

Reference Specification

Leaded MLCC for Automotive with AEC-Q200 RCE Series

Product specifications in this catalog are as of Aug. 2022, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char.: X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

Aircraft equipment

2. Aerospace equipment

3. Undersea equipment

4. Power plant control equipment

5. Medical equipment

- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to Leaded MLCC RCE series in accordance with AEC-Q200 requirements used for Automotive Electronic equipment.

2. Rating

Part Number Configuration

ex.)	RCE	5C	2E	100	J	1	K1	H03	В
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Package
		Characteristics	Voltage		Tolerance	(LxW)	Style	Specification	

• Temperature Characteristics

Code	Temp. Char.	Temp. Range	Temp.coef.	Standard Temp.	Operating Temp. Range
5C	C0G	-55∼25°C	0+30/-72ppm/°C	25°C	-55 ∼ 125°C
30	(EIA code)	25∼125°C	0+/-30ppm/°C	25 C	-55~ 125 C

Rated Voltage

Code	Rated voltage
2E	DC250V
2J	DC630V
3A	DC1000V

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 100

$$10 \times 10^0 = 10 \text{pF}$$

• Capacitance Tolerance

Code	Capacitance Tolerance
J	+/-5%

• Dimension (LxW)

Please refer to [Part number list].

• Lead Style

*Lead wire is "solder coated CP wire".

Code	Lead Style	Lead spacing (mm)
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

Individual Specification

Murata's control code.

Please refer to [Part number list].

Package

Code	Package
Α	Taping type of Ammo
В	Bulk type

3. Marking

Temp. char. : Letter code : A (C0G Char.)
Capacitance : Actual numbers (Less than 100pF)

3 digit numbers (100pF and over)

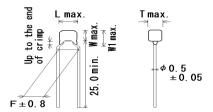
Capacitance tolerance : Code

Rated voltage : Letter code : 4 (DC250V. Except dimension code : 1)

Letter code: 7 (DC630V. Except dimension code: 1)

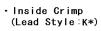
Letter code: A (DC1000V.)

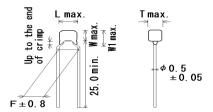
Company name code : Abbreviation : (Except dimension code : 1)


(Ex.)

Rated voltage Dimension code	DC250V	DC630V	DC1000V			
1	A 102J	A 102J	_			
2	(M ²²³ J4A	G ⁴⁷² J7A	(M) 102 JAA			

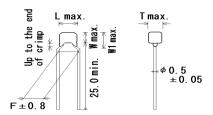
TEIKAKU


4. Part number list


- Inside Crimp (Lead Style:K*)

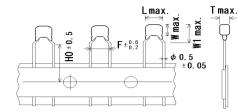
Unit : mm

Customer Part Number	Murata Part Number	T.C.	DC Rated Volt.	Сар.	Cap. Tol.		Dime	ension (mm)		Dimension (LxW)	qty.
r are realiser			(V)		101.	L	W	W1	F	Т	Lead Style	(pcs)
	RCE5C2E100J1K1H03B	C0G	250	10pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E120J1K1H03B	C0G	250	12pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E150J1K1H03B	C0G	250	15pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E180J1K1H03B	C0G	250	18pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E220J1K1H03B	C0G	250	22pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E270J1K1H03B	C0G	250	27pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E330J1K1H03B	C0G	250	33pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E390J1K1H03B	C0G	250	39pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E470J1K1H03B	C0G	250	47pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E560J1K1H03B	C0G	250	56pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E680J1K1H03B	C0G	250	68pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E820J1K1H03B	C0G	250	82pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E101J1K1H03B	C0G	250	100pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E121J1K1H03B	C0G	250	120pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E151J1K1H03B	C0G	250	150pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E181J1K1H03B	C0G	250	180pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E221J1K1H03B	C0G	250	220pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E271J1K1H03B	C0G	250	270pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E331J1K1H03B	C0G	250	330pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E391J1K1H03B	C0G	250	390pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E471J1K1H03B	C0G	250	470pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E561J1K1H03B	C0G	250	560pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E681J1K1H03B	C0G	250	680pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E821J1K1H03B	C0G	250	820pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E102J1K1H03B	C0G	250	1000pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E122J1K1H03B	C0G	250	1200pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E152J1K1H03B	C0G	250	1500pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E182J1K1H03B	C0G	250	1800pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E222J1K1H03B	C0G	250	2200pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E272J1K1H03B	C0G	250	2700pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E332J1K1H03B	C0G	250	3300pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E392J1K1H03B	C0G	250	3900pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E472J1K1H03B	C0G	250	4700pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E562J1K1H03B	C0G	250	5600pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E682J1K1H03B	C0G	250	6800pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E822J1K1H03B	C0G	250	8200pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E103J1K1H03B	C0G	250	10000pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2E123J2K1H03B	C0G	250	12000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C2E153J2K1H03B	C0G	250	15000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C2E183J2K1H03B	C0G	250	18000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500



