

Adafruit 1.44" Color TFT with Micro SD

Socket

Created by lady ada

https://learn.adafruit.com/adafruit-1-44-color-tft-with-micro-sd-socket

Last updated on 2023-08-29 02:37:38 PM EDT

©Adafruit Industries Page 1 of 55

5

7

8

12

14

16

20

21

24

31

39

Table of Contents

Overview

Pinouts

• EYESPI

• Display Pins

EYESPI

• The EYESPI Connector and Cables

• Wiring Your EYESPI Display

• EYESPI Pins

Plugging in an EYESPI Cable

Assembly

• Prepare the header strip:

• Add the breakout board:

• And Solder!

Wiring & Test

• Wiring

• Install Arduino Libraries

• Changing Pins

Adafruit GFX library

Drawing Bitmaps

CircuitPython Displayio Quickstart

• Preparing the Breakout

• Wiring the Breakout to the Feather

• Required CircuitPython Libraries

• Code Example Additional Libraries

• CircuitPython Code Example

• Where to go from here

Python Wiring and Setup

• Wiring

• ILI9341 and HX-8357-based Displays

• ST7789 and ST7735-based Displays

• SSD1351-based Displays

• SSD1331-based Display

• Setup

• Python Installation of RGB Display Library

• DejaVu TTF Font

• Pillow Library

Python Usage

• Turning on the Backlight

• Displaying an Image

• Drawing Shapes and Text

• Displaying System Information

©Adafruit Industries Page 2 of 55

52

53

Troubleshooting

Downloads

• Files

• EYESPI Schematic and Fab Print

• Original Schematic and Fab Print

©Adafruit Industries Page 3 of 55

©Adafruit Industries Page 4 of 55

Overview

This lovely little display breakout is the best way to add a small, colorful and bright

display to any project. Since the display uses 4-wire SPI to communicate and has its

own pixel-addressable frame buffer, it can be used with every kind of microcontroller.

Even a very small one with low memory and few pins available!

The 1.44" display has 128x128 color pixels. Unlike the low cost "Nokia 6110" and similar

LCD displays, which are CSTN type and thus have poor color and slow refresh, this

display is a true TFT! The TFT driver (ST7735R) can display full 16-bit color using our

library code.

©Adafruit Industries Page 5 of 55

The breakout has the TFT display soldered on (it uses a delicate flex-circuit

connector) as well as a ultra-low-dropout 3.3V regulator and a 3/5V level shifter so

you can use it with 3.3V or 5V power and logic. We also had a little space so we

placed a microSD card holder so you can easily load full color bitmaps from a FAT16/

FAT32 formatted microSD card. The microSD card is not included, but you can pick

one up here (http://adafru.it/102).

Of course, we wouldn't just leave you with a datasheet and a "good luck!" - we've

written a full open source graphics library that can draw pixels, lines, rectangles,

circles, text and bitmaps as well as example code and a wiring tutorial (). The code is

written for Arduino but can be easily ported to your favorite microcontroller!

©Adafruit Industries Page 6 of 55

http://www.adafruit.com/products/102
http://www.adafruit.com/products/102
http://learn.adafruit.com/1-8-tft-display
http://learn.adafruit.com/1-8-tft-display
http://learn.adafruit.com/1-8-tft-display

New! As of February 28, 2023 - we've updated this TFT breakout with an EYESPI

connector () to make cabling easier with an 18-pin FPC. We also used Adafruit Pinguin

() to make a lovely silkscreen. The board is otherwise the same size, pinout, and

functionality.

Pinouts

EYESPI

These displays now come with an EYESPI connector, which is an 18pin 0.5mm pitch

connector that allows you to use a flex cable to connect your display to your

microcontroller. For more details, visit the EYESPI page ().

Display Pins

This color display uses SPI to receive image data. That means you need at least 4

pins - clock, data in, tft cs and d/c. If you'd like to have SD card usage too, add

another 2 pins - data out and card cs. However, there's a couple other pins you may

want to use, lets go thru them all!

3-5V / Vin - this is the power pin, connect to 3-5VDC - it has reverse polarity

protection but try to wire it right!

3.3Vout - this is the 3.3V output from the onboard regulator

GND - this is the power and signal ground pin

•

•

•

©Adafruit Industries Page 7 of 55

https://www.adafruit.com/?q=eyespi&sort=BestMatch
https://www.adafruit.com/?q=eyespi&sort=BestMatch
https://www.adafruit.com/?q=eyespi&sort=BestMatch
https://www.adafruit.com/?q=eyespi&sort=BestMatch
https://github.com/adafruit/Adafruit_Pinguin
https://github.com/adafruit/Adafruit_Pinguin
https://learn.adafruit.com/adafruit-1-44-color-tft-with-micro-sd-socket/eyespi

CLK - this is the SPI clock input pin

MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card. It

isn't used for the TFT display which is write-only

MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data

from the microcontroller to the SD card and/or TFT

TFT_CS - this is the TFT SPI chip select pin

RST - this is the TFT reset pin. Connect to ground to reset the TFT! Its best to

have this pin controlled by the library so the display is reset cleanly, but you can

also connect it to the Arduino Reset pin, which works for most cases.

D/C - this is the TFT SPI data or command selector pin

Card CS / CCS - this is the SD card chip select, used if you want to read from the

SD card.

Lite - this is the PWM input for the backlight control. It is by default pulled high

(backlight on) you can PWM at any frequency or pull down to turn the backlight

off

EYESPI

This display now comes with an EYESPI connector. This connector allows you to

connect your display without soldering. There are EYESPI cables () available in

multiple lengths, which means you can find one to fit any project. This is especially

useful if your project requires the display to be freestanding, and not tied directly into

a breadboard. Inspired by the popularity of STEMMA QT, it provides plug-n-play for

displays!

•

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 55

https://www.adafruit.com/?q=eyespi+cable&sort=BestMatch

The EYESPI Connector and Cables

The EYESPI connector is an 18 pin 0.5mm pitch FPC connector with a flip-top tab for

locking in the associated flex cable. It is designed to allow you to connect a display,

without needing to solder headers or wires to the display.

