Adafruit 114" 240x135 Color TFT Breakout
LCD Display

Created by Melissa LeBlanc-Williams

- o 3 9 m = =S m W W B = - e B B =N - - -
T = = @ = ® - mmm - e m B> ® - o -
' (Se} A NI S S
P & % 9§ § 8 = L\ & B 2
B ® @ ® @& ¢ 2 % & & &
§} &8 B @a & & @® s & 8 % n
B &8 % & & & @ & & » ® »
A @ U &a ® & B» " & & & &
T« s s v o @ e " B P B BB
SO _TFTCS_ OC
[ I B B W PG P A " » 8 5 B0
" s a8 980 nos. .ST SOCS O I
E 8 @ " 8 F 5 8 0 PP H B O F PR A PDE PN R B BB
@ a a2 & @ 9§ 2 - B 2 - 8§ 0 F NN BB
S R P ASSYIRIQER
| U B - = m

https://learn.adafruit.com/adafruit-1-14-240x135-color-tft-breakout

Last updated on 2023-08-29 02:37:56 PM EDT

©Adafruit Industries Page 1 of 45



Table of Contents

Overview
Pinouts

Arduino Wiring & Test

« Basic Graphics Test Wiring
« Install Arduino Libraries
« Changing Pins

Adafruit GFX library
Drawing Bitmaps

CircuitPython Displayio Quickstart

« Preparing the Breakout

« Required CircuitPython Libraries

« Code Example Additional Libraries
« CircuitPython Code Example

« Where to go from here

Python Wiring and Setup

« Wiring

+ ILI9341 and HX-8357-based Displays

« ST7789 and ST7735-based Displays

« SSD1351-based Displays

« SSD1331-based Display

« Setup

« Python Installation of RGB Display Library
« DejaVu TTF Font

« Pillow Library

Python Usage

« Turning on the Backlight

- Displaying an Image

« Drawing Shapes and Text

« Displaying System Information

Downloads

. Files
« Fab Print
» Schematic

©Adafruit Industries

12

13

16

23

31

44

Page 2 of 45



Overview

Say hello to our 114" 240x135 Color TFT Display w/ MicroSD Card Breakout — we think
it's T-F-Terrific! It's the size of your thumbnail, with glorious 240x135 high res pixel
color. This very very small display is only 114" diagonal, packed with RGB pixels, for
making very small, high-density displays.

We've been looking for a display like this for a long time - it's so small only 114"
diagonal but has a high density 260 ppi, 240x135 pixel display with full-angle viewing.
It looks a lot like our 0.96" 160x80 display, but has 2.5x as many pixels. We've seen
displays of this caliber used in smartwatches and small electronic devices but they've
always used a MIPI interface. Finally, we found one that is SPI, and it has a friendly
display driver, so it works with any and all microcontrollers or microcomputers!

©Adafruit Industries Page 3 of 45



This lovely little display breakout is the best way to add a small, colorful and very
bright display to any project. Since the display uses 4-wire SPI to communicate, and
has its own pixel-addressable frame buffer, it can be used with every kind of
microcontroller. Even a very small one with low memory and few pins available! The
114" display has 240x135 16-bit full color pixels and is an IPS display, so the color
looks great up to 80 degrees off axis in any direction. The TFT driver (ST7789) is very
similar to the popular ST7735, and our Arduino library supports it as well.

BB BIELE oS'J 1

3y SCK HOSI RST SDC

Our breakout has the TFT display soldered on (it uses a delicate flex-circuit
connector) as well as a ultra-low-dropout 3.3V regulator and a 3/5V level shifter so
you can use it with 3.3V or 5V power and logic. We also had a little space so we

©Adafruit Industries Page 4 of 45



placed a microSD card holder so you can easily load full color bitmaps from a FAT16/
FAT32 formatted microSD card. The microSD card is not included, but you can pick
one up here (http://adafru.it/102).

LIT —DCT TFTES SBND i
Q000000000
SDCS RST MOSI SCK 3V

Of course, we wouldn't just leave you with a datasheet and a "good luck!" - we've
written a full open source graphics library that can draw pixels, lines, rectangles,
circles, text and bitmaps as well as example code and a wiring tutorial. The code is
written for Arduino IDE but can be easily ported to your favorite microcontroller!

P s 3 9 e 2 2
P2 = e @B Em
P s 5 3 8@ & u
P s % = 8@ L I
P & 7 & = ® U
(I I B B e ®
" a8 w e ) P &
s s @& v e S L
« s @ w e a s
“ " e w ww a
T S ESIRNI

©Adafruit Industries Page 5 of 45


http://www.adafruit.com/products/102
http://www.adafruit.com/products/102

Pinouts

‘6“0‘*6"0“8"6%“ % o 5J1

SCK HMOSI RST SD

This color display uses SPI to receive image data. That means you need at least 4
pins - clock, data in, TFT cs and d/c. If you'd like to have SD card usage too, add
another 2 pins - data out and card cs. However, there's a couple other pins you may
want to use, lets go thru them all!

« 3-5V / Vin - this is the power pin, connect to 3-5VDC - it has reverse polarity
protection but try to wire it right!

« 3V - this is the 3.3V output from the onboard regulator

« GND - this is the power and signal ground pin

« SCK - this is the SPI clock input pin. Use 3-5V logic level

« MISO - this is the SPI Microcontroller In Serial Out pin, it's used for the SD card.
It isn't used for the TFT display which is write-only. It is 3.3V logic out (but can be
read by 5V logic)

« MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data
from the microcontroller to the SD card and/or TFT. Use 3-5V logic level

« TFTCS - this is the TFT SPI chip select pin. Use 3-5V logic level

« RST - this is the TFT reset pin. Connect to ground to reset the TFT! It's best to
have this pin controlled by the library so the display is reset cleanly, but you can
also connect it to the Arduino Reset pin, which works for most cases. There is an
automatic-reset chip connected so it will reset on power-up. Use 3-5V logic level

« DC - this is the TFT SPI data or command selector pin. Use 3-5V logic level

« SD Card CS / SDCS - this is the SD card chip select, used if you want to read
from the SD card. Use 3-5V logic level

©Adafruit Industries Page 6 of 45



« LIT - this is the PWM input for the backlight control. It is by default pulled high
(backlight on) you can PWM at any frequency or pull down to turn the backlight
off. Use 3-5V logic level

Arduino Wiring & Test

Basic Graphics Test Wiring

Wiring up the display in SPI mode is pretty easy as there are not that many pins! We'll
be using hardware SPI, but you can also use software SPI (any pins) later. Start by
connecting the power pins

« 3-5V Vin connects to the microcontroller 5V pin

« GND connects to Arduino ground

« SCK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats Digit
al 13. On Mega, its Digital 52 and on other chips its ICSP-3 (See SPI Connections
for more details ()

+ MISO is not connected

+ MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats Dig
ital 11. On Mega, its Digital 51 and on other chips its ICSP-4 (See SPI Connections
for more details ()

« TFTCS connects to our SPI Chip Select pin. We'll be using Digital 10 but you can
later change this to any pin

©Adafruit Industries Page 7 of 45


http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

« RST connects to our Display Reset pin. We'll be using Digital 9 but you can later
change this pin too.