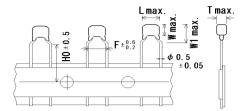
Unit : mm

Customer Part Number	Murata Part Number	T.C.	DC Rated Volt.	Сар.	Cap. Tol.		Dime	ension (mm)		Dimension (LxW)	Pack qty.
1 art rumber			(V)		101.	L	W	W1	F	Т	Lead Style	(pcs)
	RCE5C2E223J2K1H03B	C0G	250	22000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C2J100J1K1H03B	C0G	630	10pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J120J1K1H03B	C0G	630	12pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J150J1K1H03B	C0G	630	15pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J180J1K1H03B	C0G	630	18pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J220J1K1H03B	C0G	630	22pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J270J1K1H03B	C0G	630	27pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J330J1K1H03B	C0G	630	33pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J390J1K1H03B	C0G	630	39pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J470J1K1H03B	C0G	630	47pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J560J1K1H03B	C0G	630	56pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J680J1K1H03B	C0G	630	68pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J820J1K1H03B	C0G	630	82pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J101J1K1H03B	C0G	630	100pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J121J1K1H03B	C0G	630	120pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J151J1K1H03B	C0G	630	150pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J181J1K1H03B	C0G	630	180pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J221J1K1H03B	C0G	630	220pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J271J1K1H03B	C0G	630	270pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J331J1K1H03B	C0G	630	330pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J391J1K1H03B	C0G	630	390pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J471J1K1H03B	C0G	630	470pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J561J1K1H03B	C0G	630	560pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J681J1K1H03B	C0G	630	680pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J821J1K1H03B	C0G	630	820pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J102J1K1H03B	C0G	630	1000pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J122J1K1H03B	C0G	630	1200pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J152J1K1H03B	C0G	630	1500pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J182J1K1H03B	C0G	630	1800pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J222J1K1H03B	C0G	630	2200pF	±5%	4.0	3.5	5.0	5.0	3.15	1K1	500
	RCE5C2J272J2K1H03B	C0G	630	2700pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C2J332J2K1H03B	C0G	630	3300pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C2J392J2K1H03B	C0G	630	3900pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C2J472J2K1H03B	C0G	630	4700pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A100J2K1H03B	C0G	1000	10pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A120J2K1H03B	C0G	1000	12pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A150J2K1H03B	C0G	1000	15pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A180J2K1H03B	C0G	1000	18pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A220J2K1H03B	C0G	1000	22pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A270J2K1H03B	C0G	1000	27pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500


·Inside Crimp (Lead Style:K*)

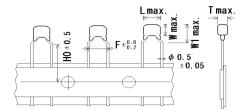
Unit : mm

Customer	Murata Part Number	T.C.	DC Rated	Сар.	Сар.		Dime	ension (mm)		Dimension (LxW)	
Part Number	iviulata Fait Nullibei	1.0.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	Lead Style	qty. (pcs)
	RCE5C3A330J2K1H03B	C0G	1000	33pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A390J2K1H03B	C0G	1000	39pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A470J2K1H03B	C0G	1000	47pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A560J2K1H03B	C0G	1000	56pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A680J2K1H03B	C0G	1000	68pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A820J2K1H03B	C0G	1000	82pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A101J2K1H03B	C0G	1000	100pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A121J2K1H03B	C0G	1000	120pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A151J2K1H03B	C0G	1000	150pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A181J2K1H03B	C0G	1000	180pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A221J2K1H03B	C0G	1000	220pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A271J2K1H03B	C0G	1000	270pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A331J2K1H03B	C0G	1000	330pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A391J2K1H03B	C0G	1000	390pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A471J2K1H03B	C0G	1000	470pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A561J2K1H03B	C0G	1000	560pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A681J2K1H03B	C0G	1000	680pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A821J2K1H03B	C0G	1000	820pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCE5C3A102J2K1H03B	C0G	1000	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	2K1	500