The EYESPI connector location on this display is indicated below.

The EYESPI cables are 18 pin 0.5mm pitch flex cables. They are ~9.6mm wide, and

designed to fit perfectly into the EYESPI connector. Adafruit currently offers EYESPI

cables in three different lengths: 50mm (), 100mm (), and 200mm ().

Wiring Your EYESPI Display

Wiring your EYESPI display to a microcontroller via the EYESPI connector requires the

EYESPI breakout board and an EYESPI cable.

The EYESPI connector is designed to work with 18-pin 0.5mm pitch flex cables.

Other flex cables, such as Raspberry Pi camera flex cables, will not work!

©Adafruit Industries Page 9 of 55

https://www.adafruit.com/product/5462
https://www.adafruit.com/product/5239
https://www.adafruit.com/product/5240

Adafruit EYESPI Breakout Board - 18 Pin

FPC Connector

Our most recent display breakouts have

come with a new feature: an 18-pin "EYE

SPI" standard FPC...

https://www.adafruit.com/product/5613

EYESPI Cable - 18 Pin 100mm long Flex

PCB (FPC) A-B type

Connect this to that when a 18-pin FPC

connector is needed. This 25 cm long

cable is made of a flexible PCB. It's A-B

style which means that pin one on one

side will match...

https://www.adafruit.com/product/5239

The following example shows how to connect the 1.44" Color TFT to a Feather

RP2040 using the EYESPI breakout board.

Connect the following Feather pins to the associated EYESPI breakout pins:

breakout Vin to Feather 3.3V (red wire)

breakout Lite to Feather 3.3V (yellow wire)

breakout Gnd to Feather GND (black wire)

breakout SCK to Feather SCK (grey wire)

breakout MOSI to Feather MO (blue wire)

breakout MISO to Feather MI (green wire)

breakout TCS to Feather D5 (white wire)

breakout DC to Feather D6 (orange wire)

breakout RST to Feather D9 (cyan wire)

breakout SDCS to Feather D10 (pink wire)

Finally, connect your display EYESPI connector to the breakout EYESPI connector usin

g an EYESPI cable. For details on using the EYESPI connector properly, visit Plugging

in an EYESPI Cable ().

©Adafruit Industries Page 10 of 55

https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5613
https://www.adafruit.com/product/5239
https://www.adafruit.com/product/5239
https://www.adafruit.com/product/5239
https://learn.adafruit.com//assets/119119
https://learn.adafruit.com//assets/119119
https://learn.adafruit.com/adafruit-eyespi-breakout-board/plugging-in-an-eyespi-cable
https://learn.adafruit.com/adafruit-eyespi-breakout-board/plugging-in-an-eyespi-cable

EYESPI Pins

Though there are 18 pins available on the EYESPI connector, many displays do not

use all available pins. This display requires the following pins:

Vin - This is the power pin. To power the board (and thus your display), connect

to the same power as the logic level of your microcontroller, e.g. for a 3V micro

like a Feather, use 3V, and for a 5V micro like an Arduino, use 5V.

Lite - This is the PWM input for the backlight control. It is by default pulled high

(backlight on), however, you can PWM at any frequency or pull down to turn the

backlight off.

Gnd - This is common ground for power and logic.

MISO - This is the SPI MISO (Microcontroller In / Serial Out) pin. It's used for the

SD card. It isn't used for the display because it's write-only. It is 3.3V logic out

(but can be read by 5V logic).

MOSI - This is the SPI MOSI (Microcontroller Out / Serial In) pin. It is used to send

data from the microcontroller to the SD card and/or display.

SCK - This is the SPI clock input pin.

TCS - This is the TFT SPI chip select pin.

RST - This is the display reset pin. Connecting to ground resets the display! It's

best to have this pin controlled by the library so the display is reset cleanly, but

you can also connect it to the microcontroller's Reset pin, which works for most

cases. Often, there is an automatic-reset chip on the display which will reset it

on power-up, making this connection unnecessary in that case.

DC - This is the display SPI data/command selector pin.

SDCS - This is the SD card chip select pin. This pin is required for

communicating with the SD card holder onboard the connected display.

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 11 of 55

Plugging in an EYESPI Cable

You can connect an EYESPI compatible display to the EYESPI breakout board using

an EYESPI cable. An EYESPI cable is an 18 pin flexible PCB (FPC). The FPC can only

be connected properly in one orientation, so be sure to follow the steps below to

ensure that your display and breakout are plugged in properly.

Each EYESPI cable has blue stripes on

either end. On the other side of the cable,

underneath the blue stripe, are the

connector pins that make contact with the

FPC connector pins on the display or

breakout.

©Adafruit Industries Page 12 of 55

https://learn.adafruit.com//assets/116970
https://learn.adafruit.com//assets/116970

To begin inserting an EYESPI cable to an

FPC connector, gently lift the FPC

connector black latch up.

Then, insert the EYESPI cable into the

open FPC connector by sliding the cable

into the connector. You want to see the

blue stripe facing up towards you. This

inserts the cable pins into the FPC

connector.

To secure the cable, lower the FPC

connector latch onto the EYESPI cable.

©Adafruit Industries Page 13 of 55

https://learn.adafruit.com//assets/116971
https://learn.adafruit.com//assets/116971
https://learn.adafruit.com//assets/116972
https://learn.adafruit.com//assets/116972
https://learn.adafruit.com//assets/116973
https://learn.adafruit.com//assets/116973

Repeat this process for the FPC connector

on your display. Again, ensure that the

blue stripe on either end of the cable is

facing up.

Assembly

Prepare the header strip:

Cut the strip to length if necessary. It will

be easier to solder if you insert it into a

breadboard - long pins down

©Adafruit Industries Page 14 of 55

https://learn.adafruit.com//assets/116974
https://learn.adafruit.com//assets/116974
https://learn.adafruit.com//assets/19535
https://learn.adafruit.com//assets/19535

Add the breakout board:

Place the breakout board over the pins so

that the short pins poke through the

breakout pads

And Solder!

