's transmit power level using the command we used above.

•

•

©Adafruit Industries Page 60 of 161

http://en.wikipedia.org/wiki/Hayes_command_set

To write a value to the command, simple append an '=' sign to the command followed

by any paramater(s) you wish to write (other than a lone '?' character which will be

interpretted as tet mode):

AT+BLEPOWERLEVEL=-8

If the write was successful, you will generally get an 'OK' response on a new line, as

shown below:

AT+BLEPOWERLEVEL=-8
OK\r\n

If there was a problem with the command (such as an invalid parameter) you will get

an 'ERROR' response on a new line, as shown below:

AT+BLEPOWERLEVEL=3
ERROR\r\n

Note: This particular error was generated because '3' is not a valid value for the

AT+BLEPOWERLEVEL command. Entering '-4', '0' or '4' would succeed since these

are all valid values for this command.

Execute Mode

'Execute' mode will cause the specific command to 'run', if possible, and will be used

when the command name is entered with no additional parameters.

AT+FACTORYRESET

You might use execute mode to perform a factory reset, for example, by executing the

AT+FACTORYRESET command as follows:

AT+FACTORYRESET
OK\r\n

NOTE: Many commands that are means to be read will perform the same action

whether they are sent to the command parser in 'execute' or 'read' mode. For

example, the following commands will produce identical results:

AT+BLEGETPOWERLEVEL
-4\r\n
OK\r\n
AT+BLEGETPOWERLEVEL?

©Adafruit Industries Page 61 of 161

-4\r\n
OK\r\n

If the command doesn't support execute mode, the response will normally be 'ERROR'

on a new line.

Read Command Mode '?'

'Read' mode is used to read the current value of a command.

Not every command supports read mode, but you generally use this to retrieve

information like the current transmit power level for the radio by appending a '?' to the

command, as shown below:

AT+BLEPOWERLEVEL?

If the command doesn't support read mode or if there was a problem with the

request, you will normally get an 'ERROR' response.

If the command read was successful, you will normally get the read results followed

by 'OK' on a new line, as shown below:

AT+BLEPOWERLEVEL?
-4\r\n
OK\r\n

Note: For simple commands, 'Read' mode and 'Execute' mode behave identically.

Standard AT

The following standard Hayes/AT commands are available on Bluefruit LE modules:

AT

Acts as a ping to check if we are in command mode. If we are in command mode, we

should receive the 'OK' response.

Codebase Revision: 0.3.0

Parameters: None

Output: None

©Adafruit Industries Page 62 of 161

AT
OK

ATI

Displays basic information about the Bluefruit module.

Codebase Revision: 0.3.0

Parameters: None

Output: Displays the following values:

Board Name

Microcontroller/Radio SoC Name

Unique Serial Number

Core Bluefruit Codebase Revision

Project Firmware Revision

Firmware Build Date

Softdevice, Softdevice Version, Bootloader Version (0.5.0+)

ATI
BLEFRIEND
nRF51822 QFAAG00
FB462DF92A2C8656
0.5.0
0.5.0
Feb 24 2015
S110 7.1.0, 0.0
OK

Updates:

Version 0.4.7+ of the firmware adds the chip revision after the chip name if it can

be detected (ex. 'nRF51822 QFAAG00').

Version 0.5.0+ of the firmware adds a new 7th record containing the softdevice,

softdevice version and bootloader version (ex. 'S110 7.1.0, 0.0').

ATZ

Performs a system reset.

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 63 of 161

Codebase Revision: 0.3.0

Parameters: None

Output: None

ATZ
OK

ATE

Enables or disables echo of input characters with the AT parser

Codebase Revision: 0.3.0

Parameters: '1' = enable echo, '0' = disable echo

Output: None

Disable echo support
ATE=0
OK
#Enable echo support
ATE=1
OK

+++

Dynamically switches between DATA and COMMAND mode without changing the

physical CMD/UART select switch.

When you are in COMMAND mode, entering '+++\n' or '+++\r\n' will cause the module

to switch to DATA mode, and anything typed into the console will go direct to the

BLUE UART service.

To switch from DATA mode back to COMMAND mode, simply enter '+++\n' or '+++\r\n'

again (be sure to include the new line character!), and a new 'OK' response will be

displayed letting you know that you are back in COMMAND mode (see the two 'OK'

entries in the sample code below).

Codebase Revision: 0.4.7

©Adafruit Industries Page 64 of 161

Parameters: None

Output: None

ATI
BLEFRIEND
nRF51822 QFAAG00
B122AAC33F3D2296
0.4.6
0.4.6
Dec 22 2014
OK
+++
OK
OK

General Purpose

The following general purpose commands are available on all Bluefruit LE modules:

AT+FACTORYRESET

Clears any user config data from non-volatile memory and performs a factory reset

before resetting the Bluefruit module.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+FACTORYRESET
OK

Note that +++ can also be used on the mobile device to send and receive AT

command on iOS or Android, though this should always be used with care.

See the AT+MODESWITCHEN command to control the availability of the +++

command

As of version 0.5.0+ of the firmware, you can perform a factory reset by holding

the DFU button down for 10s until the blue CONNECTED LED lights up, and then

releasing the button.

©Adafruit Industries Page 65 of 161

AT+DFU

Forces the module into DFU mode, allowing over the air firmware updates using a

dedicated DFU app on iOS or Android.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+DFU
OK

AT+HELP

Displays a comma-separated list of all AT parser commands available on the system.

Codebase Version: 0.3.0

Parameters: None

Output: A comma-separated list of all AT parser commands available on the system.

AT+HELP
AT+FACTORYRESET,AT+DFU,ATZ,ATI,ATE,AT+DBGMEMRD,AT+DBGNVMRD,AT+HWLEDPOLARITY,AT+HWLED,AT+HWGETDIETEMP,AT+HWMODEPINPOLARITY,AT+HWMODEPIN,AT+HWGPIOMODE,AT+HWGPIO,AT+HWI2CSCAN,AT+HWADC,AT+HWVBAT,AT+HWPWM,AT+HWPWRDN,AT+BLEPOWERLEVEL,AT+BLEGETADDRTYPE,AT+BLEGETADDR,AT+BLEBEACON,AT+BLEGETRSSI,AT+GAPGETCONN,AT+GAPDISCONNECT,AT+GAPDEVNAME,AT+GAPDELBONDS,AT+GAPINTERVALS,AT+GAPSTARTADV,AT+GAPSTOPADV,AT+GAPAUTOADV,AT+GAPSETADVDATA,AT+BLEUARTTX,AT+BLEUARTRX,AT+GATTADDSERVICE,AT+GATTADDCHAR,AT+GATTCHAR,AT+GATTLIST,AT+GATTCLEAR,AT+HELP
OK

AT+NVMWRITE

Writes data to the 256 byte user non-volatile memory (NVM) region.

The AT parser will no longer responsd after the AT+DFU command is entered,

since normal program execution effectively halts and a full system reset is

performed to start the bootloader code

The sample code below may not match future firmware releases and is provided

for illustration purposes only

©Adafruit Industries Page 66 of 161

Codebase Version: 0.7.0

Parameters:

offset: The numeric offset for the first byte from the starting position in the user

NVM

datatype: Which can be one of STRING (1), BYTEARRAY (2) or INTEGER (3)

data: The data to write to NVM memory (the exact payload format will change

based on the specified datatype).

Output: Nothing

Write 32768 as an integer starting at byte 16 in user NVM
AT+NVMWRITE=16,INTEGER,32768
OK

AT+NVMREAD

Reads data from the 256 byte user non-volatile memory (NVM) region.

Codebase Version: 0.7.0

Parameters:

offset: The numeric offset for the first byte from the starting position in the user

NVM

size: The number of bytes to read

datatype: The type used for the data being read, which is required to properly

parse the data and display it as a response. The value can be one of STRING (1),

BYTEARRAY (2) or INTEGER (3)

Output: The data read back, formatted based on the datatype argument.

Read an integer back from position 16 in user NVM
AT+NVMREAD=16, 4, INTEGER
32768
OK

•

•

•

•

•

•

©Adafruit Industries Page 67 of 161

AT+MODESWITCHEN

Enables or disables mode switches via the '+++' command on the BLE peripheral of

BLE UART side of the connection.

Codebase Version: 0.7.1

Parameters:

location: This can be a string, either 'local' or 'ble' indicating which side should

have the '+++' command enabled or disabled, 'local' being the Bluefruit

peripheral and 'ble' being the phone or tablet.

state: '0' to disable '+++' mode switches, '1' to enable them.

Output: None

Disable reomte '+++' mode switches
AT+MODESWITCHEN=ble,0
OK

Hardware

The following commands allow you to interact with the low level HW on the Bluefruit

LE module, such as reading or toggling the GPIO pins, performing an ADC conversion

,etc.:

AT+BAUDRATE

Changes the baud rate used by the HW UART peripheral on the nRF51822. Note that

we do not recommend using higher baudrates than 9600 because the nRF51 UART

can drop characters!

Codebase Revision: 0.7.0

Parameters: Baud rate, which must be one of the following values:

1200

•

•

By default, '+++' is enabled locally, and disabled in BLE

•

©Adafruit Industries Page 68 of 161

2400

4800

9600

14400

19200

28800

38400

57600

76800

115200

230400

250000

460800

921600

1000000

Output: The current baud rate

Set the baud rate to 115200
AT+BAUDRATE=115200
OK

Check the current baud rate
AT+BAUDRATE
115200
OK

AT+HWADC

Performs an ADC conversion on the specified ADC pin

Codebase Revision: 0.3.0

Parameters: The ADC channel (0..7)

Output: The results of the ADC conversion

AT+HWADC=0
178
OK

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 69 of 161

AT+HWGETDIETEMP

Gets the temperature in degree celcius of the BLE module's die. This can be used for

debug purposes (higher die temperature generally means higher current

consumption), but does not corresponds to ambient temperature and can not be used

as a replacement for a normal temperature sensor.

Codebase Revision: 0.3.0

Parameters: None

Output: The die temperature in degrees celcius

AT+HWGETDIETEMP
32.25
OK

AT+HWGPIO

Gets or sets the value of the specified GPIO pin (depending on the pin's mode).

Codebase Revision: 0.3.0

Parameters: The parameters for this command change depending on the pin mode.

OUTPUT MODE: The following comma-separated parameters can be used when

updating a pin that is set as an output:

Pin numbers

Pin state, where:

0 = clear the pin (logic low/GND)

1 = set the pin (logic high/VCC)

INPUT MODE: To read the current state of an input pin or a pin that has been

configured as an output, enter the pin number as a single parameter.

•

•

◦

◦

©Adafruit Industries Page 70 of 161

Output: The pin state if you are reading an input or checking the state of an input pin

(meaning only 1 parameter is supplied, the pin number), where:

0 means the pin is logic low/GND

1 means the pin is logic high/VCC

Set pin 14 HIGH
AT+HWGPIO=14,1
OK

Set pin 14 LOW
AT+HWGPIO=14,0
OK

Read the current state of pin 14
AT+HWGPIO=14
0
OK

Try to update a pin that is not set as an output
AT+HWGPIOMODE=14,0
OK
AT+HWGPIO=14,1
ERROR

AT+HWGPIOMODE

This will set the mode for the specified GPIO pin (input, output, etc.).

Codebase Revision: 0.3.0

Parameters: This command one or two values (comma-separated in the case of two

parameters being used):

The pin number

The new GPIO mode, where:

0 = Input

1 = Output

•

•

Trying to set the value of a pin that has not been configured as an output will

produce an 'ERROR' response.

Some pins are reserved for specific functions on Bluefruit modules and can not

be used as GPIO. If you try to make use of a reserved pin number an 'ERROR'

response will be generated.

•

•

◦

◦

©Adafruit Industries Page 71 of 161

2 = Input with pullup enabled

3 = Input with pulldown enabled

Output: If a single parameters is passed (the GPIO pin number) the current pin mode

will be returned.

Configure pin 14 as an output
AT+HWGPIOMODE=14,0
OK

Get the current mode for pin 14
AT+HWPGIOMODE=14
0
OK

AT+HWI2CSCAN

Scans the I2C bus to try to detect any connected I2C devices, and returns the

address of devices that were found during the scan process.

Codebase Revision: 0.3.0

Parameters: None

Output: A comma-separated list of any I2C address that were found while scanning

the valid address range on the I2C bus, or nothing is no devices were found.

I2C scan with two devices detected
AT+HWI2CSCAN
0x23,0x35
OK

I2C scan with no devices detected
AT+HWI2CSCAN
OK

AT+HWVBAT

Returns the main power supply voltage level in millivolts

◦

◦

Some pins are reserved for specific functions on Bluefruit modules and can not

be used as GPIO. If you try to make use of a reserved pin number an 'ERROR'

response will be generated.

©Adafruit Industries Page 72 of 161

Codebase Revision: 0.3.0

Parameters: None

Output: The VBAT level in millivolts

AT+HWVBAT
3248
OK

AT+HWRANDOM

Generates a random 32-bit number using the HW random number generator on the

nRF51822 (based on white noise).

Codebase Revision: 0.4.7

Parameters: None

Output: A random 32-bit hexadecimal value (ex. '0x12345678')

AT+HWRANDOM
0x769ED823
OK

AT+HWMODELED

Allows you to override the default behaviour of the MODE led (which indicates the

operating mode by default).

Codebase Revision: 0.6.6

Parameters: LED operating mode, which can be one of the following values:

disable or DISABLE or 0 - Disable the MODE LED entirely to save power

mode or MODE or 1 - Default behaviour, indicates the current operating mode

hwuart or HWUART or 2 - Toggles the LED on any activity on the HW UART bus

(TX or RX)

bleuart or BLEUART or 3 - Toggles the LED on any activity on the BLE UART

Service (TX or RX characteristic)

spi or SPI or 4 - Toggles the LED on any SPI activity

•

•

•

•

•

©Adafruit Industries Page 73 of 161

manual or MANUAL or 5 - Manually sets the state of the MODE LED via a second

comma-separated parameter, which can be on, off, or toggle.

Output: If run with no parameters, returns an upper-case string representing the

current MODE LED operating mode from the fields above

Get the curent MODE LED setting
AT+HWMODELED
MODE
OK

Change the MODE LED to indicate BLE UART activity
AT+HWMODELED=BLEUART
OK

Manually toggle the MODE LED
AT+HWMODELED=MANUAL,TOGGLE
OK

AT+UARTFLOW

Enables or disable hardware flow control (CTS + RTS) on the UART peripheral block of

the nRF51822.

Codebase Revision: 0.7.0

Parameters: HW flow control state, which can be one of:

on

off

0

1

Output: If run with no parameters, returns a number representing whether flow control

is enabled (1) or disabled (0).

Check the current flow control state
AT+UARTFLOW
1
OK

Disable HW flow control
AT+UARTFLOW=off
OK

•

•

•

•

•

©Adafruit Industries Page 74 of 161

Beacon

Adafruit's Bluefruit LE modules currently support the following 'Beacon' technologies:

Beacon (Apple) via AT+BLEBEACON

UriBeacon (Google) via AT+BLEURIBEACON (deprecated)

Eddystone (Google) via AT+EDDYSTONE*

Modules can be configured to act as 'Beacons' using the following commands:

AT+BLEBEACON

Codebase Revision: 0.3.0

Parameters: The following comma-separated parameters are required to enable

beacon mode:

Bluetooth Manufacturer ID (uint16_t)

128-bit UUID

Major Value (uint16_t)

Minor Value (uint16_t)

RSSI @ 1m (int8_t)

Output: None

Enable Apple iBeacon emulation
Manufacturer ID = 0x004C
AT+BLEBEACON=0x004C,01-12-23-34-45-56-67-78-89-9A-AB-BC-CD-DE-EF-
F0,0x0000,0x0000,-59
OK
Reset to change the advertising data
ATZ
OK

Enable Nordic Beacon emulation
Manufacturer ID = 0x0059
AT+BLEBEACON=0x0059,01-12-23-34-45-56-67-78-89-9A-AB-BC-CD-DE-EF-
F0,0x0000,0x0000,-59
OK
Reset to change the advertising data
ATZ
OK

•

•

•

•

•

•

•

•

AT+BLEBEACON will cause the beacon data to be stored in non-volatile config

memory on the Bluefruit LE module, and these values will be persisted across

©Adafruit Industries Page 75 of 161

Entering Nordic Beacon emulation using the sample code above, you can see the

simulated beacon in Nordic's 'Beacon Config' tool below:

system resets and power cycles. To remove or clear the beacon data you need

to enter the 'AT+FACTORYRESET' command in command mode.

©Adafruit Industries Page 76 of 161

AT+BLEURIBEACON

Converts the specified URI into a UriBeacon () advertising packet, and configures the

module to advertise as a UriBeacon (part of Google's Physical Web () project).

To view the UriBeacon URIs you can use one of the following mobile applications:

Android 4.3+: Physical Web () on the Google Play Store

iOS: Physical Web () in Apple's App Store

Codebase Revision: 0.4.7

Parameters: The URI to encode (ex. http://www.adafruit.com/blog ())

Output: None of a valid URI was entered (length is acceptable, etc.).

AT+BLEURIBEACON=http://www.adafruit.com/blog
OK

Reset to change the advertising data
ATZ
OK

If the supplied URI is too long you will get the following output:

AT+BLEURIBEACON=http://www.adafruit.com/this/uri/is/too/long
URL is too long
ERROR

Deprecated: AT+EDDYSTONEENABLE

This command will enable Eddystone () support on the Bluefruit LE module.