Inside Crimp Taping (Lead Style: M*)

Unit : mm

												Onit : mm	
Customer	Murata Part Number	T.C.	DC Rated	ated Can	Cap.		D	Dimension (LxW)	Pad qty				
Part Number			Volt. (V)	- '	Tol.	L	W	W1	F	Т	H/H0	Lead Style	
	RCE5C2E100J1M1H03A	C0G	250	10pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	200
	RCE5C2E120J1M1H03A	C0G	250	12pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	200
	RCE5C2E150J1M1H03A	C0G	250	15pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E180J1M1H03A	C0G	250	18pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E220J1M1H03A	C0G	250	22pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E270J1M1H03A	C0G	250	27pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E330J1M1H03A	C0G	250	33pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E390J1M1H03A	C0G	250	39pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E470J1M1H03A	C0G	250	47pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E560J1M1H03A	C0G	250	56pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E680J1M1H03A	C0G	250	68pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E820J1M1H03A	C0G	250	82pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E101J1M1H03A	C0G	250	100pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E121J1M1H03A	C0G	250	120pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E151J1M1H03A	C0G	250	150pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E181J1M1H03A	C0G	250	180pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E221J1M1H03A	C0G	250	220pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E271J1M1H03A	C0G	250	270pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E331J1M1H03A	C0G	250	330pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E391J1M1H03A	C0G	250	390pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E471J1M1H03A	C0G	250	470pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E561J1M1H03A	C0G	250	560pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2E681J1M1H03A	C0G	250	680pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2E821J1M1H03A	C0G	250	820pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2E102J1M1H03A	C0G	250	1000pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2E122J1M1H03A	C0G	250	1200pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2E152J1M1H03A	C0G	250	1500pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2E182J1M1H03A	C0G	250	1800pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2E222J1M1H03A	C0G	250	2200pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2E272J1M1H03A	C0G	250	2700pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2E332J1M1H03A	COG	250	3300pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E392J1M1H03A	COG	250	3900pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E472J1M1H03A	COG	250	4700pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E562J1M1H03A	COG	250	5600pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E682J1M1H03A	C0G	250	6800pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2E822J1M1H03A	C0G	250	8200pF	±5%	4.0	3.5	5.0	5.0	3.15			20
	RCE5C2E103J1M1H03A	C0G	250	10000pF	±5%	4.0	3.5	5.0	5.0	3.15			20
	RCE5C2E123J2M1H03A	COG	250	12000pF	±5%	5.5	4.0	6.0	5.0	3.15			20
	RCE5C2E153J2M1H03A	COG	250	15000pF	±5%	5.5	4.0	6.0	5.0	3.15			20
	RCE5C2E183J2M1H03A	COG	250	18000pF	±5%	5.5	4.0	6.0	5.0	3.15			20


Inside Crimp Taping (Lead Style: M*)

