

High Performance 1:8 Multi-Voltage CMOS Buffer

Description

The DIODES PI6C49X0208 is a high performance multi-voltage 8-outputs CMOS Fanout Buffer with internal Crystal Oscillator. The XTAL range is from 10MHz to 50MHz. The device has a wide range of operating voltages of 2.5V and 3.3V. The device also provides user selectable output VDD option, which provides excellent flexibility to users. This device is ideal for systems that need to distribute low jitter clock signals to multiple destinations.

Application(s)

- Networking systems including switches and routers
- High frequency backplanes based computing and telecom platforms

Block Diagram

Features

- 8 single-ended outputs fanout buffer ٠
- Up to 200MHz output frequency •
- Ultra low output additive jitter = 0.01ps (typical)
- Selectable reference inputs support Xtal (10~50MHz), singleended and differential
- Low output skew ~ 50ps (typical)
- 2.5V/3.3V operation •
- User configurable output VDDO in different banks: •
 - Mixed 3.3V core, 2.5V, 1.8V or 1.5V output operating supply
 - Mixed 2.5V core, 1.8V, 1.5V or 1.2V output operating supply
- Industrial temperature range: -40°C to +85°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

- Packaging (Pb-free & Green):
 - 32-Pin, W-QFN5050 (ZH)

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Configuration

Pin Description

Pin#	Pin Name		Туре	Description
1, 3, 5, 7, 18, 20, 22, 24	CLK0~7	Output		Clock Outputs
2, 6, 19, 23	V _{DDO}	Power		Output Power Supplier
4, 9, 16, 21, 25, 32	GNDO	Power		Core Ground
8, 17	NC			Not Connected
15, 26	GND	Power		Output Ground
10	V _{DD}	Power		Core Power Supplier
11	XIN	Input		Crystal Interface
12	XOUT	Output		Crystal Interface
13	IN0	Input	Pull-down	Differential or Single End
14	IN0#	Input	Pull-up/ Pull-down	When IN0 is single end IN0# internal bias as Vdd/2
27	IN1#	Input	Pull-up/ Pull-down	When IN1 is single end IN1# internal bias as Vdd/2
28	IN1	Input	Pull-down	REF1 Differential or Single End
30, 29	IN_SEL[0:1]	Input	Pull-down	IN-SEL[0:1] select XTAL, IN1/1# and IN0/IN0# input, trigger level is Vdd/2
31	ENABLE	Input		Synchronous Active High Output Enable, LVCMOS/TTL

Input Mode Selection Logic

IN_SEL0	IN_SEL1	Selected Input
1	1	XTAL
0	1	XTAL
1	0	IN1/1# Differential or Single End
0	0	IN0/0# Differential or Single End

Input/Output Operation State

Input State	Output State
IN[0:1], IN[0:1]# open	Logic Low
IN[0:1], IN[0:1]# both to ground	Logic Low
IN[0:1]=High, IN[0:1]# =Low	Logic High
IN[0:1]=Low, IN[0:1]# =High	Logic Low

Output Mode Selection

ENABLE	Output CLK0~7
GND	High-impedance
VDD	Enabled

Power Supply DC Characteristics

$V_{DD}/V_{DDO} = 3.3V$ Symbols	$7 \pm 5\%, T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ Parameters	Test Conditions	Min.	Тур	Max.	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current	ENABLE = '0'			32	mA
I _{DDO}	Output Supply Current	ENABLE = '0'			1	mA

$V_{DD}/V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current	ENABLE = '0'			15	mA
I _{DDO}	Output Supply Current	ENABLE = '0'			0.7	mA

$V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current	ENABLE = '0'			29	mA
I _{DDO}	Output Supply Current	ENABLE = '0'			0.6	mA

V_{DD} = 3.3V ± 5%, V_{DDO} = 1.8V ± 0.2V, T_A = -40°C to 85°C

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
I _{DD}	Power Supply Current	ENABLE = '0'			29	mA
I _{DDO}	Output Supply Current	ENABLE = '0'			0.4	mA

$V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.5V \pm 0.15V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		1.35	1.5	1.65	V
I _{DD}	Power Supply Current	ENABLE = '0'			29	mA
I _{DDO}	Output Supply Current	ENABLE = '0'			0.3	mA

$V_{DD} = 2.5V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
I _{DD}	Power Supply Current	ENABLE = '0'			13	mA
I _{DDO}	Output Supply Current	ENABLE = '0'			0.4	mA

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDO}	Output Supply Voltage		1.35	1.5	1.65	V
I _{DD}	Power Supply Current	ENABLE = '0'			13	mA
I _{DDO}	Output Supply Current	ENABLE = '0'			0.3	mA