Eddystone support must be enabled before the other related commands can be used.

•

•

If the URI that you are trying to encode is too long, try using a shortening service

like bit.ly, and encode the shortened URI.

UriBeacon should be considered deprecated as a standard, and EddyStone

should be used for any future development. No further development will happen

in the Bluefruit LE firmware around UriBeacon.

©Adafruit Industries Page 77 of 161

https://github.com/google/uribeacon
http://google.github.io/physical-web/
https://play.google.com/store/apps/details?id=physical_web.org.physicalweb
https://itunes.apple.com/us/app/physical-web/id927653608?mt=8
http://www.adafruit.com/blog
https://github.com/google/eddystone

Codebase Revision: 0.6.6

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: The current state of Eddystone support if no parameters are provided (1 =

enabled, 0 = disabled)

Enable Eddystone support
AT+EDDYSTONEENABLE=1
OK

Check the current Eddystone status on the module
AT+EDDYSTONEENABLE
1
OK

AT+EDDYSTONEURL

This command will set the URL for the Eddystone-URL () protocol.

Codebase Revision: 0.6.6

Parameters:

The URL to encode (mandatory)

An optional second parameter indicates whether to continue advertising the

Eddystone URL even when the peripheral is connected to a central device

Firmware 0.6.7 added an optional third parameter for the RSSI at 0 meters value.

This should be measured by the end user by checking the RSSI value on the

receiving device at 1m and then adding 41 to that value (to compensate for the

signal strength loss over 1m), so an RSSI of -62 at 1m would mean that you

should enter -21 as the RSSI at 0m. Default value is -18dBm.

Output: Firmware <= 0.6.6: none. With firmware >= 0.6.7 running this command with

no parameters will return the current URL.

Set the Eddystone URL to adafruit
AT+EDDYSTONEURL=http://www.adafruit.com
OK

Set the Eddystone URL to adafruit and advertise it even when connected

This command was removed in firmware 0.7.0 to avoid confusion. Use

AT+EDDYSTONESERVICEEN in 0.7.0 and higher.

•

•

•

©Adafruit Industries Page 78 of 161

https://github.com/google/eddystone/tree/master/eddystone-url

AT+EDDYSTONEURL=http://www.adafruit.com,1
OK

AT+EDDYSTONECONFIGEN

This command causes the Bluefruit LE module to enable the Eddystone URL config

service for the specified number of seconds.

This command should be used in combination with the Physical Web application from

Google, available for Android () or iOS (). Run this command then select the 'Edit URL'

option from the app to change the destination URL over the air.

Codebase Revision: 0.6.6

Parameters: The number of seconds to advertised the config service UUID

Output: None

Start advertising the Eddystone config service for 5 minutes (300s)
AT+EDDYSTONECONFIGEN=300
OK

AT+EDDYSTONESERVICEEN

Adds or removes the Eddystone service from the GATT table (requires a reset to take

effect).

Codebase Revision: 0.7.0

Parameters: Whether or not the Eddystone service should be enabled or not, using on

of the following values:

on

off

1

0

Output: If the command is executed with no parameters it will disable a numeric value

indicating whether the service is enabled (1) or disabled (0).

•

•

•

•

©Adafruit Industries Page 79 of 161

https://play.google.com/store/apps/details?id=physical_web.org.physicalweb
https://itunes.apple.com/us/app/physical-web/id927653608?mt=8

Enable Eddystone service
AT+EddyStonServiceEn=on
OK

AT+EddyStonServiceEn=1
OK

Disable Eddystone service
AT+EddyStonServiceEn=off
OK

AT+EddyStonServiceEn=0
OK

AT+EDDYSTONEBROADCAST

This command can be used to start of stop advertising the Eddystone payload using

the URL stored in non-volatile memory (NVM).

Codebase Revision: 0.7.0

Parameters: Whether or not the payload should be broadcast, using one of the

following values:

on

off

1

0

Output: If executed with no parameters, the current broadcast state will be displayed

as a numeric value.

Enable broadcasting current setting of EddyStone (stored previously on nvm)
AT+EddyStoneBroadcast=on
OK

AT+EddyStoneBroadcast=1
OK

Disable broadcasting current setting of EddyStone (still stored on nvm)
AT+EddyStoneBroadcast=off
OK

AT+EddyStoneBroadcast=0
OK

You must perform a system reset for this command to take effect.

•

•

•

•

©Adafruit Industries Page 80 of 161

BLE Generic

The following general purpose BLE commands are available on Bluefruit LE modules:

AT+BLEPOWERLEVEL

Gets or sets the current transmit power level for the module's radio (higher transmit

power equals better range, lower transmit power equals better battery life).

Codebase Revision: 0.3.0

Parameters: The TX power level (in dBm), which can be one of the following values

(from lowest to higher transmit power):

-40

-20

-16

-12

-8

-4

0

4

Output: The current transmit power level (in dBm)

Get the current TX power level (in dBm)
AT+BLEPOWERLEVEL
0
OK

Set the TX power level to 4dBm (maximum value)
AT+BLEPOWERLEVEL=4
OK

Set the TX power level to -12dBm (better battery life)
AT+BLEPOWERLEVEL=-12
OK

Set the TX power level to an invalid value
AT+BLEPOWERLEVEL=-3
ERROR

•

•

•

•

•

•

•

•

The updated power level will take effect as soon as the command is entered. If

the device isn't connected to another device, advertising will stop momentarily

and then restart once the new power level has taken effect.

©Adafruit Industries Page 81 of 161

AT+BLEGETADDRTYPE

Gets the address type (for the 48-bit BLE device address).

Normally this will be '1' (random), which means that the module uses a 48-bit address

that was randomly generated during the manufacturing process and written to the die

by the manufacturer.

Random does not mean that the device address is randomly generated every time,

only that a one-time random number is used.

Codebase Revision: 0.3.0

Parameters: None

Output: The address type, which can be one of the following values:

0 = public

1 = random

AT+BLEGETADDRTYPE
1
OK

AT+BLEGETADDR

Gets the 48-bit BLE device address.

Codebase Revision: 0.3.0

Parameters: None

Output: The 48-bit BLE device address in the following format: 'AA:BB:CC:DD:EE:FF'

AT+BLEGETADDR
E4:C6:C7:31:95:11
OK

•

•

©Adafruit Industries Page 82 of 161

AT+BLEGETPEERADDR

Gets the 48-bit address of the peer (central) device we are connected to.

Codebase Revision: 0.6.5

Parameters: None

Output: The 48-bit address of the connected central device in hex format. The

command will return ERROR if we are not connected to a central device.

AT+BLEGETPEERADDR
48:B2:26:E6:C1:1D
OK

AT+BLEGETRSSI

Gets the RSSI value (Received Signal Strength Indicator), which can be used to

estimate the reliability of data transmission between two devices (the lower the

number the better).

Codebase Revision: 0.3.0

Parameters: None

Output: The RSSI level (in dBm) if we are connected to a device, otherwise '0'

Connected to an external device
AT+BLEGETRSSI
-46
OK

Not connected to an external device
AT+BLEGETRSSI
0
OK

Please note that the address returned by the central device is almost always a

random value that will change over time, and this value should generally not be

trusted. This command is provided for certain edge cases, but is not useful in

most day to day scenarios.

©Adafruit Industries Page 83 of 161

BLE Services

The following commands allow you to interact with various GATT services present on

Bluefruit LE modules when running in Command Mode.

AT+BLEUARTTX

This command will transmit the specified text message out via the UART Service () whi

le you are running in Command Mode.

Codebase Revision: 0.3.0

Parameters: The message payload to transmit. The payload can be up to 240

characters (since AT command strings are limited to a maximum of 256 bytes total).

Output: This command will produce an ERROR message if you are not connected to a

central device, or if the internal TX FIFO on the Bluefruit LE module is full.

As of firmware release 0.6.2 and higher, AT+BLEUARTTX can accept a limited set

of escape code sequences:

\r = carriage return

\n = new line

\t = tab

\b = backspace

\\ = backward slash

As of firmware release 0.6.7 and higher, AT+BLEUARTTX can accept the following

escape code sequence since AT+BLEUARTTX=? has a specific meaning to the AT

parser:

\? = transmits a single question mark

As of firmware release 0.7.6 and higher, AT+BLEUARTTX can accept the following

escape code sequence:

\+ = transmit a single '+' character without having to worry about `+++` mode

switch combinations

•

•

•

•

•

•

•

©Adafruit Industries Page 84 of 161

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service

Send a string when connected to another device
AT+BLEUARTTX=THIS IS A TEST
OK

Send a string when not connected
AT+BLEUARTTX=THIS IS A TEST
ERROR

TX FIFO Buffer Handling

Starting with firmware version 0.6.7, when the TX FIFO buffer is full a 200ms blocking

delay will be used to see if any free space becomes available in the FIFO before

returning ERROR. The exact process is detailed in the flow chart below:

You can use the AT+BLEUARTFIFO=TX () command to check the size of the TX FIFO

before sending data to ensure that you have enough free space available in the

buffer.

ESCAPE SEQUENCE NOTE: If you are trying to send escape sequences in code

via something like 'ble.print("...");' please note that you will need to send a double

back-slash for the escape code to arrive as-intended in the AT command. For

example: ble.println("AT+BLEUARTTX=Some Test\\r\\n");

You must be connected to another device for this command to execute

Note: The TX FIFO full check will happen for each GATT transaction (of up to 20

bytes of data each), so large data transfers may have multiple 200ms wait states.

©Adafruit Industries Page 85 of 161

The TX FIFO has the following size, depending on the firmware version used:

Firmware <=0.6.6: 160 characters wide

Firmware >=0.6.7: 1024 characters wide

AT+BLEUARTTXF

This is a convenience function the serves the same purpose as AT+BLEUARTTX, but

data is immediately sent in a single BLE packet ('F' for force packet). This command

will accept a maximum of 20 characters, which is the limit of what can be send in a

single packet.

Codebase Revision: 0.7.6

Parameters: See AT+BLEUARTTX

Output: See AT+BLEUARTTX

AT+BLEUARTRX

This command will dump the UART service ()'s RX buffer to the display if any data has

been received from from the UART service while running in Command Mode. The

data will be removed from the buffer once it is displayed using this command.

Any characters left in the buffer when switching back to Data Mode will cause the

buffered characters to be displayed as soon as the mode switch is complete (within

the limits of available buffer space, which is 1024 bytes on current black 32KB SRAM

devices, or 160 bytes for the blue first generation BLEFriend board based on 16KB

SRAM parts).

•

•

It IS possible with large data transfers that part of the payload can be

transmitted, and the command can still produce an ERROR if the FIFO doesn't

empty in time in the middle of the payload transfer (since data is transmitted in

maximum 20 byte chunks). If you need to ensure reliable data transfer, you

should always check the TX FIFO size before sending data, which you can do

using the AT+BLEUARTFIFO command. If not enough space is available for the

entire payload, add a SW delay until enough space is available. Any single

AT+BLEUARTTX command can fit into the FIFO, but multiple large instances of

this command may cause the FIFO to fill up mid transfer.

©Adafruit Industries Page 86 of 161

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service

Codebase Revision: 0.3.0

Parameters: None

Output: The RX buffer's content if any data is available, otherwise nothing.

Command results when data is available
AT+BLEUARTRX
Sent from Android
OK

Command results when no data is available
AT+BLEUARTRX
OK

AT+BLEUARTFIFO

This command will return the free space available in the BLE UART TX and RX FIFOs.

 If you are transmitting large chunks of data, you may want to check if you have

enough free space in the TX FIFO before sending, keeping in mind that individual

GATT packets can contain up to 20 user bytes each.

Codebase Revision: 0.6.7

Parameters: Running this command with no parameters will return two comma-

separated values indicating the free space in the TX buffer, following by the RX buffer.

 To request a specific buffer, you can execute the command with either a "TX" or "RX"

value (For example: "AT+BLEUARTFIFO=TX").

Output: The free space remaining in the TX and RX FIFO buffer if no parameter is

present, otherwise the free space remaining in the specified FIFO buffer.

AT+BLEUARTFIFO
1024,1024
OK

AT+BLEUARTFIFO=TX
1024
OK

AT+BLEUARTFIFO=RX
1024
OK

You can also use the AT+BLEUARTFIFO=RX command to check if any incoming

data is available or not.

©Adafruit Industries Page 87 of 161

AT+BLEKEYBOARDEN

This command will enable GATT over HID (GoH) keyboard support, which allows you

to emulate a keyboard on supported iOS and Android devices. By default HID

keyboard support is disabled, so you need to set BLEKEYBOARDEN to 1 and then

perform a system reset before the keyboard will be enumerated and appear in the

Bluetooth preferences on your phone, where if can be bonded as a BLE keyboard.

Codebase Revision: 0.5.0

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: None

Enable BLE keyboard support then reset
AT+BLEKEYBOARDEN=1
OK
ATZ
OK

Disable BLE keyboard support then reset
AT+BLEKEYBOARDEN=0
OK
ATZ
OK

AT+BLEKEYBOARD

Sends text data over the BLE keyboard interface (if it has previously been enabled via

AT+BLEKEYBOARDEN).

Any valid alpha-numeric character can be sent, and the following escape sequences

are also supported:

\r - Carriage Return

As of firmware version 0.6.6 this command is now an alias for AT+BLEHIDEN

You must perform a system reset (ATZ) before the changes take effect!

Before you can use your HID over GATT keyboard, you will need to bond your

mobile device with the Bluefruit LE module in the Bluetooth preferences panel.

•

©Adafruit Industries Page 88 of 161

\n - Line Feed

\b - Backspace

\t - Tab

\\ - Backslash

As of version 0.6.7 you can also use the following escape code when sending a single

character ('AT+BLEKEYBOARD=?' has another meaning for the AT parser):

\? - Question mark

Codebase Revision: 0.5.0

Parameters: The text string (optionally including escape characters) to transmit

Output: None

Send a URI with a new line ending to execute in Chrome, etc.
AT+BLEKEYBOARD=http://www.adafruit.com\r\n
OK

Send a single question mark (special use case, 0.6.7+)
AT+BLEKEYBOARD=\?
OK

AT+BLEKEYBOARDCODE

Sends a raw hex sequence of USB HID keycodes to the BLE keyboard interface

including key modifiers and up to six alpha-numeric characters.

This command accepts the following string-encoded byte array payload, matching the

way HID over GATT sends keyboard data:

Byte 0: Modifier

Byte 1: Reserved (should always be 00)

Bytes 2..7: Hexadecimal value(s) corresponding to the HID keys (if no character

is used you can enter '00' or leave trailing characters empty)

After a keycode sequence is sent with the AT+BLEKEYBOARDCODE command, you

must send a second AT+BLEKEYBOARDCODE command with at least two 00

characters to indicate the keys were released!

•

•

•

•

•

•

•

•

©Adafruit Industries Page 89 of 161

Modifier Values

The modifier byte can have one or more of the following bits set:

Bit 0 (0x01): Left Control

Bit 1 (0x02): Left Shift

Bit 2 (0x04): Left Alt

Bit 3 (0x08): Left Window

Bit 4 (0x10): Right Control

Bit 5 (0x20): Right Shift

Bit 6 (0x40): Right Alt

Bit 7 (0x80): Right Window

Codebase Revision: 0.5.0

Parameters: A set of hexadecimal values separated by a hyphen ('-'). Note that these

are HID scan code values, not standard ASCII values!

Output: None

HID Keyboard Codes

A list of hexademical-format HID keyboard codes can be found here () (see section 7),

and are listed below for convenience sake:

0x00Reserved (no event indicated)
0x01Keyboard ErrorRollOver
0x02Keyboard POSTFail
0x03Keyboard ErrorUndefined
0x04Keyboard a and A
0x05Keyboard b and B
0x06Keyboard c and C
0x07Keyboard d and D
0x08Keyboard e and E
0x09Keyboard f and F
0x0AKeyboard g and G
0x0BKeyboard h and H
0x0CKeyboard i and I
0x0DKeyboard j and J
0x0EKeyboard k and K
0x0FKeyboard l and L

•

•

•

•

•

•

•

•

HID key code values don't correspond to ASCII key codes! For example, 'a' has

an HID keycode value of '04', and there is no keycode for an upper case 'A' since

you use the modifier to set upper case values. For details, google 'usb hid

keyboard scan codes', and see the example below.