Unit: mm

												Onit : mm	
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.	Dimension (mm)						Dimension (LxW)	Pad qty
Part Number			Volt. (V)		Tol.	L	W	W1	F	Т	H/H0	Lead Style	
	RCE5C2E223J2M1H03A	C0G	250	22000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	200
	RCE5C2J100J1M1H03A	C0G	630	10pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	200
	RCE5C2J120J1M1H03A	C0G	630	12pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J150J1M1H03A	C0G	630	15pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J180J1M1H03A	C0G	630	18pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J220J1M1H03A	C0G	630	22pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J270J1M1H03A	C0G	630	27pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J330J1M1H03A	C0G	630	33pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J390J1M1H03A	C0G	630	39pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J470J1M1H03A	C0G	630	47pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J560J1M1H03A	C0G	630	56pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J680J1M1H03A	C0G	630	68pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J820J1M1H03A	C0G	630	82pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J101J1M1H03A	C0G	630	100pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J121J1M1H03A	COG	630	120pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J151J1M1H03A	COG	630	150pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J181J1M1H03A	C0G	630	180pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J221J1M1H03A	C0G	630	220pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J271J1M1H03A	C0G	630	270pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2J331J1M1H03A	C0G	630	330pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2J391J1M1H03A	C0G	630	390pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2J471J1M1H03A	C0G	630	470pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2J561J1M1H03A	C0G	630	560pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2J681J1M1H03A	C0G	630	680pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2J821J1M1H03A	COG	630	820pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J102J1M1H03A	COG	630	1000pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2J122J1M1H03A	COG	630	1200pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2J152J1M1H03A	COG	630	1500pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J182J1M1H03A	COG	630	1800pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2
	RCE5C2J222J1M1H03A	COG	630	2200pF	±5%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	20
	RCE5C2J272J2M1H03A	COG	630	2700pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2J332J2M1H03A	COG	630	3300pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCE5C2J392J2M1H03A	COG	630	3900pF	±5%	5.5	4.0	6.0	5.0	3.15			2
	RCE5C2J472J2M1H03A	COG	630	4700pF	±5%	5.5	4.0	6.0	5.0				2
	RCE5C3A100J2M1H03A	COG	1000	10pF	±5%	5.5	4.0	6.0	5.0				2
	RCE5C3A120J2M1H03A	COG	1000	12pF	±5%	5.5	4.0	6.0	5.0				2
	RCE5C3A150J2M1H03A	COG	1000	15pF	±5%	5.5	4.0	6.0	5.0				20
	RCE5C3A180J2M1H03A	COG	1000	18pF	±5%	5.5	4.0	6.0	5.0				2
	RCE5C3A220J2M1H03A	COG	1000	22pF	±5%	5.5	4.0	6.0	5.0	3.15			20
	RCE5C3A270J2M1H03A	COG	1000	27pF	±5%	5.5	4.0	6.0	5.0	3.15			20

Inside Crimp Taping (Lead Style: M*)

Unit : mm

Customer	Murata Part Number	T.C.	DC Rated		Сар.		D	Dimension (mm)				Dimension (LxW)	Pack qty.
Part Number	Murata Part Number		Volt. (V)	Сар.	Tol.	L	L W W1 F T H/H0 L			` '			
	RCE5C3A330J2M1H03A	C0G	1000	33pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A390J2M1H03A	C0G	1000	39pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A470J2M1H03A	C0G	1000	47pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A560J2M1H03A	C0G	1000	56pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A680J2M1H03A	C0G	1000	68pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A820J2M1H03A	C0G	1000	82pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A101J2M1H03A	C0G	1000	100pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A121J2M1H03A	C0G	1000	120pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A151J2M1H03A	C0G	1000	150pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A181J2M1H03A	C0G	1000	180pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A221J2M1H03A	C0G	1000	220pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A271J2M1H03A	C0G	1000	270pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A331J2M1H03A	C0G	1000	330pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A391J2M1H03A	C0G	1000	390pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A471J2M1H03A	C0G	1000	470pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A561J2M1H03A	C0G	1000	560pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A681J2M1H03A	C0G	1000	680pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A821J2M1H03A	C0G	1000	820pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCE5C3A102J2M1H03A	C0G	1000	1000pF	±5%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000

