Radiation-Hardened Isolated DC-to-DC Converter #### Introduction The SA50 is an Isolated DC-to-DC converter capable of delivering up to 50W of output power in a small size design. The SA family provides a radiation hardened option with top class TID and SEE performance for space and military applications. With forward converter topology and a patented magnetic feedback scheme, the SA50 is optimized for applications where isolated DC voltage conversion is required. The discrete surface mount design facilitates customization with reasonable lead time and modest NRE cost. The SA50 series implements an internal EMI input filter which complies to MIL-STD-461. The EMI filter consists of differential- and common-mode components to attenuate conductive EMI noise effectively. As the only non-hybrid space grade DC-DC power converter module in the market, the SA50 series excels in its robustness in the applications with 8x10⁶ hours of MTBF. The SA50-120 is available in 3.055" x 2.055" x 0.5" package. ### **Table of Contents** | Intro | oduction | 1 | |-------|--|----| | 1. | Benefits and Features. | 3 | | 2. | Radiation Performance | 4 | | 3. | Typical Application circuit | 5 | | 4. | Absolute Maximum Ratings | 6 | | 5. | Electrical Parameters | 7 | | 6. | Radiation Specification (Note 1) | 11 | | 7. | Parallel operation (notes) | 12 | | 8. | Sample Electrical Waveforms | 13 | | 9. | Pin Configuration | 14 | | 10. | Pin Description | 15 | | 11. | Radiation Performance (-H) Hardened | 16 | | 12. | Radiation Performance (-P) Prototype | 17 | | 13. | Mechanical Outline (-A) Package | 18 | | 14. | Mechanical Outline (-B) Package | 19 | | 15. | Qualification Test (Reference Report QTR996) | 20 | | 16. | ATP Screening Test – (-HS) Hardened Standard | 21 | | 17. | ATP Screening Test – (-HE) Hardened Extended (Consult factory) | 22 | | 18. | ATP Screening Test (-P) Prototypes | 23 | | 19. | Ordering Information | 24 | | 20. | Contact Information | 25 | | The | Microchip Website | 26 | | Pro | duct Change Notification Service | 26 | | Cus | stomer Support | 26 | | Mic | rochip Devices Code Protection Feature | 26 | | Leg | al Notice | 27 | | Tra | demarks | 27 | | Qua | ality Management System | 28 | | Woı | rldwide Sales and Service | 29 | Datasheet #### 1. Benefits and Features - Up to 56W output Power (Parallel up to 5 for higher power) - 86VDC to 158VDC input range - 5 output configurations available | Output | Base Part number | |--------|------------------| | 3.3V | SA50-120-3R3S | | 5V | SA50-120-5S | | 12V | SA50-120-12S | | 15V | SA50-120-15S | | 28V | SA50-120-28S | - 85% efficiency @ full load - <1% output ripple</p> - · Internal EMI filter compliant to MIL-STD-461 - Forward topology - · Patented magnetic feedback - Adjustable output with remote adjust - · Inhibit pin for electrical ON/OFF - Isolated synchronization input - Low mass of less than 120g - Flight proven technology with >8 x 10⁶ hours of MTBF - This Product is classified as EAR99 **Radiation Performance** #### 2. Radiation Performance - TID>100krad(Si) and 30krad(Si) ELDRS (<10mrad/s) per MIL-STD-883 Method 1019 - SEE (SEGR, SEB, SET, SEL) immunity 82 MeV·cm²/mg ### 3. Typical Application circuit Figure 3-1. SA50 Single Typical Application Circuit # 4. Absolute Maximum Ratings | Rating | Value | |-----------------------|---| | V _{IN} range | -0.5 VDC to 165 VDC | | Output power | 56 W | | Lead temperature | 300 °C for 10 s | | Operating temperature | –55 °C to 125 °C | | Storage temperature | –55 °C to 125 °C | | Shock | 1500 gpk, 0.5 ms, ½ sine | | Constant acceleration | 50 g | | Random vibration | 24.06 g _{rms} , 50 Hz to 2000 Hz | #### 5. Electrical Parameters This section shows the electrical parameters of the SA50-120 Single Series device under the following conditions unless otherwise specified: | Parameter | Output | Conditions | Min | Nom | Max | Units | |-----------------------|-----------------|--|-------|-------|-------|-------| | Input voltage | | | | | | | | (Vin) | | Note 2 | 86 | 120 | 158 | V | | Output voltage set po | int | | | | | | | | 28V | | 27.73 | 28.00 | 28.27 | | | | 15V | | 14.85 | 15.00 | 15.15 | _ | | (V _{OUT}) | 12V | I _{OUT} = 100% rated load | 11.88 | 12.00 | 12.12 | V | | | 5V | | 5.05 | 5.10 | 5.15 | | | | 3.3V | | 3.27 | 3.30 | 3.33 | | | Output Voltage Adjust | | | | | | | | (V _{ADJ}) | | | 10 | | | % | | Output power | | | | | | | | | 28V | Note 13 In all cases Output power must be kept within P _{out} rating. | | | 56 | | | | 15V | | 0 | | 51 | W | | (P _{OUT}) | 12V | | | | 50 | | | | 5V | | | | 50 | | | | 3.3V | | | | 33 | | | Output current | | | | | | | | | 28V | | | | 2.0 | | | | 15V | | | | 3.4 | | | (I _{OUT}) | 12V | | 0 | | 4.2 | Α | | | 5V | | | | 10 | | | | 3.3V | | | | 10 | | | Line regulation | Line regulation | | | | | | | | 28V | | -56 | | 56 | | | | 15V | V _{IN} = 86 V, 120 V, 158 V
I _{OUT} = 10%, 50%, 100% | -30 | | 30 | | | (VR _{LINE}) | 12V | | -24 | | 24 | mV | | | 5V | rated Note 12 | _10 | | 10 | | | | 3.3V | | -10 | | 10 | | | continued | | | | | | | |---------------------------------|--------|---|-------------|-----|-----|--------| | Parameter | Output | Conditions | Min | Nom | Max | Units | | Load regulation | | | | | | | | | 28V | | -280 | | 280 | | | | 15V | V _{IN} = 86 V, 120 V, 158 V | -150 | | 150 | | | (VR _{LOAD}) | 12V | I _{OUT} = 10%, 50%, 100%
rated Note 11 | -120 | | 120 | mV | | | 5V | rated Note 11 | – 50 | | 50 | | | | 3.3V | | -50 | | 50 | | | Input current | | | | | | | | (I _{IN}) | | I _{OUT} =0, pin3 open | | 10 | 35 | mA | | ('IN) | | Pin 3 shorted to pin 2 | | 3 | 5 | ША | | Output ripple | | | | | | | | | 28V | | | 100 | 280 | | | | 15V | V _{IN} = 86 V, 120 V, 158 V
I _{OUT} = 100% rated, Note 4 | | 75 | 150 | mV p-p | | (V _{RIP}) | 12V | | | 60 | 120 | | | | 5V | | | 25 | 50 | | | | 3.3V | | | 25 | 50 | | | Switching frequency | | | | | | | | (FS) | | Sync input (pin 4) open | 200 | 220 | 240 | kHz | | Efficiency | | | | | | | | | 28V | | 79 | 85 | | | | | 15V | | 79 | 85 | | | | (EFF) | 12V | I _{OUT} = 100% rated load | 77 | 83 | | % | | | 5V | | 75 | 81 | | | | | 3.3V | | 73 | 79 | | | | Inhibit input | | | | | | | | Inhibit input: ON
Threshold | | Note 1 | 4.5 | | | V | | Inhibit input: OFF
(sink) | | Note 1 | 1000 | | | μA | | Inhibit input: OFF
Threshold | | Note 1 | | | 2 | V | | continued | | | | | | | |---------------------------------------|--------------|--|-------|-----|------|------------| | Parameter | Output | Conditions | Min | Nom | Max | Units | | Current limit point | | | | | | | | (% rated output) | | When V _{OUT} = 90% of
nominal set point | 105 | | 145 | % | | Synchronization | | | | | | | | frequency range | | The external clock on sync input (pin 4) | 500 | | 600 | kHz | | Synchronization pulse-high level | | Note 1 | 4.0 | | 10.0 | V | | Synchronization pulse-low level | | Note 1 | -0.5 | | 0.5 | V | | Synchronization pulse-transition rate | | Note 1 | 200 | | | V/µs | | Synchronization pulse-duty cycle | | Note 1 | 10 | | 80 | % | | Power dissipation, lo | ad fault | | | | | | | (PD) | | Short circuit, overload Note 6 | | | 24 | W | | Output response to s | tep load cha | anges | | | | | | | 28V | | -2200 | | 2200 | | | | 15V | | -1200 | | 1200 | | | (V _{TLD}) | 12V | (50% to/from 100%)