Be sure to solder all pins for reliable

electrical contact.

(For tips on soldering, be sure to check out

our Guide to Excellent Soldering ()).

©Adafruit Industries Page 15 of 55

https://learn.adafruit.com//assets/19536
https://learn.adafruit.com//assets/19536
https://learn.adafruit.com//assets/19537
https://learn.adafruit.com//assets/19537
https://learn.adafruit.com//assets/19538
https://learn.adafruit.com//assets/19538
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints

visually and continue onto the next steps

Wiring & Test

Wiring

Wiring up the display in SPI mode is pretty easy as there's not that many pins! We'll be

using hardware SPI, but you can also use software SPI (any pins) later. Start by

connecting the power pins

3-5V Vin connects to the Arduino 5V pin

GND connects to Arduino ground

CLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats Digit

al 13. On Mega's, its Digital 52 and on Leonardo/Due its ICSP-3 (See SPI

Connections for more details ())

MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats Dig

ital 11. On Mega's, its Digital 51 and on Leonardo/Due its ICSP-4 (See SPI

Connections for more details ())

CS connects to our SPI Chip Select pin. We'll be using Digital 10 but you can

later change this to any pin

RST connects to our TFT reset pin. We'll be using Digital 9 but you can later

change this pin too.

D/C connects to our SPI data/command select pin. We'll be using Digital 8 but

you can later change this pin too.

•

•

•

•

•

•

•

©Adafruit Industries Page 16 of 55

https://learn.adafruit.com//assets/19539
https://learn.adafruit.com//assets/19539
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

Install Arduino Libraries

We have example code ready to go for use with these TFTs. It's written for Arduino,

which should be portable to any microcontroller by adapting the C++ source.

Three libraries need to be installed using the Arduino Library Manager…this is the

preferred and modern way. From the Arduino “Sketch” menu, select “Include Library”

then “Manage Libraries…”

Type “gfx” in the search field to quickly find the first library — Adafruit_GFX:

©Adafruit Industries Page 17 of 55

Repeat the search and install steps, looking for the Adafruit_ST7735 library. If using

an older Arduino IDE (pre-1.8.10), also locate and install Adafruit_BusIO.

After restarting the Arduino software, you should see a new example folder called Ad

afruit_ST7735 and inside, an example called graphicstest.

In the graphicstest source code, you need to changes some code for this to work.

Start by looking for the lines as follows:

 // Use this initializer if you're using a 1.8" TFT

 tft.initR(INITR_BLACKTAB); // initialize a ST7735S chip, black tab

 // Use this initializer (uncomment) if you're using a 1.44" TFT

 //tft.initR(INITR_144GREENTAB); // initialize a ST7735S chip, black tab

Comment out the line that initializes the Black Tab, and uncomment the second so it

initializes with Green Tab, so it looks like:

 // Use this initializer if you're using a 1.8" TFT

 //tft.initR(INITR_BLACKTAB); // initialize a ST7735S chip, black tab

 // Use this initializer (uncomment) if you're using a 1.44" TFT

 tft.initR(INITR_144GREENTAB); // initialize a ST7735S chip, black tab

Now upload the sketch to your Arduino. You may need to press the Reset button to

reset the arduino and TFT. You should see a collection of graphical tests draw out on

the TFT.

©Adafruit Industries Page 18 of 55

Changing Pins

Now that you have it working, there's a few things you can do to change around the

pins.

If you're using Hardware SPI, the CLOCK and MOSI pins are 'fixed' and cant be

changed. But you can change to software SPI, which is a bit slower, and that lets you

pick any pins you like. Find these lines:

// Option 1 (recommended): must use the hardware SPI pins

// (for UNO thats sclk = 13 and sid = 11) and pin 10 must be

// an output. This is much faster - also required if you want

// to use the microSD card (see the image drawing example)

Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST);

// Option 2: use any pins but a little slower!

#define TFT_SCLK 13 // set these to be whatever pins you like!

#define TFT_MOSI 11 // set these to be whatever pins you like!

//Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_MOSI, TFT_SCLK,

TFT_RST);

Comment out option 1, and uncomment option 2. Then you can change the TFT_ pins

to whatever pins you'd like!

You can also save a pin by setting

#define TFT_RST 9

to

©Adafruit Industries Page 19 of 55

#define TFT_RST 0

and connecting the RST line to the Arduino Reset pin. That way the Arduino will auto-

reset the TFT as well.

Adafruit GFX library

The Adafruit_GFX library for Arduino provides a common syntax and set of graphics

functions for all of our TFT, LCD and OLED displays. This allows Arduino sketches to

easily be adapted between display types with minimal fuss…and any new features,

performance improvements and bug fixes will immediately apply across our complete

offering of color displays.

The GFX library is what lets you draw points, lines, rectangles, round-rects, triangles,

text, etc.

©Adafruit Industries Page 20 of 55

Check out our detailed tutorial here http://learn.adafruit.com/adafruit-gfx-graphics-

library () It covers the latest and greatest of the GFX library!

Drawing Bitmaps

There is a built in microSD card slot into the breakout, and we can use that to load

bitmap images! You will need a microSD card formatted FAT16 or FAT32 (they almost

always are by default).

It's really easy to draw bitmaps. We have a library for it, Adafruit_ImageReader, which

can be installed through the Arduino Library Manager (Sketch→Include

Library→Manage Libraries…). Enter “imageread” in the search field and the library is

easy to spot:

Let's start by downloading this image of a lily:

©Adafruit Industries Page 21 of 55

http://learn.adafruit.com/adafruit-gfx-graphics-library
http://learn.adafruit.com/adafruit-gfx-graphics-library

Copy lily128.bmp into the base directory of a microSD card and insert it into the

microSD socket in the breakout.

Two more wires are required to interface with the onboard SD card.

You'll need to connect up the MISO pin to the SPI MISO line on your microcontroller.