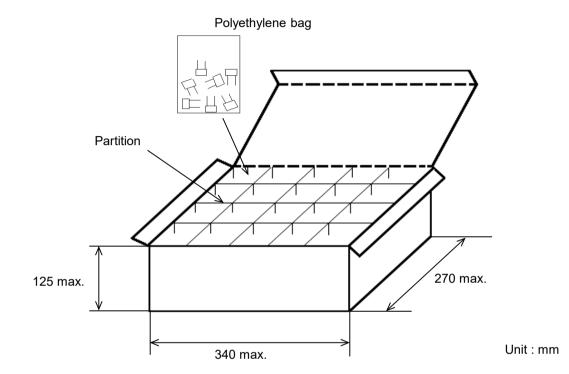
5 AF	C-Q200 Murata	Standard Spec	ifications and Test Methods	•						
No.	AEC-	-Q200	Specification			AEC-C	200 Test	Method		
1	Pre-and Post-S	Stress			-					
3	High Temperature Exposure (Storage) Temperature Cycling	Appearance Capacitance Change Q I.R. Appearance Capacitance Change Q	No defects or abnormalities. Within $\pm 3\%$ or ± 0.3 pF (Whichever is larger) 30 pF $\leq C: Q \geq 350$ 10 pF $\leq C < 30$ pF : $Q \geq 275+5$ C/2 10 pF $> C: Q \geq 200+10$ C C: Nominal Capacitance (pF) More than $1,000$ M Ω or 50 M $\Omega \cdot \mu$ F (Whichever is smaller) No defects or abnormalities. Within $\pm 5\%$ or ± 0.5 pF (Whichever is larger) 30 pF $\leq C: Q \geq 350$ 10 pF $\leq C < 30$ pF : $Q \geq 275+5$ C/2 10 pF $> C: Q \geq 200+10$ C C: Nominal Capacitance (pF) $1,000$ M Ω or 50 M $\Omega \cdot \mu$ F min.	Perform the listed in the fithen measure	ion, then r 1000 cycle iollowing ta	measure.	g to the fo	our heat trea	atments	ı,
4	Moisture Resistance	Appearance Capacitance Change	(Whichever is smaller) No defects or abnormalities. Within ±5% or ± 0.5pF (Whichever is larger) 30pF ≦ C : Q ≧ 200	Apply the 24l treatment should be set of 24s. Temperature	own belov ±2 h at *ro	v, 10 conse oom condition	cutive timon, then r	nes. neasure.	lumidity	Humidity
		I.R.	30pF > C : Q ≧ 100+10C/3 C : Nominal Capacitance (pF) 500MΩ or 25MΩ · μF min. (Whichever is smaller)	(°C) 70 65 60 55 entered 45 20 15 10 5 -10	90-	urement	+10 2 °C	24 hours		90-98%
* "roo	Biased Humidity	Appearance Capacitance Change Q I.R.	No defects or abnormalities. Within $\pm 5\%$ or $\pm 0.5 pF$ (Whichever is larger) $30pF \le C: Q \ge 200$ $30pF > C: Q \ge 100+10C/3$ $C: Nominal Capacitance (pF)$ $500M\Omega$ or $25M\Omega \cdot \mu F$ min. (Whichever is smaller) $5 to 35^{\circ}C$, Relative humidity: $45 to 75\%$, Att	Apply the rate at 85±3°C an Remove and The charge/o	nd 80 to 85 let sit for discharge	5% humidit 24±2 h at * current is le	y for 1000 room con	±12h. dition, then		•