rated load Note 7 | -900 | | 900 | mV
peak | | | 5V | rated load Note 7 | -300 | - | 300 | | | | 3.3V | | -300 | | 300 | | | Recovery time, step I | oad change | s | | | | | | (T _{TLD}) | | (50% to/from 100%)
rated load
Notes 7, 8 | | 200 | 2000 | μs | | Output response to s | tep line cha | nges | | | l | | | | 28V | | -1000 | | 1000 | | | | 15V | | -600 | | 600 | | | (V _{TLN}) | 12V | 86V to/from 158V I _{OUT} = 100% rated load Note 9 | -480 | | 480 | mV
peak | | | 5V | | -300 | | 300 | | | | 3.3V | | -300 | | 300 | | ### **Electrical Parameters** | continued | | | | | | | |---------------------------|-------------|---|-----|----------|------|-------| | Parameter | Output | Conditions | Min | Nom | Max | Units | | Recovery time, step I | ine change | 5 | | | | | | (T _{TLN}) | | 86V to/from 158V I _{OUT} = 100% rated load Notes 8, 9 | | 200 | 2000 | μs | | Turn-on response: ov | vershoot | | | | | | | | 28V | | | | 2800 | | | | 15V | | | | 1500 | | | (V _{OS}) (main) | 12V | (0% to 100%) rated load
Notes 3, 4, 10 | | | 1200 | mV | | | 5V | | | | 500 | | | | 3.3V | | | | 500 | | | Turn-on response: tu | rn-on delay | | | | | | | (T _{DLY}) | | Note 10 | 0.1 | | 10 | ms | | Capacitive load | _ | | | | | | | | 28V | Note 5 | | | 200 | | | | 15V | | | | 350 | μF | | (CL) | 12V | | | | 450 | | | | 5V | | | | 1000 | | | | 3.3V | | | | 1000 | | | Line rejection | | ' | | | | | | | | DC to 50 kHz, I _{OUT} = 100% rated load | 30 | 60 | | dB | | Isolation | | | | | | | | | | 200V @25°C 1. Input (1-3) to All (4-12) 2. Sync (4-5) to All (1-3, 6-12) 3. Chassis (6) to All (1-5, 7-12) | 100 | | | МΩ | | Mass | | | | | | | | | | Standard case style A, B | | | 120 | g | | MTBF | | | | | | | | | | MIL-HDBK-217F2, SF, 35°C | | 8.22E+06 | | hrs | #### 6. Radiation Specification (Note 1) | Environment | Conditions | Min | Unit | |---|---|------|------------| | TID (gamma) | MIL-STD-883, method 1019 The operating bias applied during exposure | 100 | krad (Si) | | Dose rate (gamma dot temporary saturation survival) | MIL-STD-883, method 1023 The operating bias applied during exposure Full-rated load | 1E10 | rad (Si)/s | | Neutron fluence | MIL-STD-883, 1017 | 1E12 | Neutrons | | SEE/SEU, SEL, SEGR,
SEB
(H – Hardened) | Heavy ions [LET] The operating bias applied during exposure | 82 | MeV•cm²/mg | #### Notes: - 1. Parameter guaranteed by design. - 2. Parameter verified during line and load regulation tests. Regulation is specified for 10% to 100% loading on all outputs. - 3. The "-HS/-HE" option incorporates FET technology providing a > 82 MeV•cm2/mg (gold ion) SEE capability to the design. The "-P" option is not rated for radiation. - 4. Guaranteed for a DC to 20 MHz bandwidth. Tested using a 20 kHz to 10 MHz bandwidth. Ripple is measured across a 50 Ohms termination with a 10nF Cap in series. - 5. The capacitive load may be any value from 0 to the maximum limit without compromising DC performance. A capacitive load exceeding the maximum limit may interfere with the proper operation of the converter's overload protection. This situation may cause erratic behavior during turn-on. - 6. Overload power dissipation is defined as the device power dissipation with the load set such that VOUT = 90% of nominal. - 7. The load step transition time is $\ge 10 \, \mu