©Adafruit Industries Page 90 of 161

http://www.freebsddiary.org/APC/usb_hid_usages.php

0x10Keyboard m and M
0x11Keyboard n and N
0x12Keyboard o and O
0x13Keyboard p and P
0x14Keyboard q and Q
0x15Keyboard r and R
0x16Keyboard s and S
0x17Keyboard t and T
0x18Keyboard u and U
0x19Keyboard v and V
0x1AKeyboard w and W
0x1BKeyboard x and X
0x1CKeyboard y and Y
0x1DKeyboard z and Z
0x1EKeyboard 1 and !
0x1FKeyboard 2 and @
0x20Keyboard 3 and #
0x21Keyboard 4 and $
0x22Keyboard 5 and %
0x23Keyboard 6 and ^
0x24Keyboard 7 and &
0x25Keyboard 8 and *
0x26Keyboard 9 and (
0x27Keyboard 0 and)
0x28Keyboard Return (ENTER)
0x29Keyboard ESCAPE
0x2AKeyboard DELETE (Backspace)
0x2BKeyboard Tab
0x2CKeyboard Spacebar
0x2DKeyboard - and (underscore)
0x2EKeyboard = and +
0x2FKeyboard [and {
0x30Keyboard] and }
0x31Keyboard \ and |
0x32Keyboard Non-US # and ~
0x33Keyboard ; and :
0x34Keyboard ' and "
0x35Keyboard Grave Accent and Tilde
0x36Keyboard, and <
0x37Keyboard . and >
0x38Keyboard / and ?
0x39Keyboard Caps Lock
0x3AKeyboard F1
0x3BKeyboard F2
0x3CKeyboard F3
0x3DKeyboard F4
0x3EKeyboard F5
0x3FKeyboard F6
0x40Keyboard F7
0x41Keyboard F8
0x42Keyboard F9
0x43Keyboard F10
0x44Keyboard F11
0x45Keyboard F12
0x46Keyboard PrintScreen
0x47Keyboard Scroll Lock
0x48Keyboard Pause
0x49Keyboard Insert
0x4AKeyboard Home
0x4BKeyboard PageUp
0x4CKeyboard Delete Forward
0x4DKeyboard End
0x4EKeyboard PageDown
0x4FKeyboard RightArrow
0x50Keyboard LeftArrow
0x51Keyboard DownArrow
0x52Keyboard UpArrow
0x53Keypad Num Lock and Clear
0x54Keypad /

©Adafruit Industries Page 91 of 161

0x55Keypad *
0x56Keypad -
0x57Keypad +
0x58Keypad ENTER
0x59Keypad 1 and End
0x5AKeypad 2 and Down Arrow
0x5BKeypad 3 and PageDn
0x5CKeypad 4 and Left Arrow
0x5DKeypad 5
0x5EKeypad 6 and Right Arrow
0x5FKeypad 7 and Home
0x60Keypad 8 and Up Arrow
0x61Keypad 9 and PageUp
0x62Keypad 0 and Insert
0x63Keypad . and Delete
0x64Keyboard Non-US \ and |
0x65Keyboard Application
0x66Keyboard Power
0x67Keypad =
0x68Keyboard F13
0x69Keyboard F14
0x6AKeyboard F15
0x6BKeyboard F16
0x6CKeyboard F17
0x6DKeyboard F18
0x6EKeyboard F19
0x6FKeyboard F20
0x70Keyboard F21
0x71Keyboard F22
0x72Keyboard F23
0x73Keyboard F24
0x74Keyboard Execute
0x75Keyboard Help
0x76Keyboard Menu
0x77Keyboard Select
0x78Keyboard Stop
0x79Keyboard Again
0x7AKeyboard Undo
0x7BKeyboard Cut
0x7CKeyboard Copy
0x7DKeyboard Paste
0x7EKeyboard Find
0x7FKeyboard Mute
0x80Keyboard Volume Up
0x81Keyboard Volume Down
0x82Keyboard Locking Caps Lock
0x83Keyboard Locking Num Lock
0x84Keyboard Locking Scroll Lock
0x85Keypad Comma
0x86Keypad Equal Sign
0x87Keyboard International1
0x88Keyboard International2
0x89Keyboard International3
0x8AKeyboard International4
0x8BKeyboard International5
0x8CKeyboard International6
0x8DKeyboard International7
0x8EKeyboard International8
0x8FKeyboard International9
0x90Keyboard LANG1
0x91Keyboard LANG2
0x92Keyboard LANG3
0x93Keyboard LANG4
0x94Keyboard LANG5
0x95Keyboard LANG6
0x96Keyboard LANG7
0x97Keyboard LANG8
0x98Keyboard LANG9
0x99Keyboard Alternate Erase

©Adafruit Industries Page 92 of 161

0x9AKeyboard SysReq/Attention
0x9BKeyboard Cancel
0x9CKeyboard Clear
0x9DKeyboard Prior
0x9EKeyboard Return
0x9FKeyboard Separator
0xA0Keyboard Out
0xA1Keyboard Oper
0xA2Keyboard Clear/Again
0xA3Keyboard CrSel/Props
0xA4Keyboard ExSel
0xE0Keyboard LeftControl
0xE1Keyboard LeftShift
0xE2Keyboard LeftAlt
0xE3Keyboard Left GUI
0xE4Keyboard RightControl
0xE5Keyboard RightShift
0xE6Keyboard RightAlt
0xE7Keyboard Right GUI

The following example shows how you can use this command:

send 'abc' with left shift key (0x02) --> 'ABC'
AT+BLEKEYBOARDCODE=02-00-04-05-06-00-00
OK
Indicate that the keys were released (mandatory!)
AT+BLEKEYBOARDCODE=00-00
OK

AT+BLEHIDEN

This command will enable GATT over HID (GoH) support, which allows you to emulate

a keyboard, mouse or media controll on supported iOS, Android, OSX and Windows

10 devices. By default HID support is disabled, so you need to set BLEHIDEN to 1 and

then perform a system reset before the HID devices will be enumerated and appear in

on your central device.

Codebase Revision: 0.6.6

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: None

You normally need to 'bond' the Bluefruit LE peripheral to use the HID

commands, and the exact bonding process will change from one operating

system to another.

©Adafruit Industries Page 93 of 161

Enable GATT over HID support on the Bluefruit LE module
AT+BLEHIDEN=1
OK

Reset so that the changes take effect
ATZ
OK

AT+BLEHIDMOUSEMOVE

Moves the HID mouse or scroll wheen position the specified number of ticks.

All parameters are signed 8-bit values (-128 to +127). Positive values move to the right

or down, and origin is the top left corner.

Codebase Revision: 0.6.6

Parameters: X Ticks (+/-), Y Ticks (+/-), Scroll Wheel (+/-), Pan Wheel (+/-)

Output: None

Move the mouse 100 ticks right and 100 ticks down
AT+BLEHIDMOUSEMOVE=100,100
OK

Scroll down 20 pixels or lines (depending on context)
AT+BLEHIDMOUSEMOVE=,,20,
OK

Pan (horizontal scroll) to the right (exact behaviour depends on OS)
AT+BLEHIDMOUSEMOVE=0,0,0,100

AT+BLEHIDMOUSEBUTTON

Manipulates the HID mouse buttons via the specific string(s).

Codebase Revision: 0.6.6

If you have previously bonded to a device and need to clear the bond, you can

run the AT+FACTORYRESET command which will erase all stored bond data on

the Bluefruit LE module.

©Adafruit Industries Page 94 of 161

Parameters: Button Mask String [L][R][M][B][F], Action [PRESS][CLICK][DOUBLECLICK]

[HOLD]

L = Left Button

R = Right Button

M = Middle Button

B = Back Button

F = Forward Button

If the second parameter (Action) is "HOLD", an optional third parameter can be

passed specifying how long the button should be held in milliseconds.

Output: None

Double click the left mouse button
AT+BLEHIDMOUSEBUTTON=L,doubleclick
OK

Press the left mouse button down, move the mouse, then release L
This is required to perform 'drag' then stop type operations
AT+BLEHIDMOUSEBUTTON=L
OK
AT+BLEHIDMOUSEMOVE=-100,50
OK
AT+BLEHIDMOUSEBUTTON=0
OK

Hold the backward mouse button for 200 milliseconds (OS dependent)
AT+BLEHIDMOUSEBUTTON=B,hold,200
OK

AT+BLEHIDCONTROLKEY

Sends HID media control commands for the bonded device (adjust volume, screen

brightness, song selection, etc.).

Codebase Revision: 0.6.6

Parameters: The HID control key to send, followed by an optional delay in ms to hold

the button

The control key string can be one of the following values:

System Controls (works on most systems)

BRIGHTNESS+

BRIGHTNESS-

•

•

•

•

•

•

•

◦

◦

©Adafruit Industries Page 95 of 161

Media Controls (works on most systems)

PLAYPAUSE

MEDIANEXT

MEDIAPREVIOUS

MEDIASTOP

Sound Controls (works on most systems)

VOLUME

MUTE

BASS

TREBLE

BASS_BOOST

VOLUME+

VOLUME-

BASS+

BASS-

TREBLE+

TREBLE-

Application Launchers (Windows 10 only so far)

EMAILREADER

CALCULATOR

FILEBROWSER

Browser/File Explorer Controls (Firefox on Windows/Android only)

SEARCH

HOME

BACK

FORWARD

STOP

REFRESH

BOOKMARKS

You can also send a raw 16-bit hexadecimal value in the '0xABCD' format. A full list of

16-bit 'HID Consumer Control Key Codes' can be found here ()(see section 12).

Output: Normally none.

•

◦

◦

◦

◦

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

◦

◦

◦

◦

If you are not bonded and connected to a central device, this command will

return ERROR. Make sure you are connected and HID support is enabled before

running these commands.

©Adafruit Industries Page 96 of 161

http://www.freebsddiary.org/APC/usb_hid_usages.php

Toggle the sound on the bonded central device
AT+BLEHIDCONTROLKEY=MUTE
OK

Hold the VOLUME+ key for 500ms
AT+BLEHIDCONTROLKEY=VOLUME+,500
OK

Send a raw 16-bit Consumer Key Code (0x006F = Brightness+)
AT+BLEHIDCONTROLKEY=0x006F
OK

AT+BLEHIDGAMEPADEN

Enables HID gamepad support in the HID service. By default the gamepad is disabled

as of version 0.7.6 of the firmware since it causes problems on iOS and OS X and

should only be used on Android and Windows based devices.

Codebase Revision: 0.7.6

Parameters: Whether the gamepad service should be enabled via one of the following

values:

on

off

1

0

Output: If executed with no parameters, a numeric value will be returned indicating

whether the battery service is enabled (1) or disabled (0).

AT+BLEHIDGAMEPAD

Sends a specific HID gamepad payload out over BLE

Codebase Revision: 0.7.0

Parameters: The following comma-separated parameters are available:

x: LEFT, RIGHT: If X=-1 then 'LEFT' is pressed, if X=1 then 'RIGHT' is pressed, if

X=0 then neither left nor right are pressed

•

•

•

•

This command requires a system reset to take effect.

•

©Adafruit Industries Page 97 of 161

y: UP, DOWN: If Y=-1 then 'UP' is pressed, if Y=1 then 'DOWN' is pressed, if Y=0

then neither up nor down are pressed

buttons: 0x00-0xFF, which is a bit mask for 8 button 0-7

Output: Nothing

Press 'RIGHT' and 'Button0' at the same time
AT+BLEHIDGAMEPAD=1,0,0x01

Press 'UP' and 'Button1' + 'Button0' at the same time
AT+BLEHIDGAMEPAD=0,-1,0x03

AT+BLEMIDIEN

Enables or disables the BLE MIDI service.

Codebase Revision: 0.7.0

Parameters: State, which can be one of:

on

off

0

1

Output: If executed with no parameters, it will return the current state of the MIDI

service as an integer indicating if it is enabled (1) or disabled (0).

Check the current state of the MIDI service
AT+BLEMIDIEN
1
OK

•

•

HID gamepad is disabled by default as of version 0.7.6, and must first be enabled

via AT+BLEHIDGAMEPADEN=1 before it can be used.

Note: You need to send both 'press' and 'release' events for each button,

otherwise the system will think that the button is still pressed until a release state

is received.

•

•

•

•

Note: This command will require a reset to take effect.

©Adafruit Industries Page 98 of 161

Enable the MIDI Service
AT+BLEMIDIEN=1
OK

AT+BLEMIDIRX

Reads an incoming MIDI character array from the buffer.

Codebase Revision: 0.7.0

Parameters: None

Output: The midi event in byte array format

AT+BLEMIDIRX
90-3C-7F
OK

AT+BLEMIDITX

Sends a MIDI event to host.

Codebase Revision: 0.7.0

Parameters: The MIDI event in hex array format, which can be either:

A series of full MIDI events (up to 4 events)

Exactly 1 full MIDI event + several running events without status (up to 7)

Output: None

Send 1 event (middle C with max velocity)
AT+BLEMIDITX=90-3C-7F
OK

Send 2 events
AT+BLEMIDITX=90-3C-7F-A0-3C-7F
OK

Send 1 full event + running event
AT+BLEMIDITX=90-3C-7F-3C-7F
OK

•

•

©Adafruit Industries Page 99 of 161

AT+BLEBATTEN

Enables the Battery Service following the definition from the Bluetooth SIG.

Codebase Revision: 0.7.0

Parameters: Whether the battery service should be enabled, via on of the following

values:

on

off

1

0

Output: If executed with no parameters, a numeric value will be returned indicating

whether the battery service is enabled (1) or disabled (0).

Enable the Battery Service
AT+BLEBATTEN=1
OK

AT+BLEBATTVAL

Sets the current battery level in percentage (0..100) for the Battery Service (if

enabled).

Codebase Revision: 0.7.0

Parameters: The percentage for the battery in the range of 0..100.

Output: If executed with no parameters, the current battery level stored in the

characteristic.

Set the battery level to 72%
AT+BLEBATTVAL=72
OK

•

•

•

•

This command requires a system reset to take effect.

©Adafruit Industries Page 100 of 161

BLE GAP

GAP (), which stands for the Generic Access Profile, governs advertising and

connections with Bluetooth Low Energy devices.

The following commands can be used to configure the GAP settings on the BLE

module.

You can use these commands to modify the advertising data (for ex. the device name

that appears during the advertising process), to retrieve information about the

connection that has been established between two devices, or the disconnect if you

no longer wish to maintain a connection.

AT+GAPCONNECTABLE

This command can be used to prevent the device from being 'connectable'.

Codebase Revision: 0.7.0

Parameters: Whether or not the device should advertise itself as connectable, using

one of the following values:

yes

no

1

0

Output: The 'connectable' state of the device if no parameter is provided

Make the device non-connectable (advertising only)
AT+GAPCONNECTABLE=0
OK

Check the current connectability status
AT+GAPCONNECTABLE
1
OK

AT+GAPGETCONN

Diplays the current connection status (if we are connected to another BLE device or

not).

•

•

•

•

©Adafruit Industries Page 101 of 161

file:///home/introduction-to-bluetooth-low-energy/gap

Codebase Revision: 0.3.0

Parameters: None

Output: 1 if we are connected, otherwise 0

Connected
AT+GAPGETCONN
1
OK

Not connected
AT+GAPGETCONN
0
OK

AT+GAPDISCONNECT

Disconnects to the external device if we are currently connected.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+GAPDISCONNECT
OK

AT+GAPDEVNAME

Gets or sets the device name, which is included in the advertising payload for the

Bluefruit LE module

Codebase Revision: 0.3.0

Parameters:

None to read the current device name

The new device name if you want to change the value

Output: The device name if the command is executed in read mode

•

•

©Adafruit Industries Page 102 of 161

Read the current device name
AT+GAPDEVNAME
UART
OK

Update the device name to 'BLEFriend'
AT+GAPDEVNAME=BLEFriend
OK
Reset to take effect
ATZ
OK

AT+GAPDELBONDS

Deletes and bonding information stored on the Bluefruit LE module.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+GAPDELBONDS
OK

AT+GAPINTERVALS

Gets or sets the various advertising and connection intervals for the Bluefruit LE

module.

Be extremely careful with this command since it can be easy to cause problems

changing the intervals, and depending on the values selected some mobile devices

may no longer recognize the module or refuse to connect to it.

Codebase Revision: 0.3.0

Updating the device name will persist the new value to non-volatile memory, and

the updated name will be used when the device is reset. To reset the device to

factory settings and clean the config data from memory run the

AT+FACTORYRESET command.

©Adafruit Industries Page 103 of 161

Parameters: If updating the GAP intervals, the following comma-separated values can

be entered:

Minimum connection interval (in milliseconds)

Maximum connection interval (in milliseconds)

Fast Advertising interval (in milliseconds)

Fast Advertising timeout (in seconds)

>= 0.7.0: Low power advertising interval (in milliseconds), default = 417.5 ms

Please note the following min and max limitations for the GAP parameters:

Absolute minimum connection interval: 10ms

Absolute maximum connection interval: 4000ms

Absolute minimum fast advertising interval: 20ms

Absolute maximum fast advertisting interval: 10240ms

Absolute minimum low power advertising interval: 20ms

Absolute maximum low power advertising interval: 10240ms

Output: If reading the current GAP interval settings, the following comma-separated

information will be displayed:

Minimum connection interval (in milliseconds)

Maximum connection interval (in milliseconds)

Advertising interval (in milliseconds)

Advertising timeout (in milliseconds)

•

•

•

•

•

To save power, the Bluefruit modules automatically drop to a lower advertising

rate after 'fast advertising timeout' seconds. The default value is 30 seconds

('Fast Advertising Timeout'). The low power advertising interval is hard-coded to

approximately 0.6s in firmware < 0.7.0. Support to control the low power interval

was added in the 0.7.0 firmware release via an optional fifth parameter.

•

•

•

•

•

•

If you only wish to update one interval value, leave the other comma-separated

values empty (ex. ',,110,' will only update the third value, advertising interval).

•

•

•

•

Updating the GAP intervals will persist the new values to non-volatile memory,

and the updated values will be used when the device is reset. To reset the

device to factory settings and clean the config data from memory run the

AT+FACTORYRESET command.