ESRCE05D

			Referer	ice offig					
No.	AEC-Q200 Specification			AEC-Q200 Test Method					
6	Operational	Appearance	No defects or abnormalities.	Apply voltage in Table for 1000±12h at 125±3°C.					
			Within ±3% or ±0.3pF	Let sit for 24±2 h at *room condition, then measure. The charge/discharge current is less than 50mA.					
			(Whichever is larger)						
		Q	$30pF \le C : Q \ge 350$	The shangeralesharge earroin to look than control.					
		<u> </u>	$10pF \le C < 30pF : Q \ge 275+5C/2$	Rated Voltage Test Voltage					
			· ·	DC250V 150% of the rated voltage					
			10pF > C : Q ≧ 200+10C	DC630V, DC1kV 120% of the rated voltage					
			O. Naminal Constitution (n.F.)						
			C : Nominal Capacitance (pF)	-					
		I.R.	1,000MΩ or 50MΩ·μF min.						
			(Whichever is smaller)						
7	External Visua		No defects or abnormalities.	Visual inspection.					
8	Physical Dime	nsion	Within the specified dimensions.	Using calipers and micrometers.					
9	Marking	T -	To be easily legible.	Visual inspection.					
10	Resistance	Appearance	No defects or abnormalities.	Per MIL-STD-202 Method 215					
	to Solvents	Capacitance	Within the specified tolerance.	Solvent 1 : 1 part (by volume) of isopropyl alcohol					
		Q	$30pF \le C : Q \ge 1,000$	3 parts (by volume) of mineral spirits					
			30pF > C : Q ≥ 400+20C	Solvent 2 : Terpene defluxer					
				Solvent 3 : 42 parts (by volume) of water					
			C : Nominal Capacitance (pF)	1part (by volume) of propylene glycol monomethyl ether					
		I.R.	More than 10,000MΩ or 500 MΩ∙μF	1 part (by volume) of monoethanolamine					
			(Whichever is smaller)						
11	Mechanical	Appearance	No defects or abnormalities.	Three shocks in each direction should be applied along 3					
	Shock	Capacitance	Within the specified tolerance.	mutually perpendicular axes of the test specimen (18 shocks).					
		Q	30pF ≦ C : Q ≧ 1,000	The specified test pulse should be Half-sine and should have a					
			30pF > C : Q ≧ 400+20C	duration : 0.5ms, peak value : 1500G and velocity change : 4.7m/s.					
			C : Nominal Capacitance (pF)						
12	Vibration	Appearance	No defects or abnormalities.	The capacitor should be subjected to a simple harmonic motion					
		Capacitance	Within the specified tolerance.	having a total amplitude of 1.5mm, the frequency being varied					
		Q	30pF ≤ C : Q ≥ 1,000	uniformly between the approximate limits of 10 and 2000Hz.					
			30pF > C : Q ≧ 400+20C	The frequency range, from 10 to 2,000Hz and return to 10Hz,					
				should be traversed in approximately 20 min. This motion					
			C : Nominal Capacitance (pF)	should be applied for 12 items in each 3 mutually perpendicular					
				directions (total of 36 times).					
13-1	Resistance	Appearance	No defects or abnormalities.	The lead wires should be immersed in the melted solder 1.5 to					
	to	Capacitance	Within ±2.5% or ±0.25pF	2.0mm from the root of terminal at 260±5°C for 10±1 seconds.					
	Soldering	Change	(Whichever is larger)						
	Heat	Dielectric	No defects	Post-treatment					
	(Non-	Strength		Capacitor should be stored for 24±2 hours at *room condition.					
	Preheat)	(Between							
		terminals)							
13-2	Resistance	Appearance	No defects or abnormalities.	First the capacitor should be stored at 120+0/-5°C for					
	to	Capacitance	Within ±2.5% or ±0.25pF	60+0/-5 seconds. Then, the lead wires should be immersed in the					
	Soldering	Change	(Whichever is larger)	melted solder 1.5 to 2.0mm from the root of terminal at 260±5°C for					
	Heat	Dielectric	No defects	7.5+0/-1 seconds.					
	(On-	Strength							
	Preheat)	(Between		Post-treatment					
		terminals)		Capacitor should be stored for 24±2 hours at *room condition.					
13-3	Resistance	Appearance	No defects or abnormalities.	Test condition					
	to	Capacitance	Within ±2.5% or ±0.25pF	Temperature of iron-tip : 350±10°C					
	Soldering	Change	(Whichever is larger)	Soldering time: 3.5±0.5 seconds					
	Heat	Dielectric	No defects	Soldering position					
	(soldering	Strength		Straight Lead: 1.5 to 2.0mm from the root of terminal.					
	iron method)	(Between		Crimp Lead : 1.5 to 2.0mm from the end of bend.					
	,	terminals)		Zimp 2000 : 110 to 21011111 Holl the old of bolls.					
		aioj		Post-treatment					
				Capacitor should be stored for 24±2 hours at *room condition.					
* "roor	n condition" T	emperature · 1	<u>I</u> 5 to 35°C, Relative humidity : 45 to 75%, Atn						
1001	n sonaition I	omporature . It	, to oo o, molative maillidity . 40 to 10/0, Atti	neephote pressure . Or to room a					