s$. - 8. Recovery time is measured from the initiation of the transient to where VOUT has returned to within ±1% of its steady-state value. - 9. The line step transition time is \geq 100 μ s. - 10. Turn-on delay time from either a step application of input power or a logic low to a logic high transition on the inhibit pin (pin 3) to the point where VOUT = 90% of nominal. - 11. Load regulation relative to the output voltage at 50% rated load. - 12. Line regulation relative to the output voltage at 120 VDC input. - 13. For operation at temperatures between 85 $^{\circ}$ C and 125 $^{\circ}$ C: de-rate power linearly from 50 W (or rated maximum) to zero. Parameter limits are not guaranteed. Parallel operation (notes) #### 7. Parallel operation (notes) The output terminals of up to 5 modules may be connected in parallel. The expected current sharing accuracy is 10% at maximum load. To ensure current sharing, the Parallel terminal of every Power Supply module must be connected to form a common bus. These connections should be made relatively short. The remote sense terminals may remain unconnected. For best output voltage regulation however, the remote sense terminal of each of the paralleled set of Power Supplies should be connected to a single point, as close as possible to the positive load terminal or point where the voltage regulation is desired to be maintained. Similarly, the remote sense return terminal of each Power Supply should be connected to a single point, as close as possible to the negative load terminal. The R-ADJUST function may be used in a system of paralleled modules. The sync function is described in the application notes. The specified sync input signal may be applied to each of the paralleled modules. For best performance, phase shift the sync signal between modules. The sync functionality remains the same for a system of paralleled modules. The use of the sync function is optional for single and or paralleled operation. The specified sync input signal may be applied to any one of the paralleled modules. ### 8. Sample Electrical Waveforms ### 9. Pin Configuration Figure 9-1. SA50 Single Pin Configuration ## 10. Pin Description | PIN | NAME | Description | |-----|------------------|---| | 1 | VIN | Input Voltage | | 2 | VIN RTN | Input Voltage Return/Ground | | 3 | ON/OFF (INHIBIT) | Power Supply ON/OFF, ON(OPEN/HIGH), OFF(SHORT/LOW) | | 4 | SYNC | External Clock Signal Input | | 5 | SYNC RTN | External Clock Signal Return | | 6 | CHASSIS | Chassis Pin | | 7 | R-ADJUST | Remote Adjust Pin to Adjust Output Voltage ±10% | | 8 | PARALLEL | Parallel Bus Pin to use Multiple Devices for Higher Power | | 9 | RMT SNS RTN | Load Voltage Remote Sense Return | | 10 | RMT SNS | Load Voltage Remote Sense | | 11 | VOUT | Output Voltage | | 12 | VOUT RTN | Output Voltage Return/Ground | Radiation Performance (-H) Hardened ### 11. Radiation Performance (-H) Hardened - TID>100krad(Si) and 30krad(Si) ELDRS (<10mrad/s) per MIL-STD-883 Method 1019 - SEE (SEGR, SEB, SET, SEL) immunity 82 MeV·cm²/mg (H-hardened) Radiation Performance (-P) Prototype ### 12. Radiation Performance (-P) Prototype Prototype units that are functionally the same except that components are not radiation hardened. To be used for system checkout. ### 13. Mechanical Outline (-A) Package Figure 13-1. Side Pins and Thru-Hole Tabs Package Figure 13-2. Side Pins and Thru-Hole Tabs Bottom View ### 14. Mechanical Outline (-B) Package Figure 14-1. Top Pins and Threaded Package Figure 14-2. Top Pins and Threaded Package Bottom View ## 15. Qualification Test (Reference Report QTR996) | Test | Conditions | Method | Notes | |----------------------------|---|--|---| | External visual | Per O&M—dimensions, and mass