On Arduino Uno/Duemilanove/328-based, thats Digital 12. On Mega's, its Digital 50

and on Leonardo/Due its ICSP-1 (See SPI Connections for more details ())

Also, CCS pin to Digital 4 on your Arduino as well. You can change this pin later, but

stick with this for now.

You may want to try the SD library examples before continuing, especially one that

lists all the files on the SD card

Open the File→examples→Adafruit ImageReader Library→BreakoutST7735 -

128x128 example

©Adafruit Industries Page 22 of 55

http://arduino.cc/en/Reference/SPI

In the example, find the following section of code:

// Load full-screen BMP file 'rgbwheel.bmp' at position (0,0) (top left).

// Notice the 'reader' object performs this, with 'tft' as an argument.

Serial.print(F("Loading rgbwheel.bmp to screen..."));

stat = reader.drawBMP("/rgbwheel.bmp", tft, 0, 0);

reader.printStatus(stat); // How'd we do?

On the line with reader.drawBMP() change "/rgbwheel.bmp" to "/

lily128.bmp" .

After that, upload it to your Arduino. When the Arduino restarts, you should see the

flower as below!

©Adafruit Industries Page 23 of 55

To make new bitmaps, make sure they are less than 128 by 128 pixels and save them

in 24-bit BMP format! They must be in 24-bit format, even if they are not 24-bit color

as that is the easiest format for the Arduino. You can rotate images using the setRotati

on() procedure

You can draw as many images as you want - dont forget the names must be less than

8 characters long. Just copy the BMP drawing routines below loop() and call

bmpDraw(bmpfilename, x, y);

For each bitmap. They can be smaller than 128x128 and placed in any location on the

screen.

CircuitPython Displayio Quickstart

You will need a board capable of running CircuitPython such as the Metro M0 Express

or the Metro M4 Express. You can also use boards such as the Feather M0 Express or

the Feather M4 Express. We recommend either the Metro M4 or the Feather M4

Express because it's much faster and works better for driving a display. For this guide,

we will be using a Feather M4 Express. The steps should be about the same for the

Feather M0 Express or either of the Metros. If you haven't already, be sure to check

out our Feather M4 Express () guide.

Adafruit Feather M4 Express - Featuring

ATSAMD51

It's what you've been waiting for, the

Feather M4 Express featuring ATSAMD51.

This Feather is fast like a swift, smart like

an owl, strong like a ox-bird (it's half ox,...

https://www.adafruit.com/product/3857

Preparing the Breakout

Before using the TFT Breakout, you will need to solder the headers or some wires to

it. Be sure to check out the Adafruit Guide To Excellent Soldering (). After that the

breakout should be ready to go.

©Adafruit Industries Page 24 of 55

https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://learn.adafruit.com/adafruit-guide-excellent-soldering

Wiring the Breakout to the Feather

3-5V VIN connects to the Feather 3V pin

GND connects toFeather ground

SCK connects to SPI clock. On the Feather that's SCK.

SI connects to SPI MISO. On the Feather that's MI

SO connects to SPI MOSI. On the Feather that's MO

TCS connects to our SPI Chip Select pin. We'll be using Digital 9 but you can

later change this to any pin

D/C connects to our SPI data/command select pin. We'll be using Digital 10 but

you can later change this pin too.

RST connects to our reset pin. We'll be using Digital 6 but you can later change

this pin too.

1.44-breakout-feather-m4.fzz

Required CircuitPython Libraries

To use this display with displayio , there is only one required library.

Adafruit_CircuitPython_ST7735R

First, make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next, you'll need to install the necessary libraries to use the hardware--carefully

follow the steps to find and install these libraries from Adafruit's CircuitPython library

bundle (). Our introduction guide has a great page on how to install the library

bundle () for both express and non-express boards.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 25 of 55

https://cdn-learn.adafruit.com/assets/assets/000/079/494/original/1.44-breakout-feather-m4.fzz?1565897413
https://github.com/adafruit/Adafruit_CircuitPython_ST7735R/releases
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Remember for non-express boards, you'll need to manually install the necessary

libraries from the bundle:

adafruit_st7735r

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_st7735r file copied over.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of

a library so the code didn't get overly complicated.

Adafruit_CircuitPython_Display_Text

Go ahead and install this in the same manner as the driver library by copying the adaf

ruit_display_text folder over to the lib folder on your CircuitPython device.

CircuitPython Code Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This test will initialize the display using displayio and draw a solid green

background, a smaller purple rectangle, and some yellow text.

"""

import board

import terminalio

import displayio

from adafruit_display_text import label

from adafruit_st7735r import ST7735R

Release any resources currently in use for the displays

displayio.release_displays()

spi = board.SPI()

tft_cs = board.D5

tft_dc = board.D6

display_bus = displayio.FourWire(

 spi, command=tft_dc, chip_select=tft_cs, reset=board.D9

)

display = ST7735R(display_bus, width=128, height=128, colstart=2, rowstart=1)

Make the display context

splash = displayio.Group()

display.show(splash)

color_bitmap = displayio.Bitmap(128, 128, 1)

color_palette = displayio.Palette(1)

•

©Adafruit Industries Page 26 of 55

https://github.com/adafruit/Adafruit_CircuitPython_Display_Text

color_palette[0] = 0x00FF00 # Bright Green

bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)

splash.append(bg_sprite)

Draw a smaller inner rectangle

inner_bitmap = displayio.Bitmap(108, 108, 1)

inner_palette = displayio.Palette(1)

inner_palette[0] = 0xAA0088 # Purple

inner_sprite = displayio.TileGrid(inner_bitmap, pixel_shader=inner_palette, x=10,

y=10)

splash.append(inner_sprite)

Draw a label

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=30, y=64)

splash.append(text_area)

while True:

 pass

Let's take a look at the sections of code one by one. We start by importing the board

so that we can initialize SPI , displayio , terminalio for the font, a label , and

the adafruit_st7735r driver.

import board

import displayio

import terminalio

from adafruit_display_text import label

from adafruit_st7735r import ST7735R

Next we release any previously used displays. This is important because if the

Feather is reset, the display pins are not automatically released and this makes them

available for use again.

displayio.release_displays()

Next, we set the SPI object to the board's SPI with the easy shortcut

function board.SPI() . By using this function, it finds the SPI module and initializes

using the default SPI parameters.

spi = board.SPI()

tft_cs = board.D5

tft_dc = board.D6

In the next line, we set the display bus to FourWire which makes use of the SPI bus.