« DC connects to our SPI data/command select pin. We'll be using Digital 8 but
you can later change this pin too.

For the level shifter, we use the CD74HC4050 () which has a typical propagation delay
of "0ns

The following diagram uses a 0.96 160x80 display, which is the same size

breakout and has the exact same pinout as the 114" 240x135 display.

® o e e 0 00 e e 0 00 @ @
® o e e 0 00 e e 0 00 ® ¢
® @ e e 0 00 e e 0 00 ® ¢
LI ) e e 0 00
L) L)
LI ) L )
L) L)
e e o 00 e o o o0
® o e e 0 00 e e 0 00 @
= . e e 0 00 e e 0 00 ® ¢
e o o
\ . L)
=) 9 L)
o-““ .o
.
—N
L) e L)
L) 9 L)
.
. - L)
.
m— L)
L) 9
g o
L) 9 .
L) o
L) i H L)
e e 0
L) L)
P e e o 0 0 e e o 0 o e o
® @ e e o 00 e e 0 00 ® @
e e 0 00 e e 0 00
>
3 ® @ e e 0 00 L ) ® ¢
-3 e e 0 00 e e 0 00
a L) L)
5 L ) e e 0 00
L) ° e
® @ e e o 00 e e o 00 ® @
® o e e 0 0 0 e e o 0 0 ® @
e e 0 0 0 e e 0 00

fritzing

Install Arduino Libraries

We have example code ready to go for use with these TFTs. It's written for Arduino,
which should be portable to any microcontroller by adapting the C++ source.

Three libraries need to be installed using the Arduino Library Manager...this is the

preferred and modern way. From the Arduino “Sketch” menu, select “Include Library”
then “Manage Libraries...”

©Adafruit Industries Page 8 of 45


http://www.ti.com/product/cd74hc4050?keyMatch=CD74HC4050&tisearch=Search-EN-Everything

File Edit

Tools Help

Verify/Compile #$R
Upload $U
Upload Using Programmer  {+3U
Export compiled Binary X #8S

Manage Libraries...

Add .ZIP Library...

Arduino libraries

Show Sketch Folder ArduinoHttpClient
Include Library ArduinoSound
Add File... Bridge
This example code is in the public domain. ' Esplora
* / Firmata

Type “gfx” in the search field to quickly find the first library — Adafruit_GFX:

[ JON ) Library Manager
Type Al Topic Al gfx
Adafruit GFX Library by Adafruit

Adafruit GFX graphics core library, this is the 'core’ class that all our other graphics libraries derive from. Install this library in addition
to the display library for your hardware.
More info

Version 1.3.4 Install

Adafruit ImageReader Library by Adafruit Version 1.0.1 INSTALLED
Companion library for Adafruit_GFX to load images from SD card. Install this library in addition to Adafruit_GFX and the display library for

Repeat the search and install steps, looking for the Adafruit BuslO, Adafruit Zero
DMA, Adafruit ST7735 and ST7789, Adafruit SPIFlash, and SdFat - Adafruit Fork librari
es.

After restarting the Arduino software, you should see a new example folder called Ad
afruit ST7735 and ST7789, and inside, an example called graphicstest.

m Edit Sketch Tools Help
New BN A | Arduino 1.8.9
Open... #0  Adafruit ILI9341
Open Recent >  Adafruit ImageReader Library
Sketchbook > Adafruit 10 Arduino

Adafruit Keypad
Close #W Adafruit LIS3DH
Save %S Adafruit MQTT Library
Save As... @S Adafruit NeoPixel
Adafruit NeoTrellis M4 Library
Adafruit QSPI
Adafruit RA8875
Adafruit seesaw Library
Adafruit SGP30 Sensor
Adafruit Si5351 Library
Adafruit SPIFlash
Adafruit SSD1306
Adafruit SSD1325
Adafruit SSD1331 OLED Driver Library for Arduino
Adafruit SSD1351 library
Adafruit ST7735 and ST7789 Library displayOnOffTest
Adafruit STMPE610 graphicstest
Adafruit TouchScreen miniTFTWing >
Adafruit ZeroTimer Library rotationtest
Adafruit TFTLCD seesaw_shield18_test
ADS1115 shieldtest
ADXL345
AK8975
ArduinoJson
Audio
BMA150

Drannoc

Page Setup %P
Print #P

VR VY VYVVYVVYVVYVYVVYVYVYVVYVYYVYYY

FrYvVVYVYVYYVYYY

Since this example is written for several displays, there are two changes we need to
make in order to use it with the 114" display.

First, in the graphicstest source code, look for the lines as follows:

©Adafruit Industries Page 9 of 45



// For 1.44" and 1.8" TFT with ST7735 use:
Adafruit ST7735 tft = Adafruit ST7735(TFT_CS, TFT DC, TFT RST);

// For 1.14", 1.3", 1.54", and 2.0" TFT with ST7789:
//Adafruit ST7789 tft = Adafruit ST7789(TFT CS, TFT DC, TFT RST);

comment out the first line, and uncomment the second, so it looks like:

// For 1.44" and 1.8" TFT with ST7735 use:
//Adafruit ST7735 tft = Adafruit ST7735(TFT_CS, TFT _DC, TFT _RST);

4", and 2.0" TFT with ST7789:

// For 1.14", 1.3", 1.5
= Adafruit ST7789(TFT CS, TFT DC, TFT RST);

Adafruit ST7789 tft

Second, we need to set the correct initializations sequence. In the graphicstest

source code, look for the lines as follows:
// Use this initializer if using a 1.8" TFT screen:
tft.initR(INITR BLACKTAB); // Init ST7735S chip, black tab

// OR use this initializer (uncomment) if using a 1.44" TFT:
//tft.initR(INITR 144GREENTAB); // Init ST7735R chip, green tab

// OR use this initializer (uncomment) if using a 0.96" 160x80 TFT:
//tft.initR(INITR MINI160x80); // Init ST7735S mini display

// OR use this initializer (uncomment) if using a 1.3" or 1.54" 240x240 TFT:

//tft.init (240, 240); // Init ST7789 240x240

// OR use this initializer (uncomment) if using a 2.0" 320x240 TFT:
//7tft.init (240, 320); // Init ST7789 320x240

// OR use this initializer (uncomment) if using a 1.14" 240x135 TFT:
//tft.init (135, 240); // Init ST7789 240x135

comment out the first line, and uncomment the sixth, so it looks like:
// Use this initializer if using a 1.8" TFT screen:
//tft.initR(INITR BLACKTAB); // Init ST7735S chip, black tab

// OR use this initializer (uncomment) if using a 1.44" TFT:
//tft.initR(INITR 144GREENTAB); // Init ST7735R chip, green tab

// OR use this initializer (uncomment) if using a 0.96" 160x80 TFT:
//tft.initR(INITR MINI160x80); // Init ST7735S mini display

// OR use this initializer (uncomment) if using a 1.3" or 1.54" 240x240 TFT:

//tft.init (240, 240); // Init ST7789 240x240

// OR use this initializer (uncomment) if using a 2.0" 320x240 TFT:
//tft.init (240, 320); // Init ST7789 320x240

// OR use this initializer (uncomment) if using a 1.14" 240x135 TFT:
tft.init (135, 240); // Init ST7789 240x135

Now upload the sketch to your Arduino. You may need to press the Reset button to

reset the Arduino and TFT. You should see a collection of graphical tests draw out on

the TFT.