©Adafruit Industries Page 104 of 161

Read the current GAP intervals
AT+GAPINTERVALS
20,100,100,30

Update all values
AT+GAPINTERVALS=20,200,200,30
OK

Update only the advertising interval
AT+GAPINTERVALS=,,150,
OK

AT+GAPSTARTADV

Causes the Bluefruit LE module to start transmitting advertising packets if this isn't

already the case (assuming we aren't already connected to an external device).

Codebase Revision: 0.3.0

Parameters: None

Output: None

Command results when advertising data is not being sent
AT+GAPSTARTADV
OK

Command results when we are already advertising
AT+GAPSTARTADV
ERROR

Command results when we are connected to another device
AT+GAPSTARTADV
ERROR

AT+GAPSTOPADV

Stops advertising packets from being transmitted by the Bluefruit LE module.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+GAPSTOPADV
OK

©Adafruit Industries Page 105 of 161

AT+GAPSETADVDATA

Sets the raw advertising data payload to the specified byte array (overriding the

normal advertising data), following the guidelines in the Bluetooth 4.0 or 4.1 Core

Specification ().

In particular, Core Specification Supplement (CSS) v4 contains the details on common

advertising data fields like 'Flags' (Part A, Section 1.3) and the various Service UUID

lists (Part A, Section 1.1). A list of all possible GAP Data Types is available on the

Bluetooth SIG's Generic Access Profile () page.

The Advertising Data payload consists of Generic Access Profile () data that is

inserted into the advertising packet in the following format: [U8:LEN] [U8:Data Type

Value] [n:Value]

For example, to insert the 'Flags' Data Type (Data Type Value 0x01), and set the value

to 0x06/0b00000110 (BR/EDR Not Supported and LE General Discoverable Mode) we

would use the following byte array:

02-01-06

0x02 indicates the number of bytes in the entry

0x01 is the 'Data Type Value ()' and indicates that this is a 'Flag'

0x06 (0b00000110) is the Flag value, and asserts the following fields (see Core

Specification 4.0, Volume 3, Part C, 18.1):

LE General Discoverable Mode (i.e. anyone can discover this device)

BR/EDR Not Supported (i.e. this is a Bluetooth Low Energy only device)

WARNING: This command requires a degree of knowledge about the low level

details of the Bluetooth 4.0 or 4.1 Core Specification, and should only be used by

expert users. Misuse of this command can easily cause your device to be

undetectable by central devices in radio range.

WARNING: This command will override the normal advertising payload and may

prevent some services from acting as expected.

To restore the advertising data to the normal default values use the

AT+FACTORYRESET command.

•

•

•

◦

◦

©Adafruit Industries Page 106 of 161

https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile

If we also want to include two 16-bit service UUIDs in the advertising data (so that

listening devices know that we support these services) we could append the

following data to the byte array:

05-02-0D-18-0A-18

0x05 indicates that the number of bytes in the entry (5)

0x02 is the 'Data Type Value ()' and indicates that this is an 'Incomplete List of

16-bit Service Class UUIDs'

0x0D 0x18 is the first 16-bit UUID (which translates to 0x180D, corresponding to

the Heart Rate Service ()).

0x0A 0x18 is another 16-bit UUID (which translates to 0x180A, corresponding to

the Device Information Service ()).

Codebase Revision: 0.3.0

Parameters: The raw byte array that should be inserted into the advertising data

section of the advertising packet, being careful to stay within the space limits defined

by the Bluetooth Core Specification.

Response: None

Advertise as Discoverable and BLE only with 16-bit UUIDs 0x180D and 0x180A
AT+GAPSETADVDATA=02-01-06-05-02-0d-18-0a-18
OK

The results of this command can be seen in the screenshot below, taken from a

sniffer analyzing the advertising packets in Wireshark. The advertising data payload is

higlighted in blue in the raw byte array at the bottom of the image, and the packet

analysis is in the upper section:

•

•

•

•

Including the service UUIDs is important since some mobile applications will only

work with devices that advertise a specific service UUID in the advertising

packet. This is true for most apps from Nordic Semiconductors, for example.

©Adafruit Industries Page 107 of 161

https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.heart_rate.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

BLE GATT

GATT (), which standards for the Generic ATTribute Profile, governs data organization

and data exchanges between connected devices. One device (the peripheral) acts as

a GATT Server, which stores data in Attribute records, and the second device in the

connection (the central) acts as a GATT Client, requesting data from the server

whenever necessary.

The following commands can be used to create custom GATT services and

characteristics on the BLEFriend, which are used to store and exchange data.

Please note that any characteristics that you define here will automatically be saved

to non-volatile FLASH config memory on the device and re-initialised the next time

the device starts.

GATT Limitations

The commands below have the following limitations due to SRAM and resource

availability, which should be kept in mind when creating or working with customer

GATT services and characteristics.

These values apply to firmware 0.7.0 and higher:

Maximum number of services: 10

Maximum number of characteristics: 30

You need to perform a system reset via 'ATZ' before most of the commands

below will take effect!

•

•

©Adafruit Industries Page 108 of 161

file:///home/introduction-to-bluetooth-low-energy/gatt

Maximum buffer size for each characteristic: 32 bytes

Maximum number of CCCDs: 16

If you want to clear any previous config value, enter the 'AT+FACTORYRESET'

command before working on a new peripheral configuration.

AT+GATTCLEAR

Clears any custom GATT services and characteristics that have been defined on the

device.

Codebase Revision: 0.3.0

Parameters: None

Response: None

AT+GATTCLEAR
OK

AT+GATTADDSERVICE

Adds a new custom service definition to the device.

Codebase Revision: 0.3.0

Parameters: This command accepts a set of comma-separated key-value pairs that

are used to define the service properties. The following key-value pairs can be used:

UUID: The 16-bit UUID to use for this service. 16-bit values should be in

hexadecimal format (0x1234).

UUID128: The 128-bit UUID to use for this service. 128-bit values should be in

the following format: 00-11-22-33-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF

Response: The index value of the service in the custom GATT service lookup table.

(It's important to keep track of these index values to work with the service later.)

•

•

•

•

Note: Key values are not case-sensitive

©Adafruit Industries Page 109 of 161

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
1
OK

Add a custom characteristic to the above service (making sure that there
is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK

AT+GATTADDCHAR

Adds a custom characteristic to the last service that was added to the peripheral (via

AT+GATTADDSERVICE).

Codebase Revision: 0.3.0

Only one UUID type can be entered for the service (either UUID or UUID128)

AT+GATTADDCHAR must be run AFTER AT+GATTADDSERVICE, and will add the

new characteristic to the last service definition that was added.

As of version 0.6.6 of the Bluefruit LE firmware you can now use custom 128-bit

UUIDs with this command. See the example at the bottom of this command

description.

©Adafruit Industries Page 110 of 161

Parameters: This command accepts a set of comma-separated key-value pairs that

are used to define the characteristic properties. The following key-value pais can be

used:

UUID: The 16-bit UUID to use for the characteristic (which will be insert in the

3rd and 4th bytes of the parent services 128-bit UUID). This value should be

entered in hexadecimal format (ex. 'UUID=0x1234'). This value must be unique,

and should not conflict with bytes 3+4 of the parent service's 128-bit UUID.

PROPERTIES: The 8-bit characteristic properties field, as defined by the

Bluetooth SIG. The following values can be used:

0x02 - Read

0x04 - Write Without Response

0x08 - Write

0x10 - Notify

0x20 - Indicate

MIN_LEN: The minimum size of the values for this characteristic (in bytes, min =

1, max = 20, default = 1)

MAX_LEN: The maximum size of the values for the characteristic (in bytes, min =

1, max = 20, default = 1)

VALUE: The initial value to assign to this characteristic (within the limits of

'MIN_LEN' and 'MAX_LEN'). Value can be an integer ("-100", "27"), a hexadecimal

value ("0xABCD"), a byte array ("aa-bb-cc-dd") or a string ("GATT!").

>=0.7.0 - DATATYPE: This argument indicates the data type stored in the

characteristic, and is used to help parse data properly. It can be one of the

following values:

AUTO (0, default)

STRING (1)

BYTEARRAY (2)

INTEGER (3)

>=0.7.0 - DESCRIPTION: Adds the specified string as the characteristic

description entry

>=0.7.0 - PRESENTATION: Adds the specified value as the characteristic

presentation format entry

Response: The index value of the characteristic in the custom GATT characteristic

lookup table. (It's important to keep track of these characteristic index values to work

with the characteristic later.)

•

•

◦

◦

◦

◦

◦

•

•

•

•

◦

◦

◦

◦

•

•

Note: Key values are not case-sensitive

©Adafruit Industries Page 111 of 161

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
1
OK

Add a custom characteristic to the above service (making sure that there
is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK

Version 0.6.6 of the Bluefruit LE firmware added the ability to use a new 'UUID128'

flag to add custom 128-bit UUIDs that aren't related to the parent service UUID (which

is used when passing the 16-bit 'UUID' flag).

To specify a 128-bit UUID for your customer characteristic, enter a value resembling

the following syntax:

Add a custom characteristic to the above service using a
custom 128-bit UUID
AT+GATTADDCHAR=UUID128=00-11-22-33-44-55-66-77-88-99-AA-BB-CC-DD-EE-
FF,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK

Version 0.7.0 of the Bluefruit LE firmware added the new DESCRIPTION and PRESENT

ATION keywoards, corresponding the the GATT Characteristic User Description () and

the GATT Characteristic Presentation Format () Descriptors.

The DESCRIPTION field is a string that contains a short text description of the

characteristic. Some apps may not display this data, but it should be visible using

something like the Master Control Panel application from Nordic on iOS and Android.

Make sure that the 16-bit UUID is unique and does not conflict with bytes 3+4 of

the 128-bit service UUID

©Adafruit Industries Page 112 of 161

https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_user_description.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml

The PRESENTATION field contains a 7-byte payload that encapsulates the

characteristic presentation format data. It requires a specific set of bytes and values

to work properly. See the following link for details on how to format the payload: https

://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?

u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml ()

The following example shows how you might use both of these new fields:

AT+GATTADDCHAR=UUID=0x2A37, PROPERTIES=0x10, MIN_LEN=2, MAX_LEN=3, VALUE=00-40,
 DESCRIPTION=HRM Measurement, PRESENTATION=17-00-AC-27-01-00-00

For the Characteristic Presentation Format we have:

Format = IEEE-11073 32-bit FLOAT (Decimal 23, Hex 0x17)

Exponent = 0/None

Unit = Thermodynamic temperature: Degrees Fahrenheit (0x27AC) - Bluetooth

LE Unit List ()

Namespace = Bluetooth SIG Assigned Number (0x01)

Description = None (0x0000)

The results from Nordic's Master Control Panel app can be seen below:

AT+GATTCHAR

Gets or sets the value of the specified custom GATT characteristic (based on the

index ID returned when the characteristic was added to the system via

AT+GATTADDCHAR).

Codebase Revision: 0.3.0

•

•

•

•

•

©Adafruit Industries Page 113 of 161

https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml
https://www.bluetooth.com/specifications/assigned-numbers/units
https://www.bluetooth.com/specifications/assigned-numbers/units

Parameters: This function takes one or two comma-separated functions (one

parameter = read, two parameters = write).

The first parameter is the characteristic index value, as returned from the

AT+GATTADDCHAR function. This parameter is always required, and if no

second parameter is entered the current value of this characteristic will be

returned.

The second (optional) parameter is the new value to assign to this characteristic

(within the MIN_SIZE and MAX_SIZE limits defined when creating it).

Response: If the command is used in read mode (only the characteristic index is

provided as a value), the response will display the current value of the characteristics.

 If the command is used in write mode (two comma-separated values are provided),

the characteristics will be updated to use the provided value.

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Read the battery measurement characteristic (index ID = 1)
AT+GATTCHAR=1
0x64
OK

Update the battery measurement characteristic to 32 (hex 0x20)
AT+GATTCHAR=1,32
OK

Verify the previous write attempt
AT+GATTCHAR=1
0x20
OK

AT+GATTLIST

Lists all custom GATT services and characteristics that have been defined on the

device.

Codebase Revision: 0.3.0

•

•

©Adafruit Industries Page 114 of 161

Parameters: None

Response: A list of all custom services and characteristics defined on the device.

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
2
OK

Add a custom characteristic to the above service (making sure that there
is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
2
OK

Get a list of all custom GATT services and characteristics on the device
AT+GATTLIST
ID=01,UUID=0x180F
 ID=01,UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,MAX_LEN=1,VALUE=0x64
ID=02,UUID=0x11, UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
 ID=02,UUID=0x02,PROPERTIES=0x02,MIN_LEN=1,MAX_LEN=1,VALUE=0x64
OK

AT+GATTCHARRAW

This read only command reads binary (instead of ASCII) data from a characteristic. It is

non-printable but has less overhead and is easier when writing libraries in Arduino.

Codebase Revision: 0.7.0

Parameters: The numeric ID of the characteristic to display the data for

Output: Binary data corresponding to the specified characteristic.

Note: This is a specialized command and no NEWLINE is present at the end of

the command!

©Adafruit Industries Page 115 of 161

Debug

The following debug commands are available on Bluefruit LE modules:

AT+DBGMEMRD

Displays the raw memory contents at the specified address.

Codebase Revision: 0.3.0

Parameters: The following comma-separated parameters can be used with this

command:

The starting address to read memory from (in hexadecimal form, with or without

the leading '0x')

The word size (can be 1, 2, 4 or 8)

The number of words to read

Output: The raw memory contents in hexadecimal format using the specified length

and word size (see examples below for details)

Read 12 1-byte values starting at 0x10000009
AT+DBGMEMRD=0x10000009,1,12
FF FF FF FF FF FF FF 00 04 00 00 00
OK

Try to read 2 4-byte values starting at 0x10000000
AT+DBGMEMRD=0x10000000,4,2
55AA55AA 55AA55AA
OK

Try to read 2 4-byte values starting at 0x10000009
This will fail because the Cortex M0 can't perform misaligned
reads, and any non 8-bit values must start on an even address
AT+DBGMEMRD=0x10000009,4,2
MISALIGNED ACCESS
ERROR

AT+DBGNVMRD

Displays the raw contents of the config data section of non-volatile memory

Use these commands with care since they can easily lead to a HardFault error on

the ARM core, which will cause the device to stop responding.

•

•

•

©Adafruit Industries Page 116 of 161

Codebase Revision: 0.3.0

Properties: None

Output: The raw config data from non-volatile memory

AT+DBGNVMRD
FE CA 38 05 00 03 00 00 01 12 01 00 55 41 52 54 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 14 00 64 00 64 00 1E 00 00 00 00 00
00
00 01 00 00 00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 BA FF 00 00
OK

©Adafruit Industries Page 117 of 161

AT+DBGSTACKSIZE

Returns the current stack size, to help detect stack overflow or detect stack memory

usage when optimising memory usage on the system.

Codebase Revision: 0.4.7

Parameters: None

Output: The current size of stack memory in bytes

AT+DBGSTACKSIZE
1032
OK

AT+DBGSTACKDUMP

Dumps the current stack contents. Unused sections of stack memory are filled with

'0xCAFEFOOD' to help determine where stack usage stops.

This command is purely for debug and development purposes.