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs,

reset=board.D9)

Finally, we initialize the driver with a width of 128 and a height of 128. If we stopped at

this point and ran the code, we would have a terminal that we could type at and have

©Adafruit Industries Page 27 of 55

the screen update. This display has a couple of empty columns and an unused row,

so we pass it the colstart and rowstart parameters.

display = ST7735R(display_bus, width=128, height=128, colstart=2, rowstart=1)

Next we create a background splash image. We do this by creating a group that we

can add elements to and adding that group to the display. In this example, we are

limiting the maximum number of elements to 10, but this can be increased if you

would like. The display will automatically handle updating the group.

splash = displayio.Group(max_size=10)

display.show(splash)

Next we create a Bitmap which is like a canvas that we can draw on. In this case we

are creating the Bitmap to be the same size as the screen, but only have one color.

The Bitmaps can currently handle up to 256 different colors. We create a Palette with

one color and set that color to 0x00FF00 which happens to be green. Colors are

Hexadecimal values in the format of RRGGBB. Even though the Bitmaps can only

handle 256 colors at a time, you get to define what those 256 different colors are.

color_bitmap = displayio.Bitmap(128, 128, 1)

color_palette = displayio.Palette(1)

color_palette[0] = 0x00FF00 # Bright Green

With all those pieces in place, we create a TileGrid by passing the bitmap and palette

and draw it at (0, 0) which represents the display's upper left.

©Adafruit Industries Page 28 of 55

bg_sprite = displayio.TileGrid(color_bitmap,

 pixel_shader=color_palette,

 x=0, y=0)

splash.append(bg_sprite)

Next we will create a smaller purple square. The easiest way to do this is the create a

new bitmap that is a little smaller than the full screen with a single color and place it in

a specific location. In this case, we will create a bitmap that is 10 pixels smaller on

each side. The screen is 128x128, so we'll want to subtract 20 from each of those

numbers.

We'll also want to place it at the position (10, 10) so that it ends up centered.

inner_bitmap = displayio.Bitmap(108, 108, 1)

inner_palette = displayio.Palette(1)

inner_palette[0] = 0xAA0088 # Purple

inner_sprite = displayio.TileGrid(inner_bitmap,

 pixel_shader=inner_palette,

 x=10, y=10)

splash.append(inner_sprite)

Since we are adding this after the first square, it's automatically drawn on top. Here's

what it looks like now.

©Adafruit Industries Page 29 of 55

Next let's add a label that says "Hello World!" on top of that. We're going to use the

built-in Terminal Font. In this example, we won't be doing any scaling because of the

small resolution compared to some of the other displays, so we'll add the label

directly the main group. If we were scaling, we would have used a subgroup.

Labels are centered vertically, so we'll place it at 64 for the Y coordinate, and around

30 pixels make it appear to be centered horizontally, but if you want to change the

text, change this to whatever looks good to you. Let's go with some yellow text, so

we'll pass it a value of 0xFFFF00 .

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=30, y=64)

splash.append(text_area)

Finally, we place an infinite loop at the end so that the graphics screen remains in

place and isn't replaced by a terminal.

while True:

 pass

©Adafruit Industries Page 30 of 55

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using

displayio ()

Python Wiring and Setup

Wiring

It's easy to use display breakouts with Python and the Adafruit CircuitPython RGB

Display () module. This module allows you to easily write Python code to control the

display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your display.

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Connect the display as shown below to your Raspberry Pi.

Note this is not a kernel driver that will let you have the console appear on the

TFT. However, this is handy when you can't install an fbtft driver, and want to use

the TFT purely from 'user Python' code!

©Adafruit Industries Page 31 of 55

https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

ILI9341 and HX-8357-based Displays

2.2" Display

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later.

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later as well.

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

Download the Fritzing Diagram

2.4", 2.8", 3.2", and 3.5" Displays

These displays are set up to use the 8-bit data lines by default. We want to use them

for SPI. To do that, you'll need to either solder bridge some pads on the back or

You can only use this technique with Linux/computer devices that have hardware

SPI support, and not all single board computers have an SPI device so check

before continuing

•

•

•

•

•

•

•

©Adafruit Industries Page 32 of 55

https://cdn-learn.adafruit.com/assets/assets/000/084/669/original/2.2_TFT.fzz?1574277335

connect the appropriate IM lines to 3.3V with jumper wires. Check the back of your

display for the correct solder pads or IM lines to put it in SPI mode.

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later.

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later as well.

Download the Fritzing Diagram

ST7789 and ST7735-based Displays

1.3", 1.54", and 2.0" IPS TFT Display

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later.

•

•

•

•

•

•

•

These larger displays are set to use 8-bit data lines by default and may need to

be modified to use SPI.

•

•

•

•

•

•

©Adafruit Industries Page 33 of 55

https://cdn-learn.adafruit.com/assets/assets/000/084/670/original/2.8_TFT.fzz?1574277361

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later as well.

Download the Fritzing Diagram

0.96", 1.14", and 1.44" Displays

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later as well.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 34 of 55

https://cdn-learn.adafruit.com/assets/assets/000/084/671/original/2.0_TFT.fzz?1574277392

Download the Fritzing Diagram

1.8" Display

GND connects to the Raspberry Pi's ground

Vin connects to the Raspberry Pi's 3V pin

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later as well.

CS connects to our SPI Chip Select pin. We'll be using CE0

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

LITE connects to the Raspberry Pi's 3V pin. This can be used to separately

control the backlight.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 35 of 55

https://cdn-learn.adafruit.com/assets/assets/000/084/672/original/1.44_TFT.fzz?1574277409

Download the Fritzing Diagram

SSD1351-based Displays

1.27" and 1.5" OLED Displays

GND connects to the Raspberry Pi's ground

Vin connects to the Raspberry Pi's 3V pin

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CE0

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later as well.