©Adafruit Industries

Page 10 of 45



Lorem ipsum dolor sit
amet, consectetur adip
iscing elit. Curabitur
_adipiscing ante sed n
ibh tincidunt feugiat.
aecenas enim massa,
fringilla sed malesuad
a et, malesuada sit am
et turpis. Sed porttit
or neque ut_ante preti
um vitae malesuada nun
c bibendum. Nullam ali
quet ultrices massa eu
_hendrerit. Ut sed nis

i lorem. In vestibulum
purus a tortor imperd
iet posuere.

Changing Pins

Now that you have it working, there's a few things you can do to change around the
pins.

If you're using Hardware SPI, the CLOCK and MOSI pins are 'fixed' and can't be
changed. But you can change to software SPI, which is a bit slower, and that lets you
pick any pins you like. Find these lines:

// OPTION 1 (recommended) is to use the HARDWARE SPI pins, which are unique
// to each board and not reassignable. For Arduino Uno: MOSI = pin 11 and
// SCLK = pin 13. This is the fastest mode of operation and is required if
// using the breakout board's microSD card.

// For 1.44" and 1.8" TFT with ST7735 use:
//Adafruit ST7735 tft = Adafruit ST7735(TFT_CS, TFT_DC, TFT _RST);

// For 1.14", 1.3", 1.54", and 2.0" TFT with ST7789:
Adafruit ST7789 tft = Adafruit ST7789(TFT_CS, TFT DC, TFT RST);

// OPTION 2 lets you interface the display using ANY TWO or THREE PINS,
// tradeoff being that performance is not as fast as hardware SPI above.
//#define TFT_MOSI 11 // Data out

//#define TFT_SCLK 13 // Clock out

// For ST7735-based displays, we will use this call
//Adafruit ST7735 tft = Adafruit ST7735(TFT_CS, TFT DC, TFT MOSI, TFT SCLK,
TFT _RST);

// OR for the ST7789-based displays, we will use this call

//Adafruit ST7789 tft = Adafruit ST7789(TFT CS, TFT DC, TFT MOSI, TFT SCLK,
TFT RST);

©Adafruit Industries Page 11 of 45



Comment out option 1, and uncomment option 2 for the ST7789. Then you can
change the TFT_ pins to whatever pins you'd like!

The 114" TFT display has an auto-reset circuit on it so you probably don't need to use
the RST pin. You can change

#define TFT_RST 9

to

#define TFT RST -1

so that pin isn't used either. Or connect it up for manual TFT resetting!

Adafruit GFX library

The Adafruit_GFX library for Arduino provides a common syntax and set of graphics
functions for all of our TFT, LCD and OLED displays. This allows Arduino sketches to
easily be adapted between display types with minimal fuss...and any new features,
performance improvements and bug fixes will immediately apply across our complete
offering of color displays.

The GFX library is what lets you draw points, lines, rectangles, round-rects, triangles,
text, etc.

©Adafruit Industries Page 12 of 45



Check out our detailed tutorial here http://learn.adafruit.com/adafruit-gfx-graphics-
library () It covers the latest and greatest of the GFX library!

Drawing Bitmaps

There is a built in microSD card slot into the breakout, and we can use that to load
bitmap images! You will need a microSD card formatted FAT16 or FAT32 (they almost
always are by default).

It's really easy to draw bitmaps! Let's start by downloading this image of Minerva

Copy minerva.bmp into the base directory of a microSD card and insert it into the
microSD socket in the breakout.

©Adafruit Industries Page 13 of 45


http://learn.adafruit.com/adafruit-gfx-graphics-library
http://learn.adafruit.com/adafruit-gfx-graphics-library

Two more wires are required to interface with the onboard SD card:

« You'll need to connect up the SO pin to the SPI MISO line on your

microcontroller. On Arduino Uno/Duemilanove/328-based, thats Digital 12. On

Mega's, its Digital 50 and on Leonardo/Due its ICSP-1 (See SPI Connections for

more details ())

« Also, the CCS or CC pin to Digital 4 on your Arduino as well. You can change

this pin later, but stick with this for now.

The following diagram uses a 0.96 160x80 display, which is the same size

breakout and has the exact same pinout as the 114" 240x135 display.

b
=
]
o
@
-

/
/

/

\

€ SOLdL OSIM QN9 UTA

S~

X097 3TNJjepe

JoT0) 0%

14l

fritzing

You may want to try the SD library examples before continuing, especially one that

lists all the files on the SD card

Open the File=»examples—Adafruit ImageReader Library=BreakoutST7789 - 320x240

example:

©Adafruit Industries

Page 14 of 45


http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

Edit Sketch Tools Help

New BN Arduino 1.8.9
Open... 30 Adafruit ADXL343 >
Open Recent > Adafruit AMG88xx Library >
Sketchbook > Adafruit Arcada Library >
Adafruit CCS811 Library >
Close #W  Adafruit Circuit Playground >
Save %S Adafruit DMA neopixel library >
Save As... %S Adafruit DotStar >
Adafruit DotStarMatrix >
:fiﬁf Setps A :Z Adafruiit Feather OLED >
Adafruit GFX Library >
Adafruit HX8357 Library >
Adafruit ILI9341 >
BreakoutSsD1331
Adafruit 10 Arduino BreakoutSSD1351

Adafruit Keypad
Adafruit LIS3DH
Adafruit MQTT Library
Adafruit NeoPixel

Adafruit NeoTrellis M4 Library

Adafruit QSPI

Adafruit RAB875
Adafruit seesaw Library
Adafruit SGP30 Sensor
Adafruit Si5351 Library

BreakoutST7735-128x128
BreakoutST7735-160x128
BreakoutST7735-160x80
FeatherWingHX8357
FeatherWingILI9341
FeatherWingST7735
PyPortal

ShieldILI9341
ShieldST7735

Adafruit SPIFlash

Adafruit SSD1306

Adafruit SSD1325

Adafruit SSD1331 OLED Driver Library for Arduino
Adafruit SSD1351 library

Adafruit ST7735 and ST7789 Library

Adafruit STMPE610

Adafruit TouchScreen

Adafruit ZeroTimer Library

Adafruit TFTLCD

VWYY VY'Y VY VYN VoV WV V. VoY

You will need to change a couple of lines for this to work with the 240x135 display.
First, we need to set this to the correct display size, so look for the following code:

tft.init (240, 320); // Init ST7789 320x240

and change it to this:

tft.init (135, 240); // Init ST7789 240x135

Second, we need to change the filename that we are loading, so look for the
following lines of code.