or STD 883 2009 | Inspection | Appendix A | | Electrical | Read and record (–55 °C, 25 °C, 85 °C) | Test | Appendix D | | Shock, non-
operating | MIL-STD-202, method 213B, test condition F, 1500 gpk, 0.5 ms ½ sine pulse. Three pulses in each direction of each axis, 18 pulses total. | Test | Appendix B | | Vibration, operating | MIL-STD-202, method 214A, condition II-F, 24.06 grms random vibrations, 50 Hz–2000 Hz, 3 min/axis (9 min total). Outputs monitored. | Test | Appendix C | | Thermal vacuum | MIL-STD-883, method 1001, condition G, three cycles with a base plate temperature of –55 °C to 85 °C. Outputs monitored during TVAC cycles, record at temperatures noted under electrical. | Test, Increased temperature in lieu of vacuum | Appendix D Certification TVAC Testing pending | | Temperature cycling | 10 cycles from base plate temperature, MIL-STD-883, method 1010.9, condition C | Test | Appendix D | | ЕМІ | CE101, CE102, CS101, RE101, RE102, RS101, RS102 per MIL-STD-461 with setup per MIL-STD-462. | Analysis & Test | Appendix E Certification EMI Testing pending | | External Visual inspection | No damage | Inspection | Appendix A | | Steady state life test | 1000 hrs at Tc = 105 °C, 50% of rated load | Analysis, Extended
Screening Test
Heritage | Validation Test
Pending | | End-point electricals | Read and record (–55 °C, 25 °C, 85 °C) | Test | Appendix D | ## 16. ATP Screening Test – (-HS) Hardened Standard | Requirement | Test Method/Condition | |---------------------------|--| | External Visual | O&M – dimensions and mass | | Initial Electrical | Full perfomance at +25°C | | Vibration | Workmanship non-operating vibration. MIL-STD-202, Method 214, 6 grms (50Hz-2kHz) 1-minute perpendicular to the board | | Post Vibration Electrical | Full perfomance at +25°C | | Temperature Cycle | MIL-STD-883, Method 1010, Condition A, 1 cycle, +85°C to -55°C, operating Outputs monitored during thermal cycles | | Burn-in | 40 Hrs @ 105°C, 50% of rated load (outputs monitored) | | Final Electrical | Full performance at +25°C (deliverable data) | | External Visual | No damage | ## 17. ATP Screening Test – (-HE) Hardened Extended (Consult factory) | Requirement | Test Method/Condition | |---------------------------|--| | External Visual | O&M – dimensions and mass | | Initial Electrical | Full perfomance at +25°C | | Vibration | Workmanship operating vibration. MIL-STD-202, Method 214, 6 grms (50Hz-2kHz) 1-minute perpendicular to the board | | Post Vibration Electrical | Full perfomance at +25°C | | Temperature Cycle | MIL-STD-883, Method 1010, Condition A, 10 cycle, +85°C to -55°C, operating Outputs monitored during thermal cycles | | Burn-in | 160 Hrs @ 105°C, 50% of rated load (outputs monitored) | | Final Electrical | Full performance at -55°C, +25°C, and +85°C (deliverable data) | | External Visual | No damage | ## 18. ATP Screening Test (-P) Prototypes | Requirement | Test Method/Condition | |-------------------|--| | External Visual | O&M – dimensions and mass | | Electrical | Full performance at +85°C, +25°C55°C for initial first article of SA50 | | | Full performance at +25°C for previously qualified variation of SA50 | | Vibration | None | | Temperature Cycle | None | | Burn-in | None | | External Visual | No damage | ### 19. Ordering Information The following chart defines the