•

•

•

•

•

•

•

©Adafruit Industries Page 36 of 55

https://cdn-learn.adafruit.com/assets/assets/000/084/673/original/1.8_TFT.fzz?1574277427

Download the Fritzing Diagram

SSD1331-based Display

0.96" OLED Display

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be

changed later.

RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later as well.

CS connects to our SPI Chip Select pin. We'll be using CE0

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

•

•

•

•

•

•

•

©Adafruit Industries Page 37 of 55

https://cdn-learn.adafruit.com/assets/assets/000/084/674/original/1.5_OLED.fzz?1574277454

Download the Fritzing Diagram

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling SPI on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Python Installation of RGB Display Library

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-rgb-display

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you

will need to remove it first in order to run this example.

•

©Adafruit Industries Page 38 of 55

https://cdn-learn.adafruit.com/assets/assets/000/096/092/original/0.96_OLED.fzz?1603118637
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

If that complains about pip3 not being installed, then run this first to install it:

sudo apt-get install python3-pip

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,

you can run the following to install it:

sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of

Raspberry Pi OS, it may be called that.

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using text with

custom fonts. There are several system libraries that PIL relies on, so installing via a

package manager is the easiest way to bring in everything:

sudo apt-get install python3-pil

If you installed the PIL through PIP, you may need to install some additional libraries:

sudo apt-get install libopenjp2-7 libtiff5 libatlas-base-dev

That's it. You should be ready to go.

Python Usage

Now that you have everything setup, we're going to look over three different

examples. For the first, we'll take a look at automatically scaling and cropping an

image and then centering it on the display.

•

•

•

•

If you have previously installed the Kernel Driver with the PiTFT Easy Setup, you

will need to remove it first in order to run this example.

©Adafruit Industries Page 39 of 55

Turning on the Backlight

On some displays, the backlight is controlled by a separate pin such as the 1.3" TFT

Bonnet with Joystick. On such displays, running the below code will likely result in the

display remaining black. To turn on the backlight, you will need to add a small snippet

of code. If your backlight pin number differs, be sure to change it in the code:

Turn on the Backlight

backlight = DigitalInOut(board.D26)

backlight.switch_to_output()

backlight.value = True

Displaying an Image

Here's the full code to the example. We will go through it section by section to help

you better understand what is going on. Let's start by downloading an image of

Blinka. This image has enough border to allow resizing and cropping with a variety of

display sizes and rations to still look good.

Make sure you save it as blinka.jpg and place it in the same folder as your script.

Here's the code we'll be loading onto the Raspberry Pi. We'll go over the interesting

parts.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

Be sure to check the learn guides for more usage information.

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

©Adafruit Industries Page 40 of 55

"""

import digitalio

import board

from PIL import Image, ImageDraw

from adafruit_rgb_display import ili9341

from adafruit_rgb_display import st7789 # pylint: disable=unused-import

from adafruit_rgb_display import hx8357 # pylint: disable=unused-import

from adafruit_rgb_display import st7735 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x_offset=34, #

1.47" ST7789

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x_offset=35, #

1.9" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT

Rev A ST7735R

disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT

Rev B ST7735R

x_offset=26, y_offset=1,

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

©Adafruit Industries Page 41 of 55

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

image = Image.open("blinka.jpg")

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = width / height

if screen_ratio < image_ratio:

 scaled_width = image.width * height // image.height

 scaled_height = height

else:

 scaled_width = width

 scaled_height = image.height * width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Crop and center the image

x = scaled_width // 2 - width // 2

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Display image.

disp.image(image)

So we start with our usual imports including a couple of Pillow modules and the

display drivers. That is followed by defining a few pins here. The reason we chose

these is because they allow you to use the same code with the PiTFT if you chose to

do so.

import digitalio

import board

from PIL import Image, ImageDraw

import adafruit_rgb_display.ili9341 as ili9341

import adafruit_rgb_display.st7789 as st7789

import adafruit_rgb_display.hx8357 as hx8357

import adafruit_rgb_display.st7735 as st7735

import adafruit_rgb_display.ssd1351 as ssd1351

import adafruit_rgb_display.ssd1331 as ssd1331

Configuration for CS and DC pins

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Next we'll set the baud rate from the default 24 MHz so that it works on a variety of

displays. The exception to this is the SSD1351 driver, which will automatically limit it to

16MHz even if you pass 24MHz. We'll set up out SPI bus and then initialize the display.

We wanted to make these examples work on as many displays as possible with very

few changes. The ILI9341 display is selected by default. For other displays, go ahead

and comment out these lines:

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

©Adafruit Industries Page 42 of 55

and uncomment the line appropriate for your display and possibly the line below in

the case of longer initialization sequences. The displays have a rotation property so

that it can be set in just one place.

#disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

#disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

#disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

#disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT

Rev A ST7735R

#disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT

Rev B ST7735R

#x_offset=26, y_offset=1,#disp = ssd1351.SSD1351(spi,

rotation=180, # 1.5" SSD1351

#disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE

)

Next we read the current rotation setting of the display and if it is 90 or 270 degrees,

we need to swap the width and height for our calculations, otherwise we just grab the

width and height. We will create an image with our dimensions and use that to create

a draw object. The draw object will have all of our drawing functions.

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a black rectangle. This isn't

strictly necessary since it will be overwritten by the image, but it kind of sets the

stage.

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

©Adafruit Industries Page 43 of 55

Next we open the Blinka image, which we've named blinka.jpg, which assumes it is in

the same directory that you are running the script from. Feel free to change it if it

doesn't match your configuration.

image = Image.open("blinka.jpg")

Here's where it starts to get interesting. We want to scale the image so that it matches

either the width or height of the display, depending on which is smaller, so that we

have some of the image to chop off when we crop it. So we start by calculating the

width to height ration of both the display and the image. If the height is the closer of

the dimensions, we want to match the image height to the display height and let it be

a bit wider than the display. Otherwise, we want to do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions

and using a Bicubic rescaling method, we reassign the newly rescaled image back to

image . Pillow has quite a few different methods to choose from, but Bicubic does a

great job and is reasonably fast.