Codebase Revision: 0.4.7

Parameters: None

Output: The memory contents of the entire stack region

AT+DBGSTACKDUMP
0x20003800: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003810: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003820: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003830: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003840: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003850: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003860: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003870: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003880: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003890: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038A0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038B0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038C0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038D0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038E0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038F0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003900: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003910: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003920: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003930: CAFEF00D CAFEF00D CAFEF00D CAFEF00D

©Adafruit Industries Page 118 of 161

0x20003940: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003950: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003960: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003970: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003980: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003990: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039A0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039B0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039C0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039D0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039E0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039F0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A00: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A10: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A20: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A30: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A40: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A50: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A60: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A70: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A80: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A90: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AA0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AB0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AC0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AD0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AE0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AF0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B00: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B10: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B20: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B30: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B40: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B50: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B60: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B70: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B80: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B90: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BA0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BB0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BC0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BD0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BE0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BF0: CAFEF00D CAFEF00D 00000000 CAFEF00D
0x20003C00: 00000004 20001D04 CAFEF00D FFFFEF68
0x20003C10: CAFEF00D 00001098 CAFEF00D CAFEF00D
0x20003C20: CAFEF00D CAFEF00D 00001006 200018D8
0x20003C30: 00000001 200018D8 20001C50 00000004
0x20003C40: 20001BB0 000134A5 0000100D 20001D28
0x20003C50: 00000006 00000006 20001C38 20001D44
0x20003C60: 20001C6C 20001D44 00000006 00000005
0x20003C70: 20001D38 00000005 20001D38 00000000
0x20003C80: 00000001 00012083 200018C8 000013D3
0x20003C90: 00550000 00000001 80E80000 4FC40000
0x20003CA0: 000080E8 00000009 60900000 000080E8
0x20003CB0: 60140000 20002764 0009608F 000080E8
0x20003CC0: 80000000 000080E8 00000000 00129F5F
0x20003CD0: 00000000 0001E4D9 80E80000 200018C8
0x20003CE0: 200018D4 00000000 80E80000 000000FF
0x20003CF0: 0000011C 0001BCE1 0000203A 0001BC1D
0x20003D00: 00000000 0001BC1D 80E80000 0001BCE1
0x20003D10: 0000011C 0001BDA9 80E80000 0001BDA9
0x20003D20: 0000011C FFFFFFF9 008B8000 0001BC1D
0x20003D30: 00000048 00000010 0000A000 00000009
0x20003D40: 0001E326 00000001 80E80000 51538000
0x20003D50: 000080E8 0001E9CF 00000000 00000009
0x20003D60: 61C78000 000080E8 00000048 00000504
0x20003D70: 0000A1FC 0002125C 00000000 000080E8
0x20003D80: 00000000 0012A236 00000000 0001E4D9

©Adafruit Industries Page 119 of 161

0x20003D90: 000080E8 00000009 00004998 000080E8
0x20003DA0: 622C8000 0012A29B 00000042 0001E479
0x20003DB0: 40011000 000185EF 00006E10 00000000
0x20003DC0: 00000000 00000004 0000000C 00000000
0x20003DD0: 62780000 00018579 2000311B 0001ACDF
0x20003DE0: 00000000 20003054 20002050 00000001
0x20003DF0: 20003DF8 0002085D 00000001 200030D4
0x20003E00: 00000200 0001F663 00000001 200030D4
0x20003E10: 00000001 2000311B 0001F631 00020A6D
0x20003E20: 00000001 00000000 0000000C 200030D4
0x20003E30: 2000311B 00000042 200030D4 00020AD7
0x20003E40: 20002050 200030D4 20002050 00020833
0x20003E50: 20002050 20003F1B 20002050 0001FF89
0x20003E60: 20002050 0001FFA3 00000005 20003ED8
0x20003E70: 20002050 0001FF8B 00000010 00020491
0x20003E80: 00000001 0012A54E 00000020 00022409
0x20003E90: 00000000 20002050 200030D4 0001FF8B
0x20003EA0: 00021263 00000005 0000000C 20003F74
0x20003EB0: 20003ED8 20002050 200030D4 00020187
0x20003EC0: 20003ED4 20003054 00000000 20003F75
0x20003ED0: 00000008 20003F64 00000084 FFFFFFFF
0x20003EE0: FFFFFFFF 00000008 00000001 00000008
0x20003EF0: 20302058 2000311B 0001F631 00020A6D
0x20003F00: 20002050 00000000 0000000C 200030D4
0x20003F10: 32002050 32303032 00323330 000258D7
0x20003F20: 20002050 200030D4 20002050 00020833
0x20003F30: 00000000 20002050 00000020 000001CE
0x20003F40: 20003F40 200030D4 00000004 0001ED83
0x20003F50: 200030D4 20003F60 000001D6 000001D7
0x20003F60: 000001D8 00016559 0000000C 00000000
0x20003F70: 6C383025 00000058 200030D4 FFFFFFFF
0x20003F80: 1FFF4000 00000028 00000028 000217F8
0x20003F90: 200020C7 000166C5 000166AD 00017ED9
0x20003FA0: FFFFFFFF 200020B8 2000306C 200030D4
0x20003FB0: 200020B4 000180AD 1FFF4000 200020B0
0x20003FC0: 200020B0 200020B0 1FFF4000 0001A63D
0x20003FD0: CAFEF00D CAFEF00D 200020B4 00000002
0x20003FE0: FFFFFFFF FFFFFFFF 1FFF4000 00000000
0x20003FF0: 00000000 00000000 00000000 00016113
OK

History

This page tracks additions or changes to the AT command set based on the firmware

version number (which you can obtain via the 'ATI' command):

Version 0.7.7

The following AT commands and features were added in the 0.7.7 release:

Added AT+BLEUARTTXF (F for force) to immediately send the specified data

out in an BLE UART packet (max 20 bytes), bypassing any FIFO delays and

avoiding packets potentially being transmitted in two transactions.

Adjusted BLE UART service to use min connection interval as the tx interval

Added AT+DFUIRQ to enable using the DFU Pin for IRQ purposes when there is

a supported event on the nRF51822

•

•

•

©Adafruit Industries Page 120 of 161

Enabled the internal pullup resistor on the CS pin for Bluefruit SPI boards

Added AT+MODESWITCHEN to enable/disable +++ mode switching from the

local (serial or SPI) or BLE UART side. By default local = enabled, ble = disabled,

meaning commands can only be executed via the local interface by default.

Implemented a '\+' escape code to immediately send '+' chars without trigger the

+++ delay waiting for further similar input

Added AT+BLEHIDGAMEPADEN to separately enable HID Gamepad, since iOS/

OSX has a conflict with gamepad devices causing HID keyboard to not work

properly.

The following bugs were fixed in release 0.7.7:

Fixed a factory reset issue when a long delay occurs in app_error_handler()

Fixed an issue where strings were being truncated at 64 chars in UART

Fixed HID keyboard support not working with iOS 9 & 10

Version 0.7.0

The following AT commands were added in the 0.7.0 release:

AT+BAUDRATE

Change the HW UART baudrate

AT+UARTFLOW

Enable or disable HW UART flow control

AT+BLEMIDIEN=on/off/0/1

Enable/disable MIDI service, requires a reset to take effect

AT+BLEMIDITX

Send a MIDI event

AT+BLEMIDIRX

Receive an available MIDI event

AT+GATTCHARRAW

Added this read only command to read binary (instead of ASCII) data from a

characteristic. It is non-printable but less overhead and easier for writing library

in Arduino

AT+NVMWRITE=offset,datatype,data

Writes data to 256 byte user NVM. Datatype must be STRING (1), BYTEARRAY

(2), or INTEGER (3)

AT+NVMREAD=offset,size,datatype

Reads data back from 256 bytes user NVM

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 121 of 161

AT+NVMREADRAW=offset,size binary data

Binary data (instead of ASCII) is returned, ending with "OK\r\n". It is non-printable

but less overhead and easier to use in some situations.

AT+BLEHIDGAMEPAD=x,y,buttons

X is LEFT, RIGHT: X=-1 LEFT is pressed, X=1 RIGHT is pressed, X=0 no

pressed

Y is UP, DOWN: Y=-1 i UP, Y=1 is DOWN, Y=0 no pressed

Button [0x00-0xFF] is a bit mask for 8 button 0-7

AT+GAPCONNECTABLE=on/off/1/0

Allow/disallow connection to the device

AT+EDDYSTONESERVICEEN

Add/remove EddyStone service to GATT table (requires reset)

AT+EDDYSTONEBROADCAST=on/off/0/1

Start/stop broadcasting url using settings from NVM

AT+BLEBATTEN=on/off/1/0

Enable battery service. Reset required due to the service change.

AT+BLEBATTVAL=percent

Updates the Battery level, percent is 0 to 100

The following commands were changed in the 0.7.0 release:

AT+GATTADDCHAR

Added a DATATYPE option to indicate the data type for the GATT

characteristic's payload. Valid option are: AUTO (0, default), STRING (1),

BYTEARRAY (2), INTEGER (3)

Added characteristic user description option via the DESCRIPTION flag

Added characteristic presentation format support via the PRESENTATION

flag

AT+GAPINTERVALS

Added a new 'adv_lowpower_interval' parameter, default value is 417.5 ms.

Current arguments are now: min_conn, max_conn, adv_interval, adv_timeout,

adv_lowpower_interval

Key bug fixes and changes in this release:

Significant BTLE UART speed and reliability improvements

Added callback support (work in progress) for:

BLE UART RX

GATT Characteristic(s) RX

•

•

◦

◦

◦

•

•

•

•

•

•

◦

◦

◦

•

•

•

◦

◦

©Adafruit Industries Page 122 of 161

MIDI RX

Connect/Disconnect

Increased MAX_LEN for each characteristic from 20 to 32 bytes

Changed the default GAP parameters:

Advertising interval = 20ms

Min connection interval = 20 ms

Max connection interval = 40 ms

Increased the maximum number of CCCDs saved to flash from 8 to 16

Eddystone config service disabled by default

Removed AT+EDDYSTONEENABLE to avoid confusion

Changed advertising timeout for Eddystone to 'unlimited'

Fixed Write-No-Response characteristic property, which wasn't being handled

properly

Fixed timing constraints to meet Apple design guidelines

Fixed systick to ms calculation

Fixed all tests with google eddystone validator except for writing tx_power = 1

dB (not valid on nrf51)

Fixed a bug where writing from the central does not update the value on the

characteristic correctly

Fixed an issue with HID examples, where when paired with Central, a disconnect

then reconnect could not send HID reports anymore

Version 0.6.7

The following AT commands were added in the 0.6.7 release:

AT+BLEUARTFIFO

Returns the number of free bytes available in the TX and RX FIFOs for the

Bluetooth UART Service.

The following commands were changed in the 0.6.7 release:

AT+BLEUARTTX

If the TX FIFO is full, the command will wait up to 200ms to see if the FIFO size

decreases before exiting and returning an ERROR response due to the FIFO

being full.

AT+BLEURIBEACON

This command will go back to using the old (deprecated) UriBeacon UUID

◦

◦

•

•

◦

◦

◦

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 123 of 161

(0xFED8), and only the AT+EDDYSTONEURL command will use the newer

Eddystone UUID (0xFEAA).

AT+BLEKEYBOARD and AT+BLEUARTTX

These commands now accept '\?' as an escape code since

'AT+BLEKEYBOARD=?' has another meaning for the AT parser. To send a single

question mark the following command should be used: 'AT+BLEKEYBOARD=\?'

or 'AT+BLEUARTTX=\?'

AT+EDDYSTONEURL

This command now accepts an optional third parameter for RSSI at 0m value

(default is -18dBm).

Running this command with no parameters ('AT+EDDYSTONEURL\r\n') will now

return the current URL.

Key bug fixes in this release:

The FIFO handling for the Bluetooth UART Service was improved for speed and

stability, and the TX and RF FIFOs were increased to 1024 bytes each.

An issue where a timer overflow was causing factory resets every 4 hours or so

has been resolved.

Fixed a problem with the GATT server where 'value_len' was being incorrectly

parsed for integer values in characteristics where 'max_len' >4

Version 0.6.6

The following AT commands were added in the 0.6.6 release:

AT+EDDYSTONEURL

Update the URL for the beacon and switch to beacon mode

AT+EDDYSTONEENABLE

Enable/disable beacon mode using the configured url

AT+EDDYSTONECONFIGEN

Enable advertising for the the Eddystone configuration service for the specified

number of seconds

AT+HWMODELED

Allows the user to override the default MODE LED behaviour with one of the

following options: DISABLE, MODE, HWUART, BLEUART, SPI, MANUAL

AT+BLECONTROLKEY

Allows HID media control values to be sent to a bonded central device (volume,

screen brightness, etc.)

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 124 of 161

AT+BLEHIDEN

Enables or disables BLE HID support in the Bluefruit LE firmware (mouse,

keyboard and media control)

AT+BLEMOUSEMOVE

To move the HID mouse

AT+BLEMOUSEBUTTON

To set the state of the HID mouse buttons

The following commands were changed in the 0.6.6 release:

AT+BLEKEYBOARDEN - Now an alias for AT+BLEHIDEN

AT+GATTADDCHAR - Added a new UUID128 field to allow custom UUIDs

Key bug fixes in this release:

Fixed issues with long beacon URLs

Fixed big endian issue in at+blebeacon for major & minor number

Known issues with this release:

Windows 10 seems to support a limited number of characteristics for the DIS

service. We had to disable the Serial Number characteristic to enable HID

support with windows 10.

Version 0.6.5

The following AT commands were added in the 0.6.5 release:

AT+BLEGETPEERADDR ()

The following commands were changed in the 0.6.5 release:

Increased the UART buffer size (on the nRF51) from 128 to 256 bytes

+++ now responds with the current operating mode

Fixed a bug with AT+GATTCHAR values sometimes not being saved to NVM

Fixed a bug with AT+GATTCHAR max_len value not being taken into account

after a reset (min_len was always used when repopulating the value)

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 125 of 161

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-generic#at-plus-blegetpeeraddr

Version 0.6.2

This is the first release targetting 32KB SRAM parts (QFAC). 16KB SRAM parts can't be

used with this firmware due to memory management issues, and should use the

earlier 0.5.0 firmware.

The following AT commands were changed in the 0.6.2 release:

AT+BLEUARTTX ()

Basic escape codes were added for new lines, tabs and backspace

AT+BLEKEYBOARD ()

Also works with OS X now, and may function with other operating systems that

support BLE HID keyboards

Version 0.5.0

The following AT commands were added in the 0.5.0 release:

AT+BLEKEYBOARDEN ()

AT+BLEKEYBOARD ()

AT+BLEKEYBOARDCODE ()

The following AT commands were changed in the 0.5.0 release:

ATI ()

The SoftDevice, SoftDevice version and bootloader version were added as a

new (7th) record. For Ex: "S110 7.1.0, 0.0" indicates version 7.1.0 of the S110

softdevice is used with the 0.0 bootloader (future boards will use a newer 0.1

bootloader).

Other notes concerning 0.5.0:

Starting with version 0.5.0, you can execute the AT+FACTORYRESET command at any

point (and without a terminal emulator) by holding the DFU button down for 10

seconds until the blue CONNECTED LED starts flashing, then releasing it.

•

•

•

•

•

•

©Adafruit Industries Page 126 of 161

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-bleuartrx
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboard
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboarden
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboard
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboardcode
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#ati

Version 0.4.7

The following AT commands were added in the 0.4.7 release:

+++ ()

AT+HWRANDOM ()

AT+BLEURIBEACON ()

AT+DBGSTACKSIZE ()

AT+DBGSTACKDUMP ()

The following commands were changed in the 0.4.7 release:

ATI

 ()The chip revision was added after the chip name. Whereas ATI would

previously report 'nRF51822', it will now add the specific HW revision if it can be

detected (ex 'nRF51822 QFAAG00')

Version 0.3.0

First public release

GATT Service Details

Data in Bluetooth Low Energy is organized around units called 'GATT Services ()' and

'GATT Characteristics'. To expose data to another device, you must instantiate at least

one service on your device.

Adafruit's Bluefruit LE Pro modules support some 'standard' services, described below

(more may be added in the future).

UART Service

The UART Service is the standard means of sending and receiving data between

connected devices, and simulates a familiar two-line UART interface (one line to

transmit data, another to receive it).

The service is described in detail on the dedicated UART Service () page.

•

•

•

•

•

•

•

©Adafruit Industries Page 127 of 161

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#plus-plus-plus
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/hardware#at-plus-hwrandom
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/beacon#at-plus-bleuribeacon
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/debug#at-plus-dbgstacksize
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/debug#at-plus-dbgstackdump
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#ati
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#ati
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#ati
file:///home/introduction-to-bluetooth-low-energy/gatt#services-and-characteristics
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service

UART Service

Base UUID: 6E400001-B5A3-F393-E0A9-E50E24DCCA9E

This service simulates a basic UART connection over two lines, TXD and RXD.

It is based on a proprietary UART service specification by Nordic Semiconductors.

Data sent to and from this service can be viewed using the nRFUART apps from

Nordic Semiconductors for Android and iOS.

Characteristics

Nordic’s UART Service includes the following characteristics:

R = Read; W = Write; N = Notify; I = Indicate

TX (0x0002)

This characteristic is used to send data back to the sensor node, and can be written

to by the connected Central device (the mobile phone, tablet, etc.).

RX (0x0003)

This characteristic is used to send data out to the connected Central device. Notify

can be enabled by the connected device so that an alert is raised every time the TX

channel is updated.

This service is available on every Bluefruit LE module and is automatically started

during the power-up sequence.

Name

TX

RX

Mandatory

Yes

Yes

UUID

0x0002

0x0003

Type

U8[20]

U8[20]

R

X

W

X

N

X

I

Characteristic names are assigned from the point of view of the Central device

©Adafruit Industries Page 128 of 161

Factory Reset

There are several methods that you can use to perform a factory reset on your

Bluefruit LE module if something gets misconfigured, or to delete persistent changes

like UriBeacon or advertising payload changes, etc.

These methods are the same for both UART and SPI versions of Bluefruit LE

Factory Reset via DFU Pin

If you hold the DFU pin low (set the pin to GND) for >5 seconds, the red and blue

LEDs next to the module will start blinking and the device will perform a factory reset

as soon as you release the DFU pin (disconnecting it from GND).

If you have a DFU button instead of a pin, just hold the button down.

©Adafruit Industries Page 129 of 161

FactoryReset Sample Sketch

There is a FactoryReset sample sketch in the Adafruit Bluefruit LE library, which can

be access in the File > Examples > Adafruit_BluefruitLE_nRF51 folder (See the

Software section of this tutorial () for instructions on installing the library):

Upload this sketch and open the Serial Monitor and it should perform a factory reset

for you:

©Adafruit Industries Page 130 of 161

file:///home/introducing-the-adafruit-bluefruit-spi-breakout/software
file:///home/introducing-the-adafruit-bluefruit-spi-breakout/software

AT+FACTORYRESET

You can also perform a factory reset by sending the AT+FACTORYRESET command to

your Bluefruit LE module in your favorite terminal emulator or using the ATCommand ()

example sketch.

AT+FACTORYRESET
OK

This command will also cause the device to reset.

Factory Reset via FCTR Test Pad

On the bottom of the Bluefruit LE Friend board or shields there is a test pad or pin

that exposes the Factory Reset pin on the modules (marked FCR or F.RST). Setting

this pad low when the device is powered up will cause a factory reset at startup.