Serial.print(F("Loading purple.bmp to screen..."));
stat = reader.drawBMP("/purple.bmp", tft, 0, 0);

and change them to this:

Serial.print(F("Loading minerva.bmp to screen..."));
stat = reader.drawBMP("/minerva.bmp", tft, 0, 0);

Now upload the example sketch to the Arduino. You should see ADABOT appear! If
you have any problems, check the serial console for any messages such as not being
able to initialize the microSD card or not finding the image.

©Adafruit Industries Page 15 of 45



@
> 1 N
1w a B 2
' ® & ®
[ ] a ® =8
" ] & 8 9
" a &8 =®
" | " ® 0
e L
LI L
L B 8 &
LI ] a5 AN

& W oy = ¢

“ o~ o~ o~ <

To make new bitmaps, make sure they are less than 240 by 135 pixels and save them
in 24-bit BMP format! They must be in 24-bit format, even if they are not 24-bit color
as that is the easiest format for the Arduino. You can rotate images using the setRotati
on() procedure

You can draw as many images as you want - don't forget the names must be less than
8 characters long. Just copy the BMP drawing routines below loop() and call

bmpDraw(bmpfilename, X, y);

For each bitmap. They can be smaller than 240x135 and placed in any location on the
screen.

CircuitPython Displayio Quickstart

You will need a board capable of running CircuitPython such as the Metro MO Express
or the Metro M4 Express. You can also use boards such as the Feather MO Express or
the Feather M4 Express. We recommend either the Metro M4 or the Feather M4
Express because it's much faster and works better for driving a display. For this guide,
we will be using a Feather M4 Express. The steps should be about the same for the
Feather MO Express or either of the Metros. If you haven't already, be sure to check
out our Feather M4 Express () guide.

©Adafruit Industries Page 16 of 45


https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly

Adafruit Feather M4 Express - Featuring
ATSAMDS51

It's what you've been waiting for, the
Feather M4 Express featuring ATSAMD51.
This Feather is fast like a swift, smart like
an owl, strong like a ox-bird (it's half ox,...
https://www.adafruit.com/product/3857

Preparing the Breakout

Before using the TFT Breakout, you will need to solder the headers or some wires to
it. Be sure to check out the Adafruit Guide To Excellent Soldering (). After that the
breakout should be ready to go.

Required CircuitPython Libraries

To use this display with displayio, there is only one required library.

First, make sure you are running the latest version of Adafruit CircuitPython () for your
board.

Next, you'll need to install the necessary libraries to use the hardware--carefully
follow the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (). Our introduction guide has a great page on how to install the library

bundle () for both express and non-express boards.

Remember for non-express boards, you'll need to manually install the necessary
libraries from the bundle:

- adafruit_st7789

Before continuing make sure your board's lib folder or root filesystem has the adafruit
_st7789 file copied over.

©Adafruit Industries Page 17 of 45


https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of
a library so the code didn't get overly complicated. You'll also need to copy over the
following library from the bundle:

- adafruit_display_text

Go ahead and install this in the same manner as the driver library by copying the adaf
ruit_display_text folder over to the lib folder on your CircuitPython device.

CircuitPython Code Example

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

This test will initialize the display using displayio and draw a solid green
background, a smaller purple rectangle, and some yellow text.

import board

import terminalio

import displayio

from adafruit display text import label

from adafruit st7789 import ST7789

# First set some parameters used for shapes and text
BORDER = 20

FONTSCALE = 2

BACKGROUND COLOR = Ox00FF00 # Bright Green
FOREGROUND COLOR = OxAAQ088 # Purple

TEXT _COLOR = OxFFFF0O

# Release any resources currently in use for the displays
displayio.release displays()

spi = board.SPI()
tft cs = board.D5
tft dc = board.D6

display bus = displayio.FourWire(spi, command=tft dc, chip select=tft cs)
display = ST7789(
display bus, rotation=270, width=240, height=135, rowstart=40, colstart=53

# Make the display context
splash = displayio.Group()
display.show(splash)

color bitmap = displayio.Bitmap(display.width, display.height, 1)
color palette = displayio.Palette(1)
color palette[0] = BACKGROUND COLOR

bg sprite = displayio.TileGrid(color _bitmap, pixel shader=color palette, x=0, y=0)
splash.append(bg sprite)

# Draw a smaller inner rectangle

©Adafruit Industries Page 18 of 45



inner _bitmap = displayio.Bitmap(
display.width - BORDER * 2, display.height - BORDER * 2, 1

inner palette = displayio.Palette(1)
inner palette[0] = FOREGROUND COLOR
inner _sprite = displayio.TileGrid(
inner_bitmap, pixel shader=inner_ palette, x=BORDER, y=BORDER
)

splash.append(inner_sprite)

# Draw a label
text = "Hello World!"
text area = label.Label(terminalio.FONT, text=text, color=TEXT_COLOR)
text width = text area.bounding box[2] * FONTSCALE
text group = displayio.Group(
scale=FONTSCALE,
x=display.width // 2 - text width // 2,
y=display.height // 2,
)
text group.append(text area) # Subgroup for text scaling
splash.append(text group)

while True:
pass

Let's take a look at the sections of code one by one. We start by importing the board
so that we can initialize SPI, displayio, terminalio for the font, a label, and
the adafruit st7789 driver.

import board

import displayio

import terminalio

from adafruit display text import label
from adafruit st7789 import ST7789

Next we define some parameters so that making changes to the shapes and text are
easy. BORDER will be the distance between the background and foreground
rectangles. FONTSCALE will be the multiplier for the font size. BACKGROUND COLOR is
the color of the larger outer rectangle and is set to Ox00FF00 , which is bright green
by default. Colors are Hexadecimal values in the format of RRGGBB.

FOREGROUND COLOR is the color of the smaller inner rectangle and is set to purple by
default. TEXT COLOR is the color of the text that appears in the label and by default is
yellow.

BORDER = 20

FONTSCALE = 2

BACKGROUND COLOR = Ox00FFOO # Bright Green
FOREGROUND COLOR = OxAAQ088 # Purple
TEXT_COLOR = OxFFFF00

Next we release any previously used displays. This is important because if the
Feather is reset, the display pins are not automatically released and this makes them
available for use again.