^{* &}quot;room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

			Reference of	7 Hy						
			Specifications	AEC-Q200 Test Method						
Thermal	Appearance	No defects or	abnormalities.	Perform the 300 cycles according to the two heat treatments listed						
Shock	Capacitance	Within ±5% o	or ±0.5pF	in the following table(Maximum transfer time is 20s.). Let sit for						
	1 '		·	24±2 h at *room condition, then measure.						
		1		—						
				Step 1 2						
			•	Temp55+0/-3 125+3/-0						
				(°C) -551-57-5						
				Time (min.) 15±3 15±3						
	I.R.	1,000MΩ or 5	50MΩ·μF min.							
		(Whichever i	is smaller)							
ESD	Appearance	No defects or	abnormalities.	Per AEC-Q200-002						
	Capacitance	Within the sp	ecified tolerance.							
	Q	30pF ≦ C : C	Q ≧ 1,000	7						
		30pF > C : Q	≧ 400+20C							
			- · · · · · · · - ·							
	IR			-						
	1		•							
Solderability		Lead wire sh	ould be soldered with uniform	Should be placed into steam aging for 8h±15 min.						
		coating on th	e axial direction over 95% of the	The terminal of capacitor is dipped into a solution of ethanol						
		circumferenti	al direction.	(JIS K 8101) and rosin (JIS K 5902) (25% rosin in weight						
				propotion). Immerse in solder solution for 2±0.5 seconds.						
				In both cases the depth of dipping is up to about 1.5 to 2mm from						
				the terminal body.						
				Temp. of solder:						
				245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu)						
				235±5°C H60A or H63A Eutectic Solder						
Flootwicel	Annaaranaa	No defects o	a alama was aliti a a							
		+		Visual inspection.						
	<u> </u>	•		The capacitance, Q should be measured at 25°C at the frequency						
rization	Q			and voltage shown in the table.						
		30pF > C : Q	: 400+20C	Nominal Cap. Frequency Voltage						
		C : Nominal Capacitance (pF)		$C \le 1000 pF$ 1±0.1MHz AC0.5 to 5V(r.m.s.)						
				C > 1000pF 1±0.1kHz AC1±0.2V(r.m.s.)						
	I.R.	Between	10,000MΩ or 50MΩ•μF min.	The insulation resistance should be measured with DC500±50V						
		Terminals	(Whichever is smaller)	(DC250V±25V in case of rated voltage : DC250V) at 25 °C within 2						
			, ,	min. of charging.						
	Dielectric	Between	No defects or abnormalities.	The capacitor should not be damaged when voltage in Table is						
	Strength			applied between the terminations for 1 to 5 seconds.						
				(Charge/Discharge current ≤ 50mA.)						
				Rated Voltage Test Voltage						
				DC250V 200% of the rated voltage						
					DC630V 150% of the rated voltage DC1kV 130% of the rated voltage					
				DC1kV 130% of the rated voltage						
		Body	No defects or abnormalities.	The capacitor is placed in a container with metal balls of 1mm						
		Body Insulation	No defects or abnormalities.	The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit is kept approximately						
		1	No defects or abnormalities.							
		1	No defects or abnormalities.	diameter so that each terminal, short-circuit is kept approximately						
		1	No defects or abnormalities.	diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and voltage in table is impressed for 1 to 5						
		1	No defects or abnormalities.	diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and voltage in table is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.)						
		1	No defects or abnormalities.	diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and voltage in table is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.) Rated Voltage Test Voltage						
		1	No defects or abnormalities.	diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and voltage in table is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.) Rated Voltage Test Voltage DC250V DC500V						
		1	No defects or abnormalities.	diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and voltage in table is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.) Rated Voltage Test Voltage						
m condition"	Jamperatura : 4	Insulation		diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and voltage in table is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.) Rated Voltage Test Voltage DC250V DC500V DC630V,DC1kV DC1.3kV						
m condition"	Femperature : 1	Insulation	No defects or abnormalities. ative humidity: 45 to 75%, Atmosph	diameter so that each terminal, short-circuit is kept ap 2mm from the balls, and voltage in table is impressed seconds between capacitor terminals and metal balls. (Charge/Discharge current ≦ 50mA.) Rated Voltage Test Voltage DC250V DC500V DC630V,DC1kV DC1.3kV						
	Tes Thermal Shock	Shock Capacitance Change Q I.R. ESD Appearance Capacitance Q I.R. Solderability Electrical Appearance Characte-rization Q I.R. Dielectric	Test Item Thermal Shock Capacitance Within ±5% or Change (Whichever is Q 30pF ≤ C : C 10pF > C : Q 10pF >	AEC-Q200 Test Item Specifications Thermal Shock Appearance Capacitance (Within ±5% or ±0.5pF (Whichever is larger)) Q 30pF ≤ C : Q ≥ 350 10pF > C : Q ≥ 200+10C C : Nominal Capacitance (pF) I.R. 1,000MΩ or 50MΩ·μF min. (Whichever is smaller) ESD Appearance No defects or abnormalities. Capacitance Within the specified tolerance. Q Q 30pF ≤ C : Q ≥ 1,000 30pF > C : Q ≥ 400+20C C : Nominal Capacitance (pF) I.R. More than 10,000MΩ or 500 MΩ·μF (Whichever is smaller) Solderability Lead wire should be soldered with uniform coating on the axial direction over 95% of the circumferential direction. Electrical Characterization Appearance Within the specified tolerance. Q 30pF ≤ C : Q ≥ 1,000 30pF > C : Q ≥ 400+20C C : Nominal Capacitance (pF) I.R. Between (Whichever is smaller) I.R. Between (Whichever is smaller) Dielectric Between (Whichever is smaller)						