V_{DD} = 2.5V ± 5%, V_{DDO} = 1.5V ± 0.15V, T_A = -40°C to 85°C

$V_{DD} = 2.5V \pm 5\%$, $V_{DDO} = 1.2V \pm 0.06V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDO}	Output Supply Voltage		1.14	1.2	1.26	V
I _{DD}	Power Supply Current	ENABLE = '0'			13	mA
I _{DDO}	Output Supply Current	ENABLE = '0'			0.3	mA

Single-Ended Input DC Characteristics

$T_A = -40^{\circ}C$ to 2	85°C					
Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V _{IH}	T TT' 1 X7 1.	$V_{DD} = 3.3V \pm 5\%$	2		V _{DD} + 0.3	V
	Input High Voltage	$V_{DD} = 2.5V \pm 5\%$	1.7		V _{DD} + 0.3	V
V _{IL}		$V_{DD} = 3.3V \pm 5\%$	-0.3		0.8	V
	Input Low Voltage	$V_{DD} = 2.5 V \pm 5\%$	-0.3		0.7	V
		$V_{DDO} = 3.3V \pm 5\%$ ⁽¹⁾	2.6			V
		$V_{DDO} = 2.5V \pm 5\%$	2			V
3.7	Output High Voltage (I _{OH} = -8mA)	$V_{DDO} = 2.5V \pm 5\%$ ⁽¹⁾	1.8			V
VOH		$V_{DDO} = 1.8V \pm 0.2V^{(1)}$	1.5			V
		$V_{DDO} = 1.5V \pm 0.15V^{(1)}$	1.0			V
	Output High Voltage (I _{OH} = -1mA)	$V_{DDO} = 1.2V \pm 0.06V$	0.7			V
		$V_{DDO} = 3.3V \pm 5\%$ ⁽¹⁾	2.6			V
V _{OL}		$V_{DDO} = 2.5V \pm 5\%$			0.5	V
	Output Low Voltage ($I_{OL} = 8mA$)	$V_{DDO} = 1.8V \pm 0.2V^{(1)}$			0.4	V
		$V_{DDO} = 1.5V \pm 0.15V$ ⁽¹⁾			0.35	V
	Output Low Voltage ($I_{OH} = 1mA$)	$V_{\rm DDO} = 1.2 V \pm 0.06 V$			0.2	V

Notes:

1. Outputs terminated with 50Ω to V_{DDO} /2. See Parameter Measurement section, "Load Test Circuit" diagrams.

Differential Input DC Characteristics

$T_A = -40^{\circ}C$ to $85^{\circ}C$									
Symbols	Parameters		Test Conditions	Min.	Тур	Max.	Units		
I _{IH}	Input High Current	IN[0:1], IN[0:1]#	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			100	uA		
I _{IL}	Input Low Current	IN[0:1]	$V_{DD} = 3.465 V \text{ or } 2.625 V V_{IN} = 0 V$	-1			uA		
		IN[0:1]#	$V_{DD} = 3.465 V \text{ or } 2.625 V V_{IN} = 0 V$	-50			uA		
V	Peak-to-Peak Input Voltage ⁽¹⁾		$V_{DD} = 3.3 V$	0.25		1.3	V		
VPP			$V_{DD} = 2.5 V$	0.25		1.3	v		
V _{CMR}	Common Mode	e Input Voltage	$V_{DD} = 3.3 V$	0.5		V _{DD} -1.35V	3.7		
	(1,2)		$V_{DD} = 2.5 V$	0.5		V _{DD} -0.85V	V		

Notes:

1. VIL should not be less than -0.3V.

2. Common mode voltage is defined as $1/2(V_{IH}V_{IL})$.

Note:

PI6C49X0208

3.3V Absolute Maximum Ratings

(Above which the useful life may be impaired. For user guidelines only, not tested.)

Storage Temperature	65°C to +150°C
V _{DD} , V _{DDO} Voltage	-0.5V to +3.6V
Output Voltage	–0.5V to V_{DD} +0.5V
Input Voltage	–0.5V to V_{DD} +0.5V

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

AC Characteristics

Over Operating Range: $V_{DD}/V_{DDO} = 3.3V \pm 5\%$, $T_A = -40^{\circ}$ to $85^{\circ}C$