©Adafruit Industries Page 19 of 45



displayio.release displays()

Next, we set the SPI object to the board's SPI with the easy shortcut

function board.SPI() . By using this function, it finds the SPI module and initializes
using the default SPI parameters. Next we set the Chip Select and Data/Command
pins that will be used.

spi = board.SPI()
tft _cs = board.D5
tft dc = board.D6

In the next line, we set the display bus to FourWire which makes use of the SPI bus.
We would normally pass in reset with other displays, but this one has an automatic
reset circuit built in.

display bus = displayio.FourWire(spi, command=tft dc, chip select=tft cs)

Finally, we initialize the driver with a width of 240 and a height of 135. Because the
ST7789 chip is capable of driving both 320 and 240 pixel width displays. With the
240x135 display, the rectangle is in the middle of that space, we will need to tell the
display that our row starts at 40 pixels over and our columns start 53 pixels down. If
we stopped at this point and ran the code, we would have a terminal that we could
type at and have the screen update.

display = ST7789(display bus, rotation=270, width=240, height=135, rowstart=40,
colstart=53)

©Adafruit Industries Page 20 of 45



Next we create a background splash image. We do this by creating a group that we
can add elements to and adding that group to the display. In this example, we are
limiting the maximum number of elements to 10, but this can be increased if you
would like. The display will automatically handle updating the group.

splash = displayio.Group(max_size=10)
display.show(splash)

Next we create a Bitmap, which is like a canvas that we can draw on, and set it to the
same size as the display. In this case we are creating the Bitmap to be the same size
as the screen, but only have one color. The Bitmaps can currently handle up to 256
different colors. We create a Palette with one color and set that color to the value of
BACKGROUND COLOR . Even though the Bitmaps can only handle 256 colors at a time,
you get to define what those 256 different colors are.

color _bitmap = displayio.Bitmap(display.width, display.height, 1)
color palette = displayio.Palette(1)
color palette[0] = BACKGROUND COLOR

With all those pieces in place, we create a TileGrid by passing the bitmap and palette
and draw itat (0, 0) which represents the display's upper left.

bg sprite = displayio.TileGrid(color_bitmap,
pixel shader=color palette,
x=0, y=0)

splash.append(bg sprite)

Next we will create a smaller purple square. The easiest way to do this is the create a
new bitmap that is a little smaller than the full screen with a single color and place it in

©Adafruit Industries Page 21 of 45



a specific location. In this case, we will create a bitmap that is the size of the display
with the value of BORDER, which is 20 pixels, subtracted from each side. The screen
is 240x135, so we'll end up subtracting 40 from each of those numbers.

We'll also want to place it at the position (20, 20) so that it ends up centered.

inner bitmap = displayio.Bitmap(display.width - BORDER * 2, display.height - BORDER
* 2, 1)
inner palette = displayio.Palette(1)
inner palette[0] = FOREGROUND COLOR
inner sprite = displayio.TileGrid(inner bitmap,
pixel shader=inner palette,
x=BORDER, y=BORDER)
splash.append(inner _sprite)

Since we are adding this after the first square, it's automatically drawn on top. Here's
what it looks like now.

Next let's add a label that says "Hello World!" on top of that. We're going to use the
built-in Terminal Font and scale it up by a factor of two, which is what we have
FONTSCALE set to. To scale the label only, we will make use of a subgroup, which we
will then add to the main group.

We create the label first so that we can get the width of the bounding box and
multiply it by the FONTSCALE . This gives us the actual with of the text.

Labels are automatically centered vertically, so we'll place it at half the display height

for the Y coordinate, and we calculate the X coordinate to horizontally center the
label. For the color, we just use the value inside of TEXT COLOR.

©Adafruit Industries Page 22 of 45



text = "Hello World!"
text area = label.Label(terminalio.FONT, text=text, color=TEXT_COLOR)
text width = text area.bounding box[2] * FONTSCALE
text group = displayio.Group(max_ size=10, scale=FONTSCALE, x=display.width // 2 -
text width // 2,
y=display.height // 2)
text group.append(text area) # Subgroup for text scaling
splash.append(text group)

Finally, we place an infinite loop at the end so that the graphics screen remains in
place and isn't replaced by a terminal.

while True:
pass

Hello World!

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using
displayio ()

Python Wiring and Setup
Wiring

It's easy to use display breakouts with Python and the Adafruit CircuitPython RGB
Display () module. This module allows you to easily write Python code to control the
display.

©Adafruit Industries Page 23 of 45


https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display

We'll cover how to wire the display to your Raspberry Pi. First assemble your display.

Since there's dozens of Linux computers/boards you can use we will show wiring for
Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Connect the display as shown below to your Raspberry Pi.

Note this is not a kernel driver that will let you have the console appear on the

TFT. However, this is handy when you can't install an fbtft driver, and want to use
the TFT purely from 'user Python' code!

ILI9341 and HX-8357-based Displays
2.2" Display

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later.

+ RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later as well.

« Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

©Adafruit Industries Page 24 of 45


https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

K

2.2" TFT
320x240

fritzing

Download the Fritzing Diagram

2.4" 2.8" 3.2", and 3.5" Displays

These displays are set up to use the 8-bit data lines by default. We want to use them
for SPI. To do that, you'll need to either solder bridge some pads on the back or
connect the appropriate IM lines to 3.3V with jumper wires. Check the back of your
display for the correct solder pads or IM lines to put it in SPI mode.

« Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later.

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed

later as well.

©Adafruit Industries Page 25 of 45


https://cdn-learn.adafruit.com/assets/assets/000/084/669/original/2.2_TFT.fzz?1574277335

2. SaEl

320x240

fritzing

Download the Fritzing Diagram

ST7789 and ST/7735-based Displays

1.3",1.54", and 2.0" IPS TFT Display

« Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

+ MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later.

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later as well.

02EX0¥C
141 Sdl .0°¢

fritzing

©Adafruit Industries Page 26 of 45


https://cdn-learn.adafruit.com/assets/assets/000/084/670/original/2.8_TFT.fzz?1574277361

Download the Fritzing Diagram

0.96", 114", and 1.44" Displays

« Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later.

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later as well.

AR
&,

Unv

2ol U\l VU Fll s xise ) e sty 4

. Pttt

fritzing

Download the Fritzing Diagram

1.8" Display

« GND connects to the Raspberry Pi's ground

- Vin connects to the Raspberry Pi's 3V pin

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later.

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later as well.

« CS connects to our SPI Chip Select pin. We'll be using CEO

©Adafruit Industries Page 27 of 45


https://cdn-learn.adafruit.com/assets/assets/000/084/671/original/2.0_TFT.fzz?1574277392
https://cdn-learn.adafruit.com/assets/assets/000/084/672/original/1.44_TFT.fzz?1574277409

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« LITE connects to the Raspberry Pi's 3V pin. This can be used to separately
control the backlight.

8¢IX091
141 .8°T

fritzing

Download the Fritzing Diagram

SSD1351-based Displays

1.27" and 1.5" OLED Displays

« GND connects to the Raspberry Pi's ground

« Vin connects to the Raspberry Pi's 3V pin

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later.

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later as well.

©Adafruit Industries Page 28 of 45


https://cdn-learn.adafruit.com/assets/assets/000/084/673/original/1.8_TFT.fzz?1574277427

1.5" OLED
128x128

®© 0 06 6 08 000 e 00 e e 0 e
o .

CY¥3NYD) 18D h ° e

S | [ e e e s o
s )
e o o o
-] .
L ]
. ¢

ETHERNET S L B R RN D R )

fritzing

Download the Fritzing Diagram

SSD1331-based Display

0.96" OLED Display

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later.

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later as well.

« CS connects to our SPI Chip Select pin. We'll be using CEO

« Vin connects to the Raspberry Pi's 3V pin

+ GND connects to the Raspberry Pi's ground

©Adafruit Industries Page 29 of 45


https://cdn-learn.adafruit.com/assets/assets/000/084/674/original/1.5_OLED.fzz?1574277454

e ey

.
DSI (DISPLAY) . >

fritzing

Download the Fritzing Diagram

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling SPI on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes
often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Python Installation of RGB Display Library

Once that's done, from your command line run the following command:

« sudo pip3 install adafruit-circuitpython-rgb-display

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

©Adafruit Industries Page 30 of 45


https://cdn-learn.adafruit.com/assets/assets/000/096/092/original/0.96_OLED.fzz?1603118637
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

If that complains about pip3 not being installed, then run this first to install it:

« sudo apt-get install python3-pip

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,
you can run the following to install it:

« sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of
Raspberry Pi OS, it may be called that.