part number nomenclature of the **SA50-120** Single Series device. Example part number: SA50-120-5S-C-HS | Model | SA50-120 | Standard Applications 50W, 120V input modules. (Other models and input voltages available) | | | | |--------------------|----------|--|--|--|--| | Main | -3R3S | 3.3V | Main output voltage | | | | | -58 | 5V | | | | | | -128 | 12V | | | | | | -158 | 15V | | | | | | -28S | 28V | | | | | Mechanical Package | -A | Side, | 0.125in through | Mechanical packaging options. | | | | -B | Тор | 4-40 thread | | | | | -C | Side | M3 thread | Electrical connections are either through the Top or the Side. And mounting holes are drilled through or tapped. | | | | -D | Тор | 0.125in through | | | | | -E | Side | 4-40 thread | | | | | -F | Тор | M3 thread | | | | Radiation Hardness | -HS | Hardened | We offer units with radiation hardened components in either standard screening or Extended screening. We also offer lower cost Prototype units meant for system design verification that are not radiation hardened. | | | | | | Standard | | | | | | -HE | Hardened
Extended | | | | | | -P | Prototype | | | | NOTE: Microchip currently offers four models: SA50-120 Single, SA50-120 Triple, SA50-28 Single and SA50-28 Triple. We also offer customization design services, for changes in input volage, output voltages, or screening, Please contact us for more information. We also offer a thermal interface the ST-2X3, this is a non-silicon space approved thermal interface, Datasheet available upon request. #### 20. Contact Information Jan Fox Project Manager / SA50 Products Microchip Technology Inc. 11861 Western Ave., Garden Grove, CA 92841 USA +1.714.799.6514 jan.fox@microchip.com ### The Microchip Website Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes: - Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software - General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing - Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives #### **Product Change Notification Service** Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, go to www.microchip.com/pcn and follow the registration instructions. #### **Customer Support** Users of Microchip products can receive assistance through several channels: - · Distributor or Representative - · Local Sales Office - Embedded Solutions Engineer (ESE) - Technical Support Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document. Technical support is available through the website at: www.microchip.com/support ### Microchip Devices Code Protection Feature Note the following details of the code protection feature on Microchip devices: - · Microchip products meet the specifications contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is secure when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights. - · Microchip is willing to work with any customer who is concerned about the integrity of its code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. #### **Legal Notice** Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE. IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. #### **Trademarks** The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN: 978-1-5224-7850-8 # **Quality Management System** For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality. # **Worldwide Sales and Service** | AMERICAS | ASIA/PACIFIC | ASIA/PACIFIC | EUROPE | |-----------------------------------|-----------------------|-------------------------|--| | Corporate Office | Australia - Sydney | India - Bangalore | Austria - Wels | | 2355 West Chandler Blvd. | Tel: 61-2-9868-6733 | Tel: 91-80-3090-4444 | Tel: 43-7242-2244-39 | | Chandler, AZ 85224-6199 | China - Beijing | India - New Delhi | Fax: 43-7242-2244-393 | | Tel: 480-792-7200 | Tel: 86-10-8569-7000 | Tel: 91-11-4160-8631 | Denmark - Copenhagen | | Fax: 480-792-7277 | China - Chengdu | India - Pune | Tel: 45-4485-5910 | | Technical Support: | Tel: 86-28-8665-5511 | Tel: 91-20-4121-0141 | Fax: 45-4485-2829 | | www.microchip.com/support | China - Chongqing | Japan - Osaka | Finland - Espoo | | Web Address: | Tel: 86-23-8980-9588 | Tel: 81-6-6152-7160 | Tel: 358-9-4520-820 | | www.microchip.com | China - Dongguan | Japan - Tokyo | France - Paris | | Atlanta | Tel: 86-769-8702-9880 | Tel: 81-3-6880- 3770 | Tel: 33-1-69-53-63-20 | | Duluth, GA | China - Guangzhou | Korea - Daegu | Fax: 33-1-69-30-90-79 | | Tel: 678-957-9614 | Tel: 86-20-8755-8029 | Tel: 82-53-744-4301 | Germany - Garching | | Fax: 678-957-1455 | China - Hangzhou | Korea - Seoul | Tel: 49-8931-9700 | | Austin, TX | Tel: 86-571-8792-8115 | Tel: 82-2-554-7200 | Germany - Haan | | Tel: 512-257-3370 | China - Hong Kong SAR | Malaysia - Kuala Lumpur | Tel: 49-2129-3766400 | | Boston | Tel: 852-2943-5100 | Tel: 60-3-7651-7906 | Germany - Heilbronn | | Westborough, MA | China - Nanjing | Malaysia - Penang | Tel: 49-7131-72400 | | Tel: 774-760-0087 | Tel: 86-25-8473-2460 | Tel: 60-4-227-8870 | Germany - Karlsruhe | | Fax: 774-760-0088 | China - Qingdao | Philippines - Manila | Tel: 49-721-625370 | | Chicago | Tel: 86-532-8502-7355 | Tel: 63-2-634-9065 | Germany - Munich | | Itasca, IL | China - Shanghai | Singapore | Tel: 49-89-627-144-0 | | Tel: 630-285-0071 | Tel: 86-21-3326-8000 | Tel: 65-6334-8870 | Fax: 49-89-627-144-44 | | Fax: 630-285-0075 | China - Shenyang | Taiwan - Hsin Chu | Germany - Rosenheim | | Dallas | Tel: 86-24-2334-2829 | Tel: 886-3-577-8366 | Tel: 49-8031-354-560 | | Addison, TX | China - Shenzhen | Taiwan - Kaohsiung | Israel - Ra'anana | | Tel: 972-818-7423 | Tel: 86-755-8864-2200 | Tel: 886-7-213-7830 | Tel: 972-9-744-7705 | | Fax: 972-818-2924 | China - Suzhou | Taiwan - Taipei | Italy - Milan | | Detroit | Tel: 86-186-6233-1526 | Tel: 886-2-2508-8600 | Tel: 39-0331-742611 | | Novi, MI | China - Wuhan | Thailand - Bangkok | Fax: 39-0331-466781 | | Tel: 248-848-4000 | Tel: 86-27-5980-5300 | Tel: 66-2-694-1351 | Italy - Padova | | Houston, TX | China - Xian | Vietnam - Ho Chi Minh | Tel: 39-049-7625286 | | Tel: 281-894-5983 | Tel: 86-29-8833-7252 | Tel: 84-28-5448-2100 | Netherlands - Drunen | | Indianapolis | China - Xiamen | | Tel: 31-416-690399 | | Noblesville, IN | Tel: 86-592-2388138 | | Fax: 31-416-690340 | | Tel: 317-773-8323 | China - Zhuhai | | Norway - Trondheim | | Fax: 317-773-5453 | Tel: 86-756-3210040 | | Tel: 47-72884388 | | Tel: 317-536-2380 | | | Poland - Warsaw | | Los Angeles | | | Tel: 48-22-3325737 | | Mission Viejo, CA | | | Romania - Bucharest | | Tel: 949-462-9523 | | | Tel: 40-21-407-87-50 | | Fax: 949-462-9608 | | | Spain - Madrid | | Tel: 951-273-7800
Raleigh, NC | | | Tel: 34-91-708-08-90 | | • . | | | Fax: 34-91-708-08-91 | | Tel: 919-844-7510
New York, NY | | | Sweden - Gothenberg Tel: 46-31-704-60-40 | | Tel: 631-435-6000 | | | Sweden - Stockholm | | San Jose, CA | | | Tel: 46-8-5090-4654 | | Tel: 408-735-9110 | | | UK - Wokingham | | Tel: 408-436-4270 | | | Tel: 44-118-921-5800 | | Canada - Toronto | | | Fax: 44-118-921-5820 | | Tel: 905-695-1980 | | | 1 ax. 77-110-321-0020 | | Fax: 905-695-2078 | | | | | 1 dx. 505-050-2010 | | | |