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f _{MAX}	Output Frequency	Using External Clock Source ⁽²⁾		DC		200	MHz
odc	Output Duty Cycle		125MHz	45		55	%
t _{sk(o)}	Output Skew ⁽³⁾					80	ps
tjit(Ø)	RMS Phase Jitter (Random)		25MHz crystal @ (Inte- gration Range: 100Hz- 1MHz)		0.05		ps
tjit(additive)	Additive RMS Phase Jitter (Random)		125MHz reference input @ (Integration Range: 12kHz-20MHz)		0.01		ps
$t_{\rm R}/t_{\rm F}$	Output Rise/Fall Time		20% to 80%	200		800	ps
t _{EN}	Output Enable Tim	e ⁽⁴⁾				5	cycles
t _{DIS}	Output Disable Tin	ne ⁽⁴⁾				5	cycles
MUXisolation	MUX Isolation		155.52MHz		64		dB

Notes:

1. Unless noted otherwise, all parameters are tested with xtal ($\hat{a}_{j} f \le Fxtal_max_{j}$; outputs are terminated ($\hat{a}_{j} 50\Omega$ to $V_{DDO}/2$, see waveforms.

2. Differential external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as VDD/2

3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

2.5V Absolute Maximum Ratings

(Above which the useful life may be impaired. For user guidelines only, not tested.)

Storage Temperature65°C to +150°C	Note: Stresses greater than those listed under MAX-
$V_{DD,} V_{DDO}$ Voltage0.5V to +3.6V	IMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the
Output Voltage $-0.5V$ to $V_{DD}+0.5V$	device at these or any other conditions above those indicated in the
Input Voltage0.5V to V_{DD} +0.5V	operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability

AC Characteristics

Over Operating Range: $V_{DD}/V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^{\circ}$ to $85^{\circ}C$

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f _{MAX}	Output Frequency	Using External Clock Source ⁽²⁾		DC		200	MHz
odc	Output Duty Cycle		125MHz	45		55	%
t _{sk(o)}	Output Skew ⁽³⁾					80	ps
t _{jit(Ø)}	RMS Phase Jitter (Random)		25MHz @ (Integration Range: 100Hz-1MHz)		0.06		ps
tjit(additive)	Additive RMS Phase Jitter (Random)		125MHz @ (Integration Range: 12kHz-20MHz)		0.01		ps
$t_{\rm R}/t_{\rm F}$	Output Rise/Fall Time		20% to 80%	200		800	ps
t _{EN}	Output Enable Time ⁽⁴⁾					5	cycles
t _{DIS}	Output Disable Tin	ne ⁽⁴⁾				5	cycles
MUXisolation	MUX Isolation		155.52MHz		63		dB

Notes:

1. Unless noted otherwise, all parameters are tested with xtal @ $f \le Fxtal_max$; outputs are terminated @ 50 Ω to $V_{DDO}/2$, see waveforms.

2. Differential external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as VDD/2

3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

AC Characteristics

Over Operating Range: $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^{\circ}$ to 85°C

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f _{MAX}	Output Frequency	Using External Clock Source ⁽²⁾		DC		200	MHz
odc	Output Duty Cycle		125MHz	45		55	%
t _{sk(o)}	Output Skew ⁽³⁾					80	ps
t _{jit(Ø)}	RMS Phase Jitter (Random)		25MHz @ (Integration Range: 100Hz-1MHz)		0.05		ps
tjit(additive)	Additive RMS Phase Jitter (Random)		125MHz @ (Integration Range: 12kHz-20MHz)		0.01		ps
$t_{\rm R}/t_{\rm F}$	Output Rise/Fall Time		20% to 80%	200		800	ps
t _{EN}	Output Enable Time ⁽⁴⁾					5	cycles
t _{DIS}	Output Disable Tin	ne ⁽⁴⁾				5	cycles
MUX _{isolation}	MUX Isolation		155.52MHz		62		dB

Notes:

1. Unless noted otherwise, all parameters are tested with xtal @ $f \le Fxtal_max$; outputs are terminated @ 50 Ω to $V_{DDO}/2$, see waveforms.

2. Differential external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as VDD/2

3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

4. These parameters are guaranteed, but not tested. Max delay is 5 cycles. Min. setup time = 3ns.

AC Characteristics

Over Operating Range: $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40^{\circ}$ to $85^{\circ}C$

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f _{MAX}	Output Frequency	Using External Clock Source ⁽²⁾		DC		200	MHz
ode	Output Duty Cycle		125MHz	45		55	%
t _{sk(o)}	Output Skew ⁽³⁾					80	ps
t _{jit(Ø)}	RMS Phase Jitter (Random)		25MHz @ (Integration Range: 100Hz-1MHz)		0.06		ps
tjit(additive)	Additive RMS Phase Jitter (Random)		125MHz @ (Integration Range: 12kHz-20MHz)		0.01		ps
$t_{\rm R}/t_{\rm F}$	Output Rise/Fall Time		20% to 80%	200		900	ps
t _{EN}	Output Enable Time ⁽⁴⁾					5	cycles
t _{DIS}	Output Disable Tin	ne ⁽⁴⁾				5	cycles
MUX _{isolation}	MUX Isolation		155.52MHz		58		dB

Notes:

1. Unless noted otherwise, all parameters are tested with xtal (@ f <= Fxtal_max,; outputs are terminated (@ 50 Ω to V_{DDO}/2, see waveforms.