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using text with
custom fonts. There are several system libraries that PIL relies on, so installing via a
package manager is the easiest way to bring in everything:

« sudo apt-get install python3-pil

If you installed the PIL through PIP, you may need to install some additional libraries:

. sudo apt-get install libopenjp2-7 libtiff5 libatlas-base-dev

That's it. You should be ready to go.

Python Usage

Now that you have everything setup, we're going to look over three different
examples. For the first, we'll take a look at automatically scaling and cropping an
image and then centering it on the display.

©Adafruit Industries Page 31 of 45



Turning on the Backlight

On some displays, the backlight is controlled by a separate pin such as the 1.3" TFT
Bonnet with Joystick. On such displays, running the below code will likely result in the
display remaining black. To turn on the backlight, you will need to add a small snippet
of code. If your backlight pin number differs, be sure to change it in the code:

# Turn on the Backlight

backlight = DigitalInOut(board.D26)
backlight.switch to output()
backlight.value = True

Displaying an Image

Here's the full code to the example. We will go through it section by section to help
you better understand what is going on. Let's start by downloading an image of
Blinka. This image has enough border to allow resizing and cropping with a variety of
display sizes and rations to still look good.

Make sure you save it as blinka.jpg and place it in the same folder as your script.
Here's the code we'll be loading onto the Raspberry Pi. We'll go over the interesting
parts.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

Be sure to check the learn guides for more usage information.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

©Adafruit Industries Page 32 of 45



import digitalio

import board

from PIL import Image, ImageDraw

from adafruit rgb display import i1i9341

from adafruit rgb display import st7789 # pylint: disable=unused-import
from adafruit rgb display import hx8357 # pylint: disable=unused-import
from adafruit rgb display import st7735 # pylint: disable=unused-import
from adafruit rgb display import ssd1351 # pylint: disable=unused-import
from adafruit rgb display import ssd1331 # pylint: disable=unused-import

# Configuration for CS and DC pins (these are PiTFT defaults):
cs pin = digitalio.DigitalInOut(board.CEQ)

dc_pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

# Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

# Setup SPI bus using hardware SPI:
spi = board.SPI()

# pylint: disable=line-too-long
# Create the display:

# disp = st7789.ST7789(spi, rotation=90,
# disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180,
ST7789

# 2.0" ST7789
# 1.3", 1.54"

# disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53,

y offset=40, # 1.14" ST7789
47" ST7789

.9" ST7789
disp = hx8357.HX8357(spi, rotation=180,

HrRrHHFEHERPHF—H

disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80,
Rev A ST7735R

# disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80,
Rev B ST7735R

# x _offset=26, y offset=1,

disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x offset=34, #

disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x offset=35, #

# 3.5" HX8357
# 1.8" ST7735R

disp = st7735.ST7735R(spi, rotation=90,
disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3, #
.44" ST7735R

# 0.96" MiniTFT

# 0.96" MiniTFT

# 1.5" SSD1351

# 0.96" SSD1331

# disp = ssd1351.SSD1351(spi, rotation=180,
# disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
# disp = ssd1331.SSD1331(spi, rotation=180,
disp = 11i9341.ILI9341(
spi,
rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
cs=Ccs_pin,
dc=dc_pin,

rst=reset pin,
baudrate=BAUDRATE,

)
# pylint: enable=line-too-long

# Create blank image for drawing.
# Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 == 90:

height = disp.width # we swap height/width to rotate it to landscape!

width = disp.height
else:

width = disp.width # we swap height/width to rotate it to landscape!

height = disp.height
image = Image.new("RGB", (width, height))

# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

©Adafruit Industries

Page 33 of 45



# Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

image = Image.open("blinka.jpg")

# Scale the image to the smaller screen dimension
image ratio = image.width / image.height
screen ratio = width / height
if screen_ratio < image ratio:
scaled width = image.width * height // image.height
scaled height = height
else:
scaled width = width
scaled height = image.height * width // image.width
image = image.resize((scaled width, scaled height), Image.BICUBIC)

# Crop and center the image

x = scaled_width // 2 - width // 2

y = scaled height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

# Display image.
disp.image(image)

So we start with our usual imports including a couple of Pillow modules and the
display drivers. That is followed by defining a few pins here. The reason we chose
these is because they allow you to use the same code with the PiTFT if you chose to
do so.

import digitalio

import board

from PIL import Image, ImageDraw

import adafruit rgb display.ili9341 as il1i9341
import adafruit rgb display.st7789 as st7789
import adafruit rgb display.hx8357 as hx8357
import adafruit rgb display.st7735 as st7735
import adafruit rgb display.ssd1351 as ssd1351
import adafruit rgb display.ssd1331 as ssd1331

# Configuration for CS and DC pins

cs_pin = digitalio.DigitalInOQut(board.CEO)
dc_pin = digitalio.DigitalInOut(board.D25)
reset pin = digitalio.DigitalInOut(board.D24)

Next we'll set the baud rate from the default 24 MHz so that it works on a variety of
displays. The exception to this is the SSD1351 driver, which will automatically limit it to
16MHz even if you pass 24MHz. We'll set up out SPI bus and then initialize the display.

We wanted to make these examples work on as many displays as possible with very
few changes. The ILI9341 display is selected by default. For other displays, go ahead
and comment out these lines:

disp = i1i9341.ILI9341(
spi,
rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

©Adafruit Industries Page 34 of 45



and uncomment the line appropriate for your display and possibly the line below in
the case of longer initialization sequences. The displays have a rotation property so
that it can be set in just one place.

#disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
#disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54"
ST7789

#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53,
y offset=40, # 1.14" ST7789

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
#disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3, #
1.44" ST7735R

#disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT
Rev A ST7735R

#disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT

Rev B ST7735R
#x_offset=26, y offset=1,#disp = ssd1351.SSD1351(spi,

rotation=180, # 1.5" SSD1351
#disp = s5d1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = 11i9341.ILI9341(

spi,

rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

Ccs=Cs_pin,

dc=dc_pin,

rst=reset pin,
baudrate=BAUDRATE

Next we read the current rotation setting of the display and if it is 90 or 270 degrees,
we need to swap the width and height for our calculations, otherwise we just grab the
width and height. We will create an image with our dimensions and use that to create
a draw object. The draw object will have all of our drawing functions.

# Create blank image for drawing.

# Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new('RGB', (width, height))

# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a black rectangle. This isn't
strictly necessary since it will be overwritten by the image, but it kind of sets the
stage.

# Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

©Adafruit Industries Page 35 of 45



Next we open the Blinka image, which we've named blinka.jpg, which assumes it is in
the same directory that you are running the script from. Feel free to change it if it
doesn't match your configuration.

image = Image.open("blinka.jpg")

Here's where it starts to get interesting. We want to scale the image so that it matches
either the width or height of the display, depending on which is smaller, so that we
have some of the image to chop off when we crop it. So we start by calculating the
width to height ration of both the display and the image. If the height is the closer of
the dimensions, we want to match the image height to the display height and let it be
a bit wider than the display. Otherwise, we want to do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions
and using a Bicubic rescaling method, we reassign the newly rescaled image back to
image . Pillow has quite a few different methods to choose from, but Bicubic does a
great job and is reasonably fast.

# Scale the image to the smaller screen dimension
image ratio = image.width / image.height
screen_ratio = width / height
if screen ratio &lt; image ratio:
scaled width = image.width * height // image.height
scaled height = height
else:
scaled width = width
scaled height = image.height * width // image.width
image = image.resize((scaled width, scaled height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to
begin cropping it so that it ends up centered. We do that by using a standard
centering function, which is basically requesting the difference of the center of the
display and the center of the image. Just like with scaling, we replace the image
variable with the newly cropped image.

# Crop and center the image

x = scaled width // 2 - width // 2

y = scaled height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Finally, we take our image and display it. At this point, the image should have the
exact same dimensions at the display and fill it completely.

disp.image(image)

©Adafruit Industries Page 36 of 45



Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is very similar
to the displayio example, but it uses Pillow instead. Here's the code for that.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

This demo will draw a few rectangles onto the screen along with some text
on top of that.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit rgb display import i1i9341

from adafruit rgb display import st7789 # pylint: disable=unused-import
from adafruit rgb display import hx8357 # pylint: disable=unused-import
from adafruit rgb display import st7735 # pylint: disable=unused-import
from adafruit rgb display import ssd1351 # pylint: disable=unused-import
from adafruit rgb display import ssd1331 # pylint: disable=unused-import

# First define some constants to allow easy resizing of shapes.
BORDER = 20
FONTSIZE = 24

# Configuration for CS and DC pins (these are PiTFT defaults):
Ccs_pin = digitalio.DigitalInOQut(board.CEQ)

dc pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

# Config for display baudrate (default max is 24mhz):

©Adafruit Industries Page 37 of 45



BAUDRATE = 24000000

# Setup SPI bus using hardware SPI:
spi = board.SPI()

# pylint: disable=line-too-long
# Create the display:

# disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
# disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54"
ST7789

# disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53,
y offset=40, # 1.14" ST7789

# disp = st7789.ST7789(spi, rotation=90, width=172, height=320, x offset=34, #
1.47" ST7789

# disp = st7789.ST7789(spi, rotation=270, width=170, height=320, x offset=35, #
1.9" ST7789

# disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

# disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
# disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3, #
1.44" ST7735R

# disp = st7735.ST7735R(spi, rotation=90, bgr=True, width=80, # 0.96" MiniTFT
Rev A ST7735R

# disp = st7735.ST7735R(spi, rotation=90, invert=True, width=80, # 0.96" MiniTFT

Rev B ST7735R
# x _offset=26, y offset=1,

# disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
# disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
# disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = 11i9341.ILI9341(

spi,

rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

cs=Ccs_pin,

dc=dc_pin,

rst=reset pin,
baudrate=BAUDRATE,

)
# pylint: enable=line-too-long

# Create blank image for drawing.

# Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new("RGB", (width, height))

# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

# Draw a green filled box as the background
draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

# Draw a smaller inner purple rectangle
draw.rectangle(

(BORDER, BORDER, width - BORDER - 1, height - BORDER - 1), fill=(170, 0, 136)
)

# Load a TTF Font
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",
FONTSIZE)

# Draw Some Text

text = "Hello World!"

(font width, font height) = font.getsize(text)
draw. text(

©Adafruit Industries Page 38 of 45



(width // 2 - font width // 2, height // 2 - font _height // 2),
text,
font=font,
fill=(255, 255, 0),
)

# Display image.
disp.image(image)

Just like in the last example, we'll do our imports, but this time we're including the
ImageFont Pillow module because we'll be drawing some text this time.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont
import adafruit rgb display.ili9341 as il1i9341

Next we'll define some parameters that we can tweak for various displays. The BORDE
R will be the size in pixels of the green border between the edge of the display and
the inner purple rectangle. The FONTSIZE will be the size of the font in points so that
we can adjust it easily for different displays.

BORDER = 20
FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the rotation,
and create a draw object. If you have are using a different display than the ILI9341, go
ahead and adjust your initializer as explained in the previous example. After that, we
will setup the background with a green rectangle that takes up the full screen. To get
green, we pass in a tuple that has our Red, Green, and Blue color values in it in that
order which can be any integer from 0 to 255.

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as our
example in displayio quickstart, except the hexadecimal values have been converted
to decimal. We use the BORDER parameter to calculate the size and position that we
want to draw the rectangle.

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),
fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on

your Pi in the location in the code. We also make use of the FONTSIZE parameter
that we discussed earlier.

©Adafruit Industries Page 39 of 45



# Load a TTF Font
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"',
FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize
the centering calculation was the same one we used to center crop the image in the
previous example. In this example though, we get the font size values using the gets
ize() function of the font object.

# Draw Some Text

text = "Hello World!"

(font width, font height) = font.getsize(text)

draw.text((width//2 - font width//2, height//2 - font height//2),
text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

disp.image(image)

®

o
hWC
| &
m
=S
=
c
=
-

JevEBITNI/N 141 ,2°C BZEXBHZ

Displaying System Information

In this last example we'll take a look at getting the system information and displaying
it. This can be very handy for system monitoring. Here's the code for that example:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

This will show some Linux Statistics on the attached display. Be sure to adjust
to the display you have connected. Be sure to check the learn guides for more
usage information.

©Adafruit Industries Page 40 of 45



This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

import time
import subprocess
import digitalio
import board
PIL import Image, ImageDraw, ImageFont

from
from
from
from
from
from
from

adafruit rgb display
adafruit rgb _display
adafruit rgb display
adafruit rgb display
adafruit rgb display
adafruit rgb display

import
import
import
import
import
import

il1i9341

st7789 # pylint: disable=unused-import
hx8357 # pylint: disable=unused-import
st7735 # pylint: disable=unused-import
ssd1351 # pylint: disable=unused-import
ssd1331 # pylint: disable=unused-import

# Configuration for CS and DC pins (these are PiTFT defaults):
Ccs _pin = digitalio.DigitalInOQut(board.CEO)

dc_pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

# Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

# Setup SPI bus using hardware SPI:

spi =

board.SPI()

# pylint: disable=line-too
# Create the display:

# disp = st7789.ST7789(spi
# disp =

ST7789

# disp = st7789.ST7789(spi

# disp = st7789.ST7789(spi
1.47" ST7789

# disp = st7789.ST7789(spi
1.9" ST7789

# disp = hx8357.HX8357(spi
# disp = st7735.ST7735R(sp
# disp = st7735.ST7735R(sp
1.44" ST7735R

#

disp = st7735.ST7735R(sp

Rev A ST7735R
# disp = st7735.ST7735R(sp
Rev B ST7735R
# x _offset=26, y offset=1,