©Adafruit Industries Page 131 of 161

file:///home/introducing-the-adafruit-bluefruit-le-uart-friend/atcommand

DFU Updates

We're constantly working on the Bluefruit LE firmware to add new features, and keep

up to date with what customers need and want.

To make sure you stay up to date with those changes, we've included an easy to use

over the air updater on all of our nRF51 based Bluefruit LE modules.

Adafruit Bluefruit LE Connect

Updating your Bluefruit LE device to the latest firmware is as easy as installing Adafrui

t's Bluefruit LE Connect application () (Android) from the Google Play Store or Bluefruit

LE Connect for iOS () from the Apple App Store.

Any time a firmware update is available, the application will propose to download the

latest binaries and take care of all the details of transferring them to your Bluefruit

device, ans shown in the video below:

SDEP (SPI Data Transport)

In order to facilitate switching between UART and SPI based Bluefruit LE modules, the

Bluefruit LE SPI Friend and Shield uses the same AT command set at the UART

modules (ATI , AT+HELP , etc.).

©Adafruit Industries Page 132 of 161

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8

These text-based AT commands are encoded as binary messages using a simple

binary protocol we've named SDEP (Simple Data Exhange Protocol).

SDEP Overview

SDEP was designed as a bus neutral protocol to handle binary commands and

responses -- including error responses -- in a standard, easy to extend manner. 'Bus

neutral' means that we can use SDEP regardless of the transport mechanism (USB

HID, SPI, I2C, Wireless data over the air, etc.).

All SDEP messages have a four byte header, and in the case of the Bluefruit LE

modules up to a 16 byte payloads. Larger messages are broken up into several 4+16

bytes message chunks which are rebuilt at either end of the transport bus. The 20

byte limit (4 byte header + 16 byte payload) was chosen to take into account

the maximum packet size in Bluetooth Low Energy 4.0 (20 bytes per packet).

SPI Setup

While SDEP is bus neutral, in the case of the Bluefruit LE SPI Friend or Shield, an SPI

transport is used with the following constraints and assumptions, largely to take into

account the HW limitations of the nRF51822 system on chip:

SPI Hardware Requirements

The SPI clock should run <=4MHz

A 100us delay should be added between the moment that the CS line is

asserted, and before any data is transmitted on the SPI bus

The CS line must remain asserted for the entire packet, rather than toggling CS

every byte

The CS line can however be deasserted and then reasserted between individual

SDEP packets (of up to 20 bytes each).

The SPI commands must be setup to transmit MSB (most significant bit ()) first

(not LSB first)

Most of the time, you never need to deal with SDEP directly, but we've

documented the protocol here in case you need understand the Bluefruit LE SPI

interface in depth!

•

•

•

•

•

©Adafruit Industries Page 133 of 161

https://en.wikipedia.org/wiki/Most_significant_bit

IRQ Pin

The IRQ line is asserted by the Bluefruit LE SPI Friend/Shield as long as an entire

SDEP packet is available in the buffer on the nRF51822, at which point you should

read the packet, keeping the CS line asserted for the entire transaction (as detailed

above).

The IRQ line will remain asserted as long as one or more packets are available, so the

line may stay high after reading a packet, meaning that more packets are still

available in the FIFO on the SPI secondary side.

SDEP Packet and SPI Error Identifier

Once CS has been asserted and the mandatory 100us delay has passed, a single byte

should be read from the SPI bus which will indicate the type of payload available on

the nRF51822 (see Message Type Indicator below for more information on SDEP

message types). Keep CS asserted after this byte has been read in case you need to

continue reading the rest of the frame.

If a standard SDEP message type indicator (0x10, 0x20, 0x40 or 0x80) is

encountered, keep reading as normal. There are two other indicators that should be

taken into account, though, which indicate a problem on the nRF51822 SPI secondary

side:

0xFE: Secondary device not ready (wait a bit and try again)

0xFF: Secondary device read overflow indicator (you've read more data than is

available)

This means there are six possible response bytes reading the message type indicator

(the first byte read after an SDEP command is sent): 0x10, 0x20, 0x40, 0x80, which

indicate a valid message type, or 0xFE, 0xFF which indicate an error condition.

Sample Transaction

The following image shows a sample SDEP response that is spread over two packets

(since the response is > 20 bytes in size). Notice that the IRQ line stays asserted

between the packets since more than one packet was available in the FIFO on the

Bluefruit LE SPI side:

•

•

©Adafruit Industries Page 134 of 161

SDEP (Simple Data Exchange Protocol)

The Simple Data Exchange Protocol (SDEP) can be used to send and receive binary

messages between two connected devices using any binary serial bus (USB HID, USB

Bulk, SPI, I2C, Wireless, etc.), exchanging data using one of four distinct message

types (Command, Response, Alert and Error messages).

The protocol is designed to be flexible and extensible, with the only requirement

being that individual messages are 20 bytes or smaller, and that the first byte of every

message is a one byte (U8) identifier that indicates the message type, which defines

the format for the remainder of the payload.

Endianness

All values larger than 8-bits are encoded in little endian format. Any deviation from

this rule should be clearly documented.

Message Type Indicator

The first byte of every message is an 8-bit identifier called the Message Type

Indicator. This value indicates the type of message being sent, and allows us to

determine the format for the remainder of the message.

Message Type

Command

Response

Alert

Error

ID (U8)

0x10

0x20

0x40

0x80

©Adafruit Industries Page 135 of 161

SDEP Data Transactions

Either connected device can initiate SDEP transactions, though certain transport

protocols imposes restrictions on who can initiate a transfer. The main device, for

example, always initiates transactions with Bluetooth Low Energy or USB, meaning

that secondary devices can only reply to incoming commands.

Every device that receives a Command Message must reply with a Response

Message, Error Message or Alert message.

Message Types

Command Messages

Command messages (Message Type = 0x10) have the following structure:

Command ID (bytes 1-2) and Payload Length (byte 3) are mandatory in any command

message. The message payload is optional, and will be ignored if Payload Length is

set to 0 bytes. When a message payload is present, it’s length can be anywhere from

1..16 bytes, to stay within the 20-byte maximum message length.

A long command (>16 bytes payload) must be divided into multiple packets. To

facilitate this, the More data field (bit 7 of byte 3) is used to indicate whether

additional packets are available for the same command. The SDEP receiver must

continue to reads packets until it finds a packet with More data == 0, then assemble

all sub-packets into one command if necessary.

Name

Message Type

Command ID

Payload Length

Payload

Type

U8

U16

U8

...

Meaning

Always '0x10'

Unique Command Identifier

[7] More data

[6-5] Reserved

[4-0] Payload length (0..16)

Optional command payload (parameters,

etc.)

©Adafruit Industries Page 136 of 161

The contents of the payload are user defined, and can change from one command to

another.

A sample command message would be:

10 34 12 01 FF

The first byte is the Message Type (0x10), which identifies this as a command

message.

The second and third bytes are 0x1234 (34 12 in little-endian notation), which is

the unique command ID. This value will be compared against the command

lookup table and redirected to an appropriate command handler function if a

matching entry was found.

The fourth byte indicates that we have a message payload of 1 byte

The fifth byte is the 1 byte payload: 0xFF

Response Messages

Response messages (Message Type = 0x20) are generated in response to an

incoming command, and have the following structure:

0: Message Type (U8)

1+2: Command ID (U16)

3: Payload Len (U8)

4: Payload (...)

0x10

0x34 0x12

0x01

0xFF

•

•

•

•

©Adafruit Industries Page 137 of 161

By including the Command ID that this response message is related to, the recipient

can more easily correlate responses and commands. This is useful in situations where

multiple commands are sent, and some commands may take a longer period of time

to execute than subsequent commands with a different command ID.

Response messages can only be generate in response to a command message, so

the Command ID field should always be present.

A long response (>16 bytes payload) must be divided into multiple packets. Similar to

long commands, the More data field (bit 7 of byte 3) is used to indicate whether

additional packets are available for the same response. On responses that span more

than one packet, the More data bit on the final packet will be set to 0 to indicate that

this is the last packet in the sequence. The SDEP receiver must re-assemble all sub-

packets in into one payload when necessary.

If more precise command/response correlation is required a custom protocol should

be developed, where a unique message identifier is included in the payload of each

command/response, but this is beyond the scope of this high-level protocol definition.

A sample response message would be:

20 34 12 01 FF

Name

Message Type

Command ID

Payload Length

Payload

Type

U8

U16

U8

Meaning

Always '0x20'

Command ID this message is a response

to

[7] More data

[6-5] Reserved

[4-0] Payload length (0..16)

Optional response payload (parameters,

etc.)

©Adafruit Industries Page 138 of 161

The first byte is the Message Type (0x20), which identifies this as a response

message.

The second and third bytes are 0x1234, which is the unique command ID that

this response is related to.

The fourth byte indicates that we have a message payload of 1 byte.

The fifth byte is the 1 byte payload: 0xFF

Alert Messages

Alert messages (Message Type = 0x40) are sent whenever an alert condition is

present on the system (low battery, etc.), and have the following structure:

A sample alert message would be:

40 CD AB 04 42 07 00 10

0: Message Type (U8)

1+2: Command ID (U16)

3: Payload Len (U8)

4: Payload

0x20

0x34 0x12

0x01

0xFF

•

•

•

•

Name

Message Type

Alert ID

Payload Length

Payload

Type

U8

U16

U8

...

Meaning

Always '0x40'

Unique ID for the Alert Condition

Payload Length (0..16)

Optional response payload

©Adafruit Industries Page 139 of 161

The first byte is the Message Type (0x40), which identifies this as an alert

message.

The second and third bytes are 0xABCD, which is the unique alert ID.

The fourth byte indicates that we have a message payload of 4 bytes.

The last four bytes are the actual payload: 0x10000742 in this case, assuming

we were transmitting a 32-bit value in little-endian format.

Standard Alert IDs

Alert IDs in the range of 0x0000 to 0x00FF are reserved for standard SDEP alerts,

and may not be used by custom alerts.

The following alerts have been defined as a standard part of the protocol:

Error Messages

Error messages (Message Type = 0x80) are returned whenever an error condition is

present on the system, and have the following structure:

0: Message Type (U8)

1+2: Alert ID (U16)

3: Payload Length

4+5+6+7: Payload

0x40

0xCD 0xAB

0x04

0x42 0x07 0x00 0x10

•

•

•

•

ID

0x0000

0x0001

0x0002

0x0003

Alert

Reserved

System Reset

Battery Low

Battery Critical

Description

Reserved for future use

The system is about to reset

The battery level is low

The battery level is critically low

©Adafruit Industries Page 140 of 161

Whenever an error condition is present and the system needs to be alerted (such as a

failed request, an attempt to access a non-existing resource, etc.) the system can

return a specific error message with an appropriate Error ID.

A sample error message would be:

80 01 00 00

Standard Error IDs

Error IDs in the range of 0x0000 to 0x00FF are reserved for standard SDEP errors,

and may not be used by custom errors.

The following errors have been defined as a standard part of the protocol:

Name

Message Type

Error ID

Reserved

Type

U8

U16

U8

Meaning

Always '0x80'

Unique ID for the error condition

Reserved for future use

0: Message ID (U8)

1+2: Error ID (U16)

3: Reserved (U8)

0x80

0x01 0x00

0x00

ID

0x0000

0x0001

0x0003

Error

Reserved

Invalid CMD ID

Invalid Payload

Description

Reserved for future use

CMD ID wasn't found in the lookup table

The message payload was invalid

©Adafruit Industries Page 141 of 161

Existing Commands

At present, there are only four SDEP commands implemented in the Bluefruit

SPIFRIEND32 firmware:

SDEP_CMDTYPE_INITIALIZE = 0xBEEF

SDEP_CMDTYPE_AT_WRAPPER = 0x0A00

SDEP_CMDTYPE_BLE_UARTTX = 0x0A01

SDEP_CMDTYPE_BLE_UARTRX = 0x0A02

SDEP_CMDTYPE_INITIALIZE can be used to reset the SDEP system when a HW RST

line isn't available.

The two SDEP_CMDTYPE_UART* commands send data over the BLE UART service.

SDEP_CMDTYPE_AT_WRAPPER is the command you will use most of the time, which

is a wrapper that sends AT commands over the binary SDEP transport. This isn't

terribly efficient, and a binary mechanism would have taken less bytes per command,

but it allows the reuse of all of the earlier AT parser commands without having to

implement one wrapper for every command which would significantly increase the

overall code size.

SDEP AT Wrapper Usage

To use the SDEP AT Wrapp you simply send the correct header, along with the AT

command you which to send to the parser. For example:

10-00-0A-03-‘a’-‘t’-‘I’

Message Type: 0x10 (Command)

Command ID: 0x0A00

Command Payload Length: 3 bytes

Command Payload: 'a' + 't' + 'i'

This will cause the ATI command to be executed, which will return basic system

information.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 142 of 161

Software Resources

To help you get your Bluefruit LE module talking to other Central devices, we've put

together a number of open source tools for most of the major platforms supporting

Bluetooth Low Energy.

Bluefruit LE Client Apps and Libraries

Adafruit has put together the following mobile or desktop apps and libraries to make

it as easy as possible to get your Bluefruit LE module talking to your mobile device or

laptop, with full source available where possible:

Bluefruit LE Connect () (Android/Java)

Bluetooth Low Energy support was added to Android starting with Android 4.3

(though it was only really stable starting with 4.4), and we've already released Bluefrui

t LE Connect to the Play Store ().

The full source code () for Bluefruit LE Connect for Android is also available on Github

to help you get started with your own Android apps. You'll need a recent version of A

ndroid Studio () to use this project.

Bluefruit LE Connect () (iOS/Swift)

Apple was very early to adopt Bluetooth Low Energy, and we also have an iOS

version of the Bluefruit LE Connect () app available in Apple's app store.

The full swift source code for Bluefruit LE Connect for iOS is also available on Github.

You'll need XCode and access to Apple's developper program to use this project:

Version 1.x source code: https://github.com/adafruit/Bluefruit_LE_Connect ()

Version 2.x source code: https://github.com/adafruit/Bluefruit_LE_Connect_v2 ()

•

•

©Adafruit Industries Page 143 of 161

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://github.com/adafruit/Bluefruit_LE_Connect_Android
https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://github.com/adafruit/Bluefruit_LE_Connect
https://github.com/adafruit/Bluefruit_LE_Connect_v2

Bluefruit LE Connect for OS X () (Swift)

This OS X desktop application is based on the same V2.x codebase as the iOS app,

and gives you access to BLE UART, basic Pin I/O and OTA DFU firmware updates from

the convenience of your laptop or mac.

This is a great choice for logging sensor data locally and exporting it as a CSV, JSON

or XML file for parsing in another application, and uses the native hardware on your

computer so no BLE dongle is required on any recent mac.

The full source is also available on Github ().

Version 2.x of the app is a complete rewrite that includes iOS, OS X GUI and OS

X command-line tools in a single codebase.

©Adafruit Industries Page 144 of 161

https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id1082414600?mt=12
https://github.com/adafruit/Bluefruit_LE_Connect_v2

Bluefruit LE Command Line Updater for OS
X () (Swift)

This experimental command line tool is unsupported and provided purely as a proof

of concept, but can be used to allow firmware updates for Bluefruit devices from the

command line.

This utility performs automatic firmware updates similar to the way that the GUI

application does, by checking the firmware version on your Bluefruit device (via the

Device Information Service), and comparing this against the firmware versions

available online, downloading files in the background if appropriate.

Simply install the pre-compiled tool via the DMG file () and place it somewhere in the

system path, or run the file locally via './bluefruit' to see the help menu:

$./bluefruit
bluefruit v0.3
Usage:

bluefruit <command> [options...]

Commands:
Scan peripherals: scan
Automatic update: update [--enable-beta] [--uuid <uuid>]
Custom firmware: dfu --hex <filename> [--init <filename>] [--

uuid <uuid>]
Show this screen: --help
Show version: --version

Options:
--uuid <uuid> If present the peripheral with that uuid is used. If not

present a list of peripherals is displayed
--enable-beta If not present only stable versions are used

Short syntax:
-u = --uuid, -b = --enable-beta, -h = --hex, -i = --init, -v = --version, -? =

--help

Deprecated: Bluefruit Buddy () (OS X)

This native OS X application is a basic proof of concept app that allows you to

connect to your Bluefruit LE module using most recent macbooks or iMacs. You can

get basic information about the modules and use the UART service to send and

receive data.

The full source for the application is available in the github repo at Adafruit_BluefruitL

E_OSX ().

©Adafruit Industries Page 145 of 161

https://github.com/adafruit/Bluefruit_LE_Connect_v2/releases/tag/OSXcommandline_0.3
https://github.com/adafruit/Bluefruit_LE_Connect_v2/releases/tag/OSXcommandline_0.3
https://github.com/adafruit/Bluefruit_LE_Connect_v2/releases/tag/OSXcommandline_0.3
https://itunes.apple.com/us/app/bluefruit-buddy/id1042412646?mt=12
https://github.com/adafruit/Adafruit_BluefruitLE_OSX
https://github.com/adafruit/Adafruit_BluefruitLE_OSX

ABLE () (Cross Platform/Node+Electron)

ABLE () (Adafruit Bluefruit LE Desktop) is a cross-platform desktop application based

on Sandeep Misty's noble library () and the Electron () project from Github (used by

Atom).