ESRCE05D

			Referen	ce only					
No.	AEC-Q200 Test Item		Specifications	AEC-Q200 Test Method					
18	Terminal Strength	Tensile Strength	Termination not to be broken or loosened.	As in the figure, fix the capacitor body, apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds.					
		Bending Strength	Termination not to be broken or loosened.	Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.					
19	Capacitance Temperature Characteristics Within the specified Tolerance. 25°C to 125°C: 0±30ppm/°C -55°C to 25°C: 0+30/-72ppm/°C		25°C to 125°C : 0±30ppm/°C	The capacitance change should be measured after 5min. at each specified temperature step. Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2					
				The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step 1, 3 and 5 by the capacitance value in step 3.					

6. Packing specification

•Bulk type (Packing style code : B)

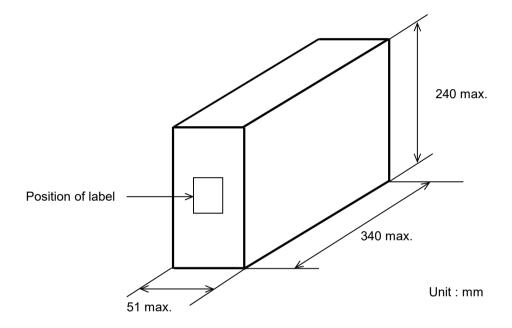
The size of packing case and packing way

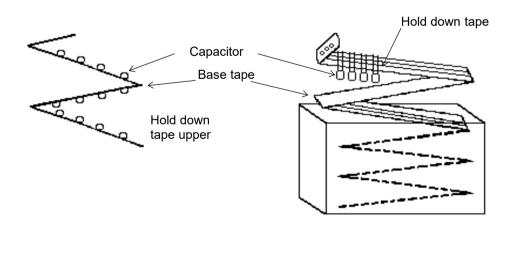
The number of packing = $^{^{\star1}}$ Packing quantity × $^{^{\star2}}$ n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

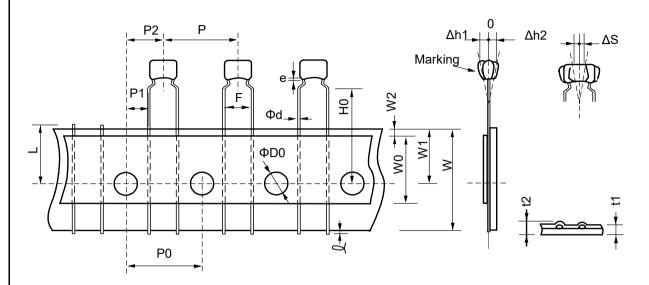

The outer package and the number of outer packing be changed by the order getting amount.


JKBCRPE02

-Ammo pack taping type (Packing style code : A)

A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

The size of packing case and packing way

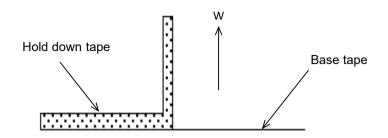

EKTRPE01

7. Taping specification

7-1. Dimension of capacitors on tape

Inside crimp taping type < Lead Style : M1 >

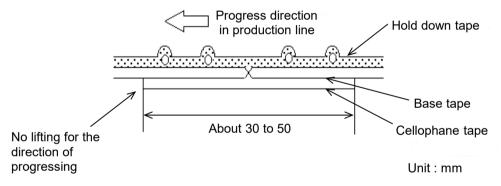
Pitch of component 12.7mm / Lead spacing 5.0mm



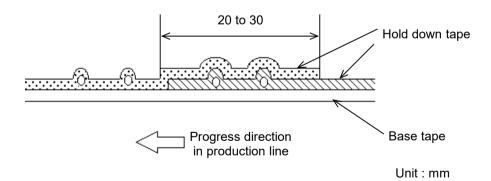
Unit: mm

Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center		6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	H0	16.0+/-0.5	
Protrusion length	L	0.5 max.	
Diameter of sprocket hole	ФD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Deviation across tape	Δh1	2.0 max. (Di	imension code : W)
Deviation across tape	Δh2	1.0 max. (ex	ccept as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of	crimp

7-2. Splicing way of tape


1) Adhesive force of tape is over 3N at test condition as below.

2) Splicing of tape


- a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape.

(Total tape thickness shall be less than 1.05mm.)

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping.

(Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

ETP2R01