-long

, rotation=90, # 2.0" ST7789

st7789.S5T7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54"

, rotation=90, width=135, height=240, x offset=53,
y offset=40, # 1.14" ST7789
, rotation=90, width=172, height=320, x offset=34, #

, rotation=270, width=170, height=320, x offset=35, #

, rotation=180, # 3.5" HX8357

i, rotation=90, # 1.8" ST7735R
i, rotation=270, height=128, x offset=2, y offset=3, #
i, rotation=90, bgr=True, width=80, # 0.96" MiniTFT
i, rotation=90, invert=True, width=80, # 0.96" MiniTFT

# disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
# disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
# disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = 11i9341.ILI9341(

spi,

rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341

Ccs=Ccs_pin,

dc=dc_pin,

rst=reset pin,
baudrate=BAUDRATE,

)

# pylint: enable=line-too-long

# Create blank image for drawing.

# Make sure to create image with mode 'RGB' for full color.
if disp.rotation % 180 ==
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:

o

90:

width = disp.width # we swap height/width to rotate it to landscape!

©Adafruit Industries

Page 41 of 45



height = disp.height
image = Image.new("RGB", (width, height))

# Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

# Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

# First define some constants to allow easy positioning of text.
padding = -2
x =0

# Load a TTF font. Make sure the .ttf font file is in the

# same directory as the python script!

# Some other nice fonts to try: http://www.dafont.com/bitmap.php

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

while True:
# Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

# Shell scripts for system monitoring from here:

# https://unix.stackexchange.com/questions/119126/command-to-display-memory -
usage-disk-usage-and-cpu-load

cmd = "hostname -I | cut -d' ' -fl1"

IP = "IP: " + subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "top -bnl | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

CPU = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\",
$3,$2,$3*100/$2 }'"

MemUsage = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,%$2,$5}\""'

Disk = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal zoneO/temp | awk '{printf \"CPU Temp: %.
1f C\", $(NF-0) / 1000}'" # pylint: disable=line-too-long

Temp = subprocess.check output(cmd, shell=True).decode("utf-8")

# Write four lines of text.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")
y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#OQOFFO0")
y += font.getsize(MemUsage)[1l]

draw.text((x, y), Disk, font=font, fill="#0000FF")
y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FFOOFF")

# Display image.
disp.image(image)
time.sleep(0.1)

Just like the last example, we'll start by importing everything we imported, but we're
adding two more imports. The first one is time so that we can add a small delay and
the otheris subprocess so we can gather some system information.

import time
import subprocess
import digitalio
import board

©Adafruit Industries Page 42 of 45



from PIL import Image, ImageDraw, ImageFont
import adafruit rgb display.ili9341 as i1i9341

Next, just like in the first two examples, we will set up the display, setup the rotation,
and create a draw object. If you have are using a different display than the ILI9341, go
ahead and adjust your initializer as explained in the previous example.

Just like in the first example, we're going to draw a black rectangle to fill up the
screen. After that, we're going to set up a couple of constants to help with positioning
text. The first is the padding and that will be the Y-position of the top-most text and
the other is x which is the X-Position and represents the left side of the text.

# First define some constants to allow easy positioning of text.
padding = -2
x =0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True: , it will loop until Control+C
is pressed on the keyboard. The first item inside here, we clear the screen, but notice
that instead of giving it a tuple like before, we can just pass 0 and it will draw black.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess function that get called to the
Operating System to get information. The in each command is passed through awk in
order to be formatted better for the display. By having the OS do the work, we don't
have to. These little scripts came from https://unix.stackexchange.com/
questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-
load

cmd "hostname -I | cut -d\' \' -f1"
IP = "IP: "+subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "top -bnl | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
CPU = subprocess.check output(cmd, shell=True).decode("utf-8")
cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,%$2,$3*100/$2 }'"

MemUsage = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"

Disk = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal zone®/temp | awk \'{printf \"CPU Temp: %.1f
C\", $(NF-0) / 1000}\'" # pylint: disable=line-too-long

Temp = subprocess.check output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to pass
color information. We can pass it as a color string using the pound symbol, just like we

©Adafruit Industries Page 43 of 45



would with HTML. With each line, we take the height of the line using getsize()

and move the pointer down by that much.

y = padding
draw.text((x, y), IP, font=font, fill="#FFFFFF")
y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")

y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#0OFF00")

y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#0000FF")

y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FFOOFF")

Finally, we write all the information out to the display using disp.image()

. Since we

are looping, we tell Python to sleep for 0.1 seconds so that the CPU never gets too

busy.

disp.image(image)
time.sleep(.1)

IP: 192.168.11.33
CPU Load 0 08

? 9
.

s20S ISOW 2S
o 1)

274

5.
0
32
"
2
»

NIN
p

ONS

ninJjepe
IBHEBITNN/N LIl 42°T OZEXBHT N

.

Downloads

Files

« 114" display EagleCAD files on GitHub ()
« 3D models on GitHub ()

« Display Module datasheet ()

« ST7789VW datasheet 1.0 ()

©Adafruit Industries

Page 44 of 45


https://github.com/adafruit/Adafruit-1.14-inch-240x135-TFT-PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/4383%201.14in%20TFT%20Display
https://cdn-learn.adafruit.com/assets/assets/000/082/881/original/C13930-001_1.14__ZJY114IPS_datasheet.pdf?1571860941
https://cdn-learn.adafruit.com/assets/assets/000/082/882/original/ST7789VW_SPEC_V1.0.pdf?1571860977

Fab Print

Schematic

Page 45 of 45

©Adafruit Industries



	Adafruit 1.14" 240x135 Color TFT Breakout LCD Display
	Table of Contents
	Overview
	Pinouts
	Arduino Wiring & Test
	Adafruit GFX library
	Drawing Bitmaps
	CircuitPython Displayio Quickstart
	Python Wiring and Setup
	Python Usage
	Downloads


	Overview
	Pinouts
	Arduino Wiring & Test
	Basic Graphics Test Wiring
	Install Arduino Libraries
	Changing Pins
	Adafruit GFX library
	Drawing Bitmaps
	CircuitPython Displayio Quickstart
	Preparing the Breakout
	Required CircuitPython Libraries
	Code Example Additional Libraries
	CircuitPython Code Example
	Where to go from here

	Python Wiring and Setup
	Wiring
	ILI9341 and HX-8357-based Displays
	2.2" Display
	2.4", 2.8", 3.2", and 3.5" Displays

	ST7789 and ST7735-based Displays
	1.3", 1.54", and 2.0" IPS TFT Display
	0.96", 1.14", and 1.44" Displays
	1.8" Display

	SSD1351-based Displays
	1.27" and 1.5" OLED Displays

	SSD1331-based Display
	0.96" OLED Display


	Setup
	Python Installation of RGB Display Library
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Turning on the Backlight
	Displaying an Image
	Drawing Shapes and Text
	Displaying System Information

	Downloads
	Files
	Fab Print
	Schematic