It runs on OS X, Windows 7+ and select flavours of Linux (Ubuntu tested locally).

 Windows 7 support is particularly interesting since Windows 7 has no native support

for Bluetooth Low Energy but the noble library talks directly to supported Bluetooth

4.0 USB dongles (http://adafru.it/1327) to emulate BLE on the system (though at this

stage it's still in early BETA and drops the connection and takes more care to work

with).

This app allows you to collect sensor data or perform many of the same functionality

offered by the mobile Bluefruit LE Connect apps, but on the desktop.

The app is still in BETA, but full source () is available in addition to the easy to use pre-

compiled binaries ().

©Adafruit Industries Page 146 of 161

https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/sandeepmistry/noble
https://github.com/atom/electron
https://www.adafruit.com/products/1327
https://www.adafruit.com/products/1327
https://github.com/adafruit/adafruit-bluefruit-le-desktop
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases

Bluefruit LE Python Wrapper ()

As a proof of concept, we've played around a bit with getting Python working with the

native Bluetooth APIs on OS X and the latest version of Bluez on certain Linux targets.

There are currently example sketches showing how to retreive BLE UART data as well

as some basic details from the Device Information Service (DIS).

This isn't an actively support project and was more of an experiment, but if you have a

recent Macbook or a Raspberry Pi and know Python, you might want to look at Adafru

it_Python_BluefruitLE () in our github account.

Debug Tools

If your sense of adventure gets the better of you, and your Bluefruit LE module

goes off into the weeds, the following tools might be useful to get it back from

unknown lands.

These debug tools are provided purely as a convenience for advanced users for

device recovery purposes, and are not recommended unless you're OK with

potentially bricking your board. Use them at your own risk.

©Adafruit Industries Page 147 of 161

https://github.com/adafruit/Adafruit_Python_BluefruitLE
https://github.com/adafruit/Adafruit_Python_BluefruitLE
https://github.com/adafruit/Adafruit_Python_BluefruitLE

AdaLink () (Python)

This command line tool is a python-based wrapper for programming ARM MCUs using

either a Segger J-Link () or an STLink/V2 (). You can use it to reflash your Bluefruit LE

module using the latest firmware from the Bluefruit LE firmware repo ().

Details on how to use the tool are available in the readme.md file on the main Adafruit

_Adalink () repo on Github.

Completely reprogramming a Bluefruit LE module with AdaLink would require four

files, and would look something like this (using a JLink):

adalink nrf51822 --programmer jlink --wipe
 --program-hex "Adafruit_BluefruitLE_Firmware/softdevice/
s110_nrf51_8.0.0_softdevice.hex"
 --program-hex "Adafruit_BluefruitLE_Firmware/bootloader/bootloader_0002.hex"
 --program-hex "Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/
blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex"
 --program-hex "Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/
blefriend32_s110_xxac_0_6_7_150917_blefriend32_signature.hex"

You can also use the AdaLink tool to get some basic information about your module,

such as which SoftDevice is currently programmed or the IC revision (16KB SRAM or

32KB SRAM) via the --info command:

$ adalink nrf51822 -p jlink --info
Hardware ID : QFACA10 (32KB)
Segger ID : nRF51822_xxAC
SD Version : S110 8.0.0
Device Addr : **:**:**:**:**:**
Device ID : ****************

Adafruit nRF51822 Flasher () (Python)

Adafruit's nRF51822 Flasher is an internal Python tool we use in production to flash

boards as they go through the test procedures and off the assembly line, or just

testing against different firmware releases when debugging.

It relies on AdaLink or OpenOCD beneath the surface (see above), but you can use

this command line tool to flash your nRF51822 with a specific SoftDevice, Bootloader

and Bluefruit firmware combination.

It currently supports using either a Segger J-Link or STLink/V2 via AdaLink, or GPIO

on a Raspberry Pi () if you don't have access to a traditional ARM SWD debugger. (A

pre-built version of OpenOCD for the RPi is included in the repo since building it from

scratch takes a long time on the original RPi.)

©Adafruit Industries Page 148 of 161

https://github.com/adafruit/Adafruit_Adalink
https://www.adafruit.com/search?q=J-Link
https://www.adafruit.com/product/2548
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_Adalink
https://github.com/adafruit/Adafruit_Adalink
https://github.com/adafruit/Adafruit_nRF51822_Flasher
https://github.com/adafruit/Adafruit_nRF51822_Flasher#rpi-gpio-requirements
https://github.com/adafruit/Adafruit_nRF51822_Flasher#rpi-gpio-requirements

We don't provide active support for this tool since it's purely an internal project, but

made it public just in case it might help an adventurous customer debrick a board on

their own.

$ python flash.py --jtag=jlink --board=blefriend32 --softdevice=8.0.0 --
bootloader=2 --firmware=0.6.7
jtag : jlink
softdevice : 8.0.0
bootloader : 2
board : blefriend32
firmware : 0.6.7
Writing Softdevice + DFU bootloader + Application to flash memory
adalink -v nrf51822 --programmer jlink --wipe --program-hex
"Adafruit_BluefruitLE_Firmware/softdevice/s110_nrf51_8.0.0_softdevice.hex" --
program-hex "Adafruit_BluefruitLE_Firmware/bootloader/bootloader_0002.hex" --
program-hex "Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/
blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex" --program-hex
"Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/
blefriend32_s110_xxac_0_6_7_150917_blefriend32_signature.hex"
...

BLE FAQ

Can I talk to Classic Bluetooth devices with a Bluefruit LE
modules?

No. Bluetooth Low Energy and 'Classic' Bluetooth are both part of the same

Bluetooth Core Specification -- defined and maintained by the Bluetooth SIG -- but

they are completely different protocols operating with different physical constraints

and requirements. The two protocols can't talk to each other directly.

Can my Bluefruit LE module connect to other Bluefruit LE
peripherals

No, the Bluefruit LE firmware from Adafruit is currently peripheral only, and doesn't

run in Central mode, which would cause the module to behave similar to your

mobile phone or BLE enabled laptop.

If you required Central support, you should look at the newer nRF52832 or

nRF52840 based products like the Adafruit Feather nRF52840 () which contains a

SoftDevice which is capable of running in either Central or Peripheral mode. The

nRF518322 based products (such as the one used in this learning guide) are not

capable of running in Central mode because it isn't supported by the SoftDevice

they use, and it isn't possible to update the SoftDevice safely without special

hardware.

©Adafruit Industries Page 149 of 161

https://www.adafruit.com/product/4062

I just got my Bluefruit board and when I run a sketch it
hangs forever on the 'Connecting...' stage!

There are several possible explanations here, but the first thing to try is to:

Disconnect and close the Bluefruit LE Connect app if it's open

Disable BLE on your mobile device

Restart your Bluefruit sketch and HW

Turn BLE back on again (on the mobile device)

Open the Bluefruit LE Connect mobile app again and try to connect again

If problems persist, try performing a Factory Reset of your device (see the

appropriate learning guide for details on how to do this since it varies from one

board to another).

Why are none of my changes persisting when I reset with
the sample sketches?

In order to ensure that the Bluefruit LE modules are in a known state for the

Adafruit demo sketches, most of them perform a factory reset at the start of the

sketch.

This is useful to ensure that the sketch functions properly, but has the side effect of

erasing any custom user data in NVM and setting everything back to factory

defaults every time your board comes out of reset and the sketch runs.

To disable factory reset, open the demo sketch and find

the FACTORYRESET_ENABLE flag and set this to '0', which will prevent the factory

reset from happening at startup.

If you don't see the 'FACTORYRESET_ENABLE' flag in your .ino sketch file, you

probably have an older version of the sketches and may need to update to the

latest version via the Arduino library manager.

Do I need CTS and RTS on my UART based Bluefruit LE
Module?

Using CTS and RTS isn't strictly necessary when using HW serial, but they should

both be used with SW serial, or any time that a lot of data is being transmitted.

1.

2.

3.

4.

5.

©Adafruit Industries Page 150 of 161

The reason behind the need for CTS and RTS is that the UART block on the

nRF51822 isn't very robust, and early versions of the chip had an extremely small

FIFO meaning that the UART peripheral was quickly overwhelmed.

Using CTS and RTS significantly improves the reliability of the UART connection

since these two pins tell the device on the other end when they need to wait while

the existing buffered data is processed.

To enable CTS and RTS support, go into the BluefruitConfig.h file in your sketch

folder and simply assign an appropriate pin to the macros dedicated to those

functions (they may be set to -1 if they aren't currently being used).

Enabling both of these pins should solve any data reliability issues you are having

with large commands, or when transmitting a number of commands in a row.

How can I update to the latest Bluefruit LE Firmware?

The easiest way to keep your Bluefruit LE modules up to date is with our Bluefruit

LE Connect app for Android () or Bluefruit LE Connect for iOS (). Both of these

apps include a firmware update feature that allows you to automatically download

the latest firmware and flash your Bluefruit LE device in as safe and painless a

manner as possible. You can also roll back to older versions of the Bluefruit LE

firmware using these apps if you need to do some testing on a previous version.

Which firmware version supports 'xxx'?

We regularly release Bluefruit LE firmware images () with bug fixes and new

features. Each AT command in this learning guide lists the minimum firmware

version required to use that command, but for a higher level overview of the

changes from one firmware version to the next, consult the firmware history

page ().

Does my Bluefruit LE device support ANCS?

ANCS is on the roadmap for us (most likely in the 0.7.x release family), but we don't

currently support it since there are some unusual edge cases when implementing it

as a service.

©Adafruit Industries Page 151 of 161

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/history
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/history

My Bluefruit LE device is stuck in DFU mode ... what can I
do?

If your device is stuck in DFU mode for some reason and the firmware was

corrupted, you have several options.

First, try a factory reset by holding down the DFU button for about 10 seconds until

the CONN LED starts flashing, then release the DFU button to perform a factory

reset.

If this doesn't work, you may need to reflash your firmware starting from DFU

mode, which can be done in one of the following ways:

Bluefruit LE Connect (Android)

Place the module in DFU mode (constant LED blinky)

Open Bluefruit LE Connect

Connect to the 'DfuTarg' device

Once connected, you will see a screen with some basic device information.

Click the '...' in the top-right corner and select Firmware Updates

Click the Use Custom Firmware button

Select the appropriate .hex and .init files (copied from the Bluefruit LE

Firmware repo ()) ... for the BLEFRIEND32 firmware version 0.6.7, this would

be:

Hex File: blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex

Init File: blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat

Click Start Update

Unfortunately, the iOS app doesn't yet support custom firmware updates from DFU

mode yet, but we will get this into the next release.

Nordic nRF Toolbox

You can also use Nordic's nRF Toolbox application to update the firmware using the

OTA bootloader.

On Android:

Open nRF Toolbox (using the latest version)

Click the DFU icon

Click the Select File button

Select Application from the radio button list, then click OK

Find the appropriate .hex file

(ex. 'blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex')

•

•

•

•

•

•

◦

◦

•

•

•

•

•

•

©Adafruit Industries Page 152 of 161

https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware

When asked about the 'Init packet', indicate Yes, and select the appropriate

*_init.dat file (for example:

'blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat').

Click the Select Device button at the bottom of the main screen and find

the DfuTarg device, clicking on it

Click the Upload button, which should now be enabled on the home screen

This will begin the DFU update process which should cause the firmware to

be updated or restored on your Bluefruit LE module

On iOS:

Create a .zip file containing the .hex file and init.dat file that you will use for

the firmware update. For example:

Rename

'blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex' to application.hex

Rename 'blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat'

to application.dat

Upload the .zip file containing the application.hex and application.dat files to

your iPhone using uTunes, as described here ()

Open the nRF Toolbox app (using the latest version)

Click the DFU icon

Click the Select File text label

Switch to User Files to see the .zip file you uploaded above

Select the .zip file (ex. blefriend32_065.zip)

On the main screen select Select File Type

Select application

On the main screen select SELECT DEVICE

Select DfuTarg

Click the Upload button which should now be enabled

This will begin the DFU process and your Bluefruit LE module will reset when

the update is complete

If you get the normal 2 or 3 pulse blinky pattern, the update worked!

Adafruit_nRF51822_Flasher

As a last resort, if you have access to a Raspberry Pi, a Segger J-Link or a STLink/

V2, you can also try manually reflashing the entire device, as described in the FAQ

above (), with further details on the Software Resources () page.

How do I reflash my Bluefruit LE module over SWD?

Reflashing Bluefruit LE modules over SWD (ex. switching to the sniffer firmware and

back) is at your own risk and can lead to a bricked device, and we can't offer any

•

•

•

•

•

◦

◦

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 153 of 161

file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/dfu-on-ios#adding-custom-firmware
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/faq#faq-7
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/faq#faq-7
file:///home/introducing-adafruit-ble-bluetooth-low-energy-friend/software-resources#adafruit-nrf51822-flasher-python

support for this operation! You're on your own here, and there are

unfortunately 1,000,000 things that can go wrong, which is why we offer two

separate Bluefruit LE Friend boards -- the sniffer and the normal Bluefruit LE Friend

board with the non-sniffer firmware, which provides a bootloader with fail safe

features that prevents you from ever bricking boards via OTA updates.

AdaLink (SWD/JTAG Debugger Wrapper)

Transitioning between the two board types (sniffer and Bluefruit LE module) is

unfortunately not a risk-free operation, and requires external hardware, software

and know-how to get right, which is why it isn't covered by our support team.

That said ... if you're determined to go down that lonely road, and you have a

Segger J-Link () (which is what we use internally for production and development),

or have already erased your Bluefruit LE device, you should have a look at

AdaLink (), which is the tool we use internally to flash the four files required to

restore a Bluefruit LE module. (Note: recent version of AdaLink also support the

cheaper STLink/V2 (http://adafru.it/2548), though the J-Link is generally more

robust if you are going to purchase a debugger for long term use.)

The mandatory Intel Hex files are available in the Bluefruit LE Firmware repo (). You

will need to flash:

An appropriate bootloader image

An appropriate SoftDevice image

The Bluefruit LE firmware image

The matching signature file containing a CRC check so that the bootloader

accepts the firmware image above (located in the same folder as the firmware

image)

The appropriate files are generally listed in the version control .xml file () in the

firmware repository.

If you are trying to flash the sniffer firmware (at your own risk!), you only need to

flash a single .hex file, which you can find here (). The sniffer doesn't require a

SoftDevice image, and doesn't use the fail-safe bootloader -- which is why

changing is a one way and risky operation if you don't have a supported SWD

debugger.

Adafruit_nF51822_Flasher

We also have an internal python tool available that sits one level higher than

AdaLink (referenced above), and makes it easier to flash specific versions of the

•

•

•

•

©Adafruit Industries Page 154 of 161

https://www.adafruit.com/search?q=J-Link
https://github.com/adafruit/Adafruit_Adalink
https://www.adafruit.com/products/2548
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware/blob/master/releases.xml
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware/tree/master/sniffer/1.0.1

official firmware to a Bluefruit LE module. For details, see the

Adafruit_nRF51822_Flasher () repo.

Can I access BETA firmware releases?

The latest versions of the Bluefruit LE Connect applications for iOS and Android

allow you to optionally update your Bluefruit LE modules with pre-release or BETA

firmware.

This functionality is primarilly provided as a debug and testing mechanism for

support issues in the forum, and should only be used when trying to identify and

resolve specific issues with your modules!

Enabling BETA Releases on iOS

Make sure you have at least version 1.7.1 of Bluefruit LE Connect

Go to the Settings page

Scroll to the bottom of the Settings page until you find Bluefruit LE

Click on the Bluefruit LE icon and enable the Show beta releases switch

You should be able to see any BETA releases available in the firmware repo

now when you use Bluefruit LE Connect

Enabling BETA Releases on Android

Make sure you have the latest version of Bluefruit LE Connect

Open the Bluefruit LE Connect application

Click the "..." icon in the top-right corner of the app's home screen

Select Settings

Scroll down to the Software Updates section and enable Show beta releases

You should be able to see any BETA releases available in the firmware repo

now when you use Bluefruit LE Connect

Why can't I see my Bluefruit LE device after upgrading to
Android 6.0?

In Android 6.0 there were some important security changes () that affect Bluetooth

Low Energy devices. If location services are unavailable (meaning the GPS is

turned off) you won't be able to see Bluetooth Low Energy devices advertising

either. See this issue () for details.

Be sure to enable location services on your Android 6.0 device when using

Bluefruit LE Connect or other Bluetooth Low Energy applications with your Bluefruit

LE modules.

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 155 of 161

https://github.com/adafruit/Adafruit_nRF51822_Flasher
http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
https://code.google.com/p/android/issues/detail?id=190372&q=GPS&colspec=ID%20Type%20Status%20Owner%20Summary%20Stars

What is the theoretical speed limit for BLE?

This depends on a variety of factors, and is determined by the capabilities of the

central device (the mobile phone, etc.) as much as the peripheral.