Scale the image to the smaller screen dimension

image_ratio = image.width / image.height

screen_ratio = width / height

if screen_ratio < image_ratio:

 scaled_width = image.width * height // image.height

 scaled_height = height

else:

 scaled_width = width

 scaled_height = image.height * width // image.width

image = image.resize((scaled_width, scaled_height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to

begin cropping it so that it ends up centered. We do that by using a standard

centering function, which is basically requesting the difference of the center of the

display and the center of the image. Just like with scaling, we replace the image

variable with the newly cropped image.

Crop and center the image

x = scaled_width // 2 - width // 2

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Finally, we take our image and display it. At this point, the image should have the

exact same dimensions at the display and fill it completely.

disp.image(image)

©Adafruit Industries Page 44 of 55

Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is very similar

to the displayio example, but it uses Pillow instead. Here's the code for that.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This demo will draw a few rectangles onto the screen along with some text

on top of that.

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

"""

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_rgb_display import ili9341

from adafruit_rgb_display import st7789 # pylint: disable=unused-import

from adafruit_rgb_display import hx8357 # pylint: disable=unused-import

from adafruit_rgb_display import st7735 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

First define some constants to allow easy resizing of shapes.

BORDER = 20

FONTSIZE = 24

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

©Adafruit Industries Page 45 of 55

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x_offset=34, #

1.47" ST7789

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x_offset=35, #

1.9" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT

Rev A ST7735R

disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT

Rev B ST7735R

x_offset=26, y_offset=1,

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a green filled box as the background

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))

disp.image(image)

Draw a smaller inner purple rectangle

draw.rectangle(

 (BORDER, BORDER, width - BORDER - 1, height - BORDER - 1), fill=(170, 0, 136)

)

Load a TTF Font

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",

FONTSIZE)

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text(

©Adafruit Industries Page 46 of 55

 (width // 2 - font_width // 2, height // 2 - font_height // 2),

 text,

 font=font,

 fill=(255, 255, 0),

)

Display image.

disp.image(image)

Just like in the last example, we'll do our imports, but this time we're including the

ImageFont Pillow module because we'll be drawing some text this time.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

import adafruit_rgb_display.ili9341 as ili9341

Next we'll define some parameters that we can tweak for various displays. The BORDE

R will be the size in pixels of the green border between the edge of the display and

the inner purple rectangle. The FONTSIZE will be the size of the font in points so that

we can adjust it easily for different displays.

BORDER = 20

FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the rotation,

and create a draw object. If you have are using a different display than the ILI9341, go

ahead and adjust your initializer as explained in the previous example. After that, we

will setup the background with a green rectangle that takes up the full screen. To get

green, we pass in a tuple that has our Red, Green, and Blue color values in it in that

order which can be any integer from 0 to 255 .

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))

disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as our

example in displayio quickstart, except the hexadecimal values have been converted

to decimal. We use the BORDER parameter to calculate the size and position that we

want to draw the rectangle.

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),

 fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on

your Pi in the location in the code. We also make use of the FONTSIZE parameter

that we discussed earlier.

©Adafruit Industries Page 47 of 55

Load a TTF Font

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf',

FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize

the centering calculation was the same one we used to center crop the image in the

previous example. In this example though, we get the font size values using the gets

ize() function of the font object.

Draw Some Text

text = "Hello World!"

(font_width, font_height) = font.getsize(text)

draw.text((width//2 - font_width//2, height//2 - font_height//2),

 text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

disp.image(image)

Displaying System Information

In this last example we'll take a look at getting the system information and displaying

it. This can be very handy for system monitoring. Here's the code for that example:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This will show some Linux Statistics on the attached display. Be sure to adjust

to the display you have connected. Be sure to check the learn guides for more

usage information.

©Adafruit Industries Page 48 of 55

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does

not support PIL/pillow (python imaging library)!

"""

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit_rgb_display import ili9341

from adafruit_rgb_display import st7789 # pylint: disable=unused-import

from adafruit_rgb_display import hx8357 # pylint: disable=unused-import

from adafruit_rgb_display import st7735 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1351 # pylint: disable=unused-import

from adafruit_rgb_display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):

cs_pin = digitalio.DigitalInOut(board.CE0)

dc_pin = digitalio.DigitalInOut(board.D25)

reset_pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:

spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789

disp = st7789.ST7789(spi, height=240, y_offset=80, rotation=180, # 1.3", 1.54"

ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53,

y_offset=40, # 1.14" ST7789

disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x_offset=34, #

1.47" ST7789

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x_offset=35, #

1.9" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y_offset=3, #

1.44" ST7735R

disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT

Rev A ST7735R

disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT

Rev B ST7735R

x_offset=26, y_offset=1,

disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

disp = ssd1351.SSD1351(spi, height=96, y_offset=32, rotation=180, # 1.27" SSD1351

disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = ili9341.ILI9341(

 spi,

 rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

 cs=cs_pin,

 dc=dc_pin,

 rst=reset_pin,

 baudrate=BAUDRATE,

)

pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:

 height = disp.width # we swap height/width to rotate it to landscape!

 width = disp.height

else:

 width = disp.width # we swap height/width to rotate it to landscape!

©Adafruit Industries Page 49 of 55

 height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))

disp.image(image)

First define some constants to allow easy positioning of text.

padding = -2

x = 0

Load a TTF font. Make sure the .ttf font file is in the

same directory as the python script!

Some other nice fonts to try: http://www.dafont.com/bitmap.php

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

while True:

 # Draw a black filled box to clear the image.

 draw.rectangle((0, 0, width, height), outline=0, fill=0)

 # Shell scripts for system monitoring from here:

 # https://unix.stackexchange.com/questions/119126/command-to-display-memory-

usage-disk-usage-and-cpu-load

 cmd = "hostname -I | cut -d' ' -f1"

 IP = "IP: " + subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

 CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\",

$3,$2,$3*100/$2 }'"

 MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,$2,$5}\''

 Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

 cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk '{printf \"CPU Temp: %.