Taking the HW limits on the nR51822 into account (max 6 packets per connection

interval, and a minimum connection interval of 7.5ms) you end up with the following

theoretical limits on various mobile operating systems:

iPhone 5/6 + IOS 8.0/8.1

6 packets * 20 bytes * 1/0.030 s = 4 kB/s = 32 kbps

iPhone 5/6 + IOS 8.2/8.3

3 packets * 20 bytes * 1/0.030 s = 2 kB/s = 16 kbps

iPhone 5/6 + IOS 8.x with nRF8001

1 packet * 20 bytes * 1/0.030 s = 0.67 kB/s = 5.3 kbps

Nexus 4

4 packets * 20 bytes * 1/0.0075 s = 10.6 kB/s = 84 kbps

Nordic Master Emulator Firmware (MEFW) with nRF51822 0.9.0

1 packet * 20 bytes * 1/0.0075 = 2.67 kB/s = 21.33 kbps

Nordic Master Emulator Firmware (MEFW) with nRF51822 0.11.0

6 packets * 20 bytes * 1/0.0075 = 16 kB/s = 128 kbps

There are also some limits imposed by the Bluefruit LE firmware, but we are

actively working to significantly improve the throughput in the upcoming 0.7.0

release, which will be available Q2 2016. The above figures are useful as a

theoretical maximum to decide if BLE is appropriate for you project or not.

UPDATE: For more specific details on the limitations of various Android versions

and phones, see this helpful post from Nordic Semiconductors ().

Can my Bluefruit board detect other Bluefruit boards or
Central devices?

No. All of our Bluefruit LE modules currently operate in peripheral mode, which

means they can only advertise their own existence via the advertising payload. The

central device (usually your phone or laptop) is responsible for listening for these

advertising packets, starting the connection process, and inititating any

transactions between the devices. There is no way for a Bluefruit module to detect

other Bluefruit modules or central devices in range, they can only send their own

advertising data out and wait for a connection request to come in.

•

•

•

•

•

•

©Adafruit Industries Page 156 of 161

https://devzone.nordicsemi.com/blogs/1046/what-to-keep-in-mind-when-developing-your-ble-andr/

How can I determine the distance between my Bluefruit
module and my phone in m/ft?

The short answer is: you can't.

RF devices normally measure signal strength using RSSI, which stands for

Received Signal Strength Indicator, which is measured in dBm. The closer the

devices are the strong the RSSI value generally is (-90dBm is much weaker than

-60dBm, for example), but there is no reliable relationship between RSSI values in

dBm and distance in the real world. If there is a wall between devices, RSSI will

fall. If there is a lot of interference on the same 2.4GHz band, RSSI will fall.

Depending on the device, if you simply change the antenna orientation, RSSI will

fall. You can read the RSSI value between two connected devices with

the AT+BLEGETRSSI command, but there are no meaningful and repeatable

conclusions that can be drawn from this value about distance other than perhaps

'farther' or 'closer' in a very loose sense of the terms.

How far away from my phone can I have my Bluefruit LE
module?

This depends on a number of factors beyond the module itself such as antenna

orientation, the antenna design on the phone, transmit power on the sending node,

competing traffic in the same 2.4GHz bandwidth, obstacles between end points,

etc.

It could be as low as a couple meters up to about 10 meters line of sight, but

generally Bluetooth Low Energy is designed for very short range and will work best

in the 5-6 meter or less range for reliable communication, assuming normal

Bluefruit firmware settings.

How many GATT services and characteristics can I
create?

For firmware 0.7.0 and higher, the following limitations are present:

Maximum number of services: 10

Maximum number of characteristics: 30

Maximum buffer size for each characteristic: 32 bytes

Maximum number of CCCDs: 16

•

•

•

•

©Adafruit Industries Page 157 of 161

Is it possible to modify or disable the built in GATT
services and characteristics (DIS, DFU, etc.)?

No, unfortunately you can't. We rely on the Device Information Service () (DIS)

contents to know which firmware and bootloader version you are running, and

wouldn't be able to provide firmware updates without being able to trust this

information, which i why it's both mandatory and read only.

Similarly, the DFU service is mandatory to maintain over the air updates and

disabling it would create more problems that it's presence would cause.

How can I use BlueZ and gatttool with Bluefruit modules?

BlueZ has a bit of a learning curve associated with it, but you can find some notes

below on one option to send and receive data using the BLE UART Service built

into all of our Bluefruit LE modules and boards.

These commands may change with different versions of BlueZ. Version 5.21 was

used below.

Initialise the USB dongle
$ sudo hciconfig hci0 up

Scan for the UART BLE device
$ sudo hcitool lescan
 D6:4E:06:4F:72:86 UART

Start gatttool, pointing to the UART device found above
$ sudo gatttool -b D6:4E:06:4F:72:86 -I -t random --sec-level=high

 [D6:4E:06:4F:72:86][LE]> connect
 Attempting to connect to D6:4E:06:4F:72:86
 Connection successful

Scan for primary GATT Services
 [D6:4E:06:4F:72:86][LE]> primary
 attr handle: 0x0001, end grp handle: 0x0007 uuid:
00001800-0000-1000-8000-00805f9b34fb
 attr handle: 0x0008, end grp handle: 0x0008 uuid:
00001801-0000-1000-8000-00805f9b34fb
 attr handle: 0x0009, end grp handle: 0x000e uuid: 6e400001-b5a3-f393-e0a9-
e50e24dcca9e
 attr handle: 0x000f, end grp handle: 0xffff uuid:
0000180a-0000-1000-8000-00805f9b34fb

Get the handles for the entries in the UART service (handle 0x0009)
 [D6:4E:06:4F:72:86][LE]> char-desc
 handle: 0x0001, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0002, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0003, uuid: 00002a00-0000-1000-8000-00805f9b34fb
 handle: 0x0004, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0005, uuid: 00002a01-0000-1000-8000-00805f9b34fb
 handle: 0x0006, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0007, uuid: 00002a04-0000-1000-8000-00805f9b34fb
 handle: 0x0008, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0009, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x000a, uuid: 00002803-0000-1000-8000-00805f9b34fb

©Adafruit Industries Page 158 of 161

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.device_information.xml

 handle: 0x000b, uuid: 6e400002-b5a3-f393-e0a9-e50e24dcca9e
 handle: 0x000c, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x000d, uuid: 6e400003-b5a3-f393-e0a9-e50e24dcca9e
 handle: 0x000e, uuid: 00002902-0000-1000-8000-00805f9b34fb
 handle: 0x000f, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0010, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0011, uuid: 00002a27-0000-1000-8000-00805f9b34fb

6e400002 (handle 0x000b) = TX characteristic
6e400003 (handle 0x000d) = RX characteristic

Optional (but maybe helpful) ... scan for CCCD entries
 [D6:4E:06:4F:72:86][LE]> char-read-uuid 2902
 handle: 0x000e value: 00 00

Enable notifications on the RX characteristic (CCCD handle = 0x000e)
0100 = get notifications
0200 = get indications
0300 = get notifications + indications
0000 = disable notifications + indications
 [D6:4E:06:4F:72:86][LE]> char-write-req 0x000e 0100
 Characteristic value was written successfully

Just to make sure it was updated
 [D6:4E:06:4F:72:86][LE]> char-read-hnd 0x000e
 Characteristic value/descriptor: 01 00

Writing "test" in the Serial Monitor of the Arduino sketch should
cause this output not that notifications are enabled:
 Notification handle = 0x000d value: 74 65 73 74

Write something to the TX characteristic (handle = 0x000b)
This should cause E F G H to appear in the Serial Monitor
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 45
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 46
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 47
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 48

To send multiple bytes
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000B 707172737475

If you are running the callbackEcho sketch and notifications
are enabled you should get this response after the above cmd:
 Notification handle = 0x000d value: 70 71 72 73 74 75

If you just want to enable constant listening, enter the following command from
the CLI:
$ sudo gatttool -b D6:4E:06:4F:72:86 -t random --char-write-req -a 0x000e -n 0100 --
listen

This should give us the following output as data is written on the Uno,
though we can't send anything back:
 Characteristic value was written successfully
 Notification handle = 0x000d value: 74 65 73 74
 Notification handle = 0x000d value: 6d 6f 72 65 20 74 65 73 74

Can I use the IRQ pin to wake my MCU up from sleep
when BLE UART data is available?

No, on SPI-based boards the IRQ pin is used to indicate that an SDEP response is

available to an SDEP command. For example, when you sent the `AT+BLEUARTRX`

command as an SDEP message, the Bluefruit firmware running on the nRF51822

©Adafruit Industries Page 159 of 161

will parse the message, prepare an SDEP response, and trigger the IRQ pin to tell

the MCU that the response is ready. This is completely independant from the BLE

UART service, which doesn't have interrupt capability at present.

Can I also update the sketch running on the device using
Bluefruit LE Connect?

No, only the core firmware can be updated over the air. Sketches need to be

loaded using the Arduino IDE and serial bootloader.

Downloads

MDBT Datasheet ()

Fritzing object in the Adafruit Fritzing Library ()

EagleCAD PCB files in GitHub ()

Schematic

Click to embiggen

Fabrication Print

Dims in inches

•

•

•

©Adafruit Industries Page 160 of 161

https://cdn-shop.adafruit.com/product-files/2267/MDBT40-P256R.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-Bluefruit-LE-Shield-PCB

©Adafruit Industries Page 161 of 161

	Adafruit Bluefruit LE Shield
	Table of Contents
	Overview
	Pinouts
	Assembly
	Wiring
	Software
	Configuration!
	ATCommand
	BLEUart
	HIDKeyboard
	Controller
	HeartRateMonitor
	UriBeacon
	HALP!
	AT Commands
	Standard AT
	General Purpose
	Hardware
	Beacon
	BLE Generic
	BLE Services
	BLE GAP
	BLE GATT
	Debug
	History
	GATT Service Details
	UART Service
	Factory Reset
	DFU Updates
	SDEP (SPI Data Transport)
	Software Resources
	BLE FAQ
	Downloads

	Overview
	Why Use Adafruit's Module?
	Technical Specifications
	Pinouts
	Power Pins
	SPI Pins
	Other Pins
	Assembly
	Stack Alert
	Attaching Headers
	Wiring
	Default Pinout
	Changing the Default Pinout
	Software
	Configuration!
	Which board do you have?
	Bluefruit Micro or Feather 32u4 Bluefruit
	Feather M0 Bluefruit LE
	Bluefruit LE SPI Friend
	Bluefruit LE UART Friend or Flora BLE

	Configure the Pins Used
	Common settings:
	Software UART
	Hardware UART
	Mode Pin
	SPI Pins
	Software SPI Pins

	Select the Serial Bus
	UART Based Boards (Bluefruit LE UART Friend & Flora BLE)
	SPI Based Boards (Bluefruit LE SPI Friend)

	ATCommand
	Opening the Sketch
	Configuration
	Running the Sketch
	BLEUart
	Opening the Sketch
	Configuration
	Running the Sketch
	HIDKeyboard
	Opening the Sketch
	Configuration
	Running the Sketch
	Bonding the HID Keyboard
	Android
	iOS
	OS X
	Controller
	Opening the Sketch
	Configuration
	Running the Sketch
	Using Bluefruit LE Connect in Controller Mode
	Streaming Sensor Data
	Control Pad Module
	Color Picker Module
	HeartRateMonitor
	Opening the Sketch
	Configuration
	If Using Hardware or Software UART

	Running the Sketch
	nRF Toolbox HRM Example
	CoreBluetooth HRM Example
	UriBeacon
	Opening the Sketch
	Configuration
	Running the Sketch
	HALP!
	When using the Bluefruit Micro or a Bluefruit LE with Flora/Due/Leonardo/Micro the examples dont run?
	I can't seem to "Find" the Bluefruit LE!

	AT Commands
	Test Command Mode '=?'
	Write Command Mode '=xxx'
	Execute Mode
	Read Command Mode '?'
	Standard AT
	AT
	ATI
	ATZ
	ATE
	+++
	General Purpose
	AT+FACTORYRESET
	AT+DFU
	AT+HELP
	AT+NVMWRITE
	AT+NVMREAD
	AT+MODESWITCHEN
	Hardware
	AT+BAUDRATE
	AT+HWADC
	AT+HWGETDIETEMP
	AT+HWGPIO
	AT+HWGPIOMODE
	AT+HWI2CSCAN
	AT+HWVBAT
	AT+HWRANDOM
	AT+HWMODELED
	AT+UARTFLOW
	Beacon
	AT+BLEBEACON
	AT+BLEURIBEACON
	Deprecated: AT+EDDYSTONEENABLE
	AT+EDDYSTONEURL
	AT+EDDYSTONECONFIGEN
	AT+EDDYSTONESERVICEEN
	AT+EDDYSTONEBROADCAST
	BLE Generic
	AT+BLEPOWERLEVEL
	AT+BLEGETADDRTYPE
	AT+BLEGETADDR
	AT+BLEGETPEERADDR
	AT+BLEGETRSSI
	BLE Services
	AT+BLEUARTTX
	TX FIFO Buffer Handling

	AT+BLEUARTTXF
	AT+BLEUARTRX
	AT+BLEUARTFIFO
	AT+BLEKEYBOARDEN
	AT+BLEKEYBOARD
	AT+BLEKEYBOARDCODE
	Modifier Values
	HID Keyboard Codes

	AT+BLEHIDEN
	AT+BLEHIDMOUSEMOVE
	AT+BLEHIDMOUSEBUTTON
	AT+BLEHIDCONTROLKEY
	AT+BLEHIDGAMEPADEN
	AT+BLEHIDGAMEPAD
	AT+BLEMIDIEN
	AT+BLEMIDIRX
	AT+BLEMIDITX
	AT+BLEBATTEN
	AT+BLEBATTVAL
	BLE GAP
	AT+GAPCONNECTABLE
	AT+GAPGETCONN
	AT+GAPDISCONNECT
	AT+GAPDEVNAME
	AT+GAPDELBONDS
	AT+GAPINTERVALS
	AT+GAPSTARTADV
	AT+GAPSTOPADV
	AT+GAPSETADVDATA
	BLE GATT
	GATT Limitations
	AT+GATTCLEAR
	AT+GATTADDSERVICE
	AT+GATTADDCHAR
	AT+GATTCHAR
	AT+GATTLIST
	AT+GATTCHARRAW
	Debug
	AT+DBGMEMRD
	AT+DBGNVMRD
	AT+DBGSTACKSIZE
	AT+DBGSTACKDUMP
	History
	Version 0.7.7
	Version 0.7.0
	Version 0.6.7
	Version 0.6.6
	Version 0.6.5
	Version 0.6.2
	Version 0.5.0
	Version 0.4.7
	Version 0.3.0
	GATT Service Details
	UART Service

	UART Service
	Characteristics
	TX (0x0002)
	RX (0x0003)

	Factory Reset
	Factory Reset via DFU Pin
	FactoryReset Sample Sketch
	AT+FACTORYRESET
	Factory Reset via FCTR Test Pad
	DFU Updates
	Adafruit Bluefruit LE Connect
	SDEP (SPI Data Transport)
	SDEP Overview
	SPI Setup
	SPI Hardware Requirements
	IRQ Pin
	SDEP Packet and SPI Error Identifier
	Sample Transaction

	SDEP (Simple Data Exchange Protocol)
	Endianness
	Message Type Indicator
	SDEP Data Transactions
	Message Types
	Command Messages
	Response Messages
	Alert Messages
	Standard Alert IDs

	Error Messages
	Standard Error IDs

	Existing Commands
	SDEP AT Wrapper Usage

	Software Resources
	Bluefruit LE Client Apps and Libraries
	Bluefruit LE Connect () (Android/Java)
	Bluefruit LE Connect () (iOS/Swift)

	Bluefruit LE Connect for OS X () (Swift)
	Bluefruit LE Command Line Updater for OS X () (Swift)
	Deprecated: Bluefruit Buddy () (OS X)
	ABLE () (Cross Platform/Node+Electron)
	Bluefruit LE Python Wrapper ()

	Debug Tools
	AdaLink () (Python)
	Adafruit nRF51822 Flasher () (Python)

	BLE FAQ
	Can I talk to Classic Bluetooth devices with a Bluefruit LE modules?
	Can my Bluefruit LE module connect to other Bluefruit LE peripherals
	I just got my Bluefruit board and when I run a sketch it hangs forever on the 'Connecting...' stage!
	Why are none of my changes persisting when I reset with the sample sketches?
	Do I need CTS and RTS on my UART based Bluefruit LE Module?
	How can I update to the latest Bluefruit LE Firmware?
	Which firmware version supports 'xxx'?
	Does my Bluefruit LE device support ANCS?
	My Bluefruit LE device is stuck in DFU mode ... what can I do?
	Bluefruit LE Connect (Android)
	Nordic nRF Toolbox
	Adafruit_nRF51822_Flasher

	How do I reflash my Bluefruit LE module over SWD?
	Can I access BETA firmware releases?
	Why can't I see my Bluefruit LE device after upgrading to Android 6.0?
	What is the theoretical speed limit for BLE?
	Can my Bluefruit board detect other Bluefruit boards or Central devices?
	How can I determine the distance between my Bluefruit module and my phone in m/ft?
	How far away from my phone can I have my Bluefruit LE module?
	How many GATT services and characteristics can I create?
	Is it possible to modify or disable the built in GATT services and characteristics (DIS, DFU, etc.)?
	How can I use BlueZ and gatttool with Bluefruit modules?
	Can I use the IRQ pin to wake my MCU up from sleep when BLE UART data is available?
	Can I also update the sketch running on the device using Bluefruit LE Connect?

	Downloads
	Schematic
	Fabrication Print