1f C\", $(NF-0) / 1000}'" # pylint: disable=line-too-long

 Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

 # Write four lines of text.

 y = padding

 draw.text((x, y), IP, font=font, fill="#FFFFFF")

 y += font.getsize(IP)[1]

 draw.text((x, y), CPU, font=font, fill="#FFFF00")

 y += font.getsize(CPU)[1]

 draw.text((x, y), MemUsage, font=font, fill="#00FF00")

 y += font.getsize(MemUsage)[1]

 draw.text((x, y), Disk, font=font, fill="#0000FF")

 y += font.getsize(Disk)[1]

 draw.text((x, y), Temp, font=font, fill="#FF00FF")

 # Display image.

 disp.image(image)

 time.sleep(0.1)

Just like the last example, we'll start by importing everything we imported, but we're

adding two more imports. The first one is time so that we can add a small delay and

the other is subprocess so we can gather some system information.

import time

import subprocess

import digitalio

import board

©Adafruit Industries Page 50 of 55

from PIL import Image, ImageDraw, ImageFont

import adafruit_rgb_display.ili9341 as ili9341

Next, just like in the first two examples, we will set up the display, setup the rotation,

and create a draw object. If you have are using a different display than the ILI9341, go

ahead and adjust your initializer as explained in the previous example.

Just like in the first example, we're going to draw a black rectangle to fill up the

screen. After that, we're going to set up a couple of constants to help with positioning

text. The first is the padding and that will be the Y-position of the top-most text and

the other is x which is the X-Position and represents the left side of the text.

First define some constants to allow easy positioning of text.

padding = -2

x = 0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True: , it will loop until Control+C

is pressed on the keyboard. The first item inside here, we clear the screen, but notice

that instead of giving it a tuple like before, we can just pass 0 and it will draw black.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess function that get called to the

Operating System to get information. The in each command is passed through awk in

order to be formatted better for the display. By having the OS do the work, we don't

have to. These little scripts came from https://unix.stackexchange.com/

questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-

load

cmd = "hostname -I | cut -d\' \' -f1"

IP = "IP: "+subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "top -bn1 | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

CPU = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"

MemUsage = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"

Disk = subprocess.check_output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal_zone0/temp | awk \'{printf \"CPU Temp: %.1f

C\", $(NF-0) / 1000}\'" # pylint: disable=line-too-long

Temp = subprocess.check_output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to pass

color information. We can pass it as a color string using the pound symbol, just like we

©Adafruit Industries Page 51 of 55

would with HTML. With each line, we take the height of the line using getsize()

and move the pointer down by that much.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")

y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#00FF00")

y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#0000FF")

y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FF00FF")

Finally, we write all the information out to the display using disp.image() . Since we

are looping, we tell Python to sleep for 0.1 seconds so that the CPU never gets too

busy.

disp.image(image)

time.sleep(.1)

Troubleshooting

Display does not work on initial power but does work

after a reset.

The display driver circuit needs a small amount of time to be ready after initial

power. If your code tries to write to the display too soon, it may not be ready. It will

work on reset since that typically does not cycle power. If you are having this issue,

try adding a small amount of delay before trying to write to the display.

©Adafruit Industries Page 52 of 55

In Arduino, use delay() to add a few milliseconds before calling tft.begin(). Adjust

the amount of delay as needed to see how little you can get away with for your

specific setup.

Downloads

Files

ST7735R display driver datasheet ()

Raw 1.44" TFT Datasheet ()

Fritzing object in Adafruit Fritzing library ()

EagleCAD PCB files in GitHub ()

EYESPI Schematic and Fab Print

•

•

•

•

©Adafruit Industries Page 53 of 55

http://www.adafruit.com/datasheets/ST7735R_V0.2.pdf
http://www.adafruit.com/datasheets/FPC1441609_ST7735R%282010-10-18%29.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-1.44-TFT-Breakout-PCB

Original Schematic and Fab Print

©Adafruit Industries Page 54 of 55

©Adafruit Industries Page 55 of 55

	Adafruit 1.44" Color TFT with Micro SD Socket
	Table of Contents
	Overview
	Pinouts
	EYESPI
	Plugging in an EYESPI Cable
	Assembly
	Wiring & Test
	Adafruit GFX library
	Drawing Bitmaps
	CircuitPython Displayio Quickstart
	Python Wiring and Setup
	Python Usage
	Troubleshooting
	Downloads

	Overview
	Pinouts
	EYESPI
	Display Pins

	EYESPI
	The EYESPI Connector and Cables
	Wiring Your EYESPI Display
	EYESPI Pins

	Plugging in an EYESPI Cable
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Wiring & Test
	Wiring
	Install Arduino Libraries
	Changing Pins
	Adafruit GFX library
	Drawing Bitmaps
	CircuitPython Displayio Quickstart
	Preparing the Breakout
	Wiring the Breakout to the Feather
	Required CircuitPython Libraries
	Code Example Additional Libraries
	CircuitPython Code Example
	Where to go from here

	Python Wiring and Setup
	Wiring
	ILI9341 and HX-8357-based Displays
	2.2" Display
	2.4", 2.8", 3.2", and 3.5" Displays

	ST7789 and ST7735-based Displays
	1.3", 1.54", and 2.0" IPS TFT Display
	0.96", 1.14", and 1.44" Displays
	1.8" Display

	SSD1351-based Displays
	1.27" and 1.5" OLED Displays

	SSD1331-based Display
	0.96" OLED Display

	Setup
	Python Installation of RGB Display Library
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Turning on the Backlight
	Displaying an Image
	Drawing Shapes and Text
	Displaying System Information

	Troubleshooting
	Display does not work on initial power but does work after a reset.

	Downloads
	Files
	EYESPI Schematic and Fab Print
	Original Schematic and Fab Print