2. Differential external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as VDD/2

3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

AC Characteristics

Over Operating Range: VDD =	$= 3.3V \pm 5\%$, $V_{DDO} = 1.5$	$V \pm 0.15V$, $T_A = -40^{\circ}$ to $85^{\circ}C$
-----------------------------	------------------------------------	--

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f _{MAX}	Output Frequency	Using External Clock Source ⁽²⁾		DC		200	MHz
odc	Output Duty Cycle		125MHz	45		55	%
t _{sk(0)}	Output Skew ⁽³⁾					80	ps
t _{jit(Ø)}	RMS Phase Jitter (Random)		25MHz @ (Integration Range: 100Hz-1MHz)		0.07		ps
tjit(additive)	Additive RMS Phase Jitter (Random)		125MHz @ (Integration Range: 12kHz-20MHz)		0.01		ps
t _R /t _F	Output Rise/Fall Time		20% to 80%	200		900	ps
t _{EN}	Output Enable Time ⁽⁴⁾					5	cycles
t _{DIS}	Output Disable Time ⁽⁴⁾					5	cycles
MUX _{isolation}	MUX Isolation		155.52MHz		53		dB

Notes:

1. Unless noted otherwise, all parameters are tested with xtal (@ f <= Fxtal_max,; outputs are terminated (@ 50 Ω to V_{DDO}/2, see waveforms.

2. Differential external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as VDD/2

3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

4. These parameters are guaranteed, but not tested. Max delay is 5 cycles. Min. setup time = 3ns.

AC Characteristics

Over Operating Range: $V_{DD} = 2.5V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40^{\circ}$ to 85°C

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f _{MAX}	Output Frequency	Using External Clock Source ⁽²⁾		DC		200	MHz
ode	Output Duty Cycle	Output Duty Cycle		45		55	%
t _{sk(o)}	Output Skew ⁽³⁾					80	ps
t _{jit(Ø)}	RMS Phase Jitter (Random)		25MHz @ (Integration Range: 100Hz-1MHz)		0.06		ps
tjit(additive)	Additive RMS Phase Jitter (Random)		125MHz @ (Integration Range: 12kHz-20MHz)		0.01		ps
$t_{\rm R}/t_{\rm F}$	Output Rise/Fall Time		20% to 80%	200		900	ps
t _{EN}	Output Enable Time ⁽⁴⁾					5	cycles
t _{DIS}	Output Disable Tin	ne ⁽⁴⁾				5	cycles
MUX _{isolation}	MUX Isolation		155.52MHz		59		dB

Notes:

1. Unless noted otherwise, all parameters are tested with xtal (@ f <= Fxtal_max,; outputs are terminated (@ 50 Ω to V_{DDO}/2, see waveforms.

2. Differential external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as VDD/2

3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

AC Characteristics

Over Operating Range: VD	$D = 2.5V \pm 5\%, V_D$	$_{\rm DO} = 1.5 \rm V \pm 0.15 \rm V, T$	$\Gamma_A = -40^\circ$ to $85^\circ C$
--------------------------	-------------------------	---	--

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f _{MAX}	Output Frequency	Using External Clock Source ⁽²⁾		DC		200	MHz
ode	Output Duty Cycle		125MHz	45		55	%
t _{sk(o)}	Output Skew ⁽³⁾					80	ps
t _{jit(Ø)}	RMS Phase Jitter (Random)		25MHz @ (Integration Range: 100Hz-1MHz)		0.08		ps
tjit(additive)	Additive RMS Phase Jitter (Random)		125MHz @ (Integration Range: 12kHz-20MHz)		0.01		ps
t_R/t_F	Output Rise/Fall Time		20% to 80%	200		900	ps
t _{EN}	Output Enable Time ⁽⁴⁾					5	cycles
t _{DIS}	Output Disable Time ⁽⁴⁾					5	cycles
MUX _{isolation}	MUX Isolation		155.52MHz		55		dB

Notes:

1. Unless noted otherwise, all parameters are tested with xtal @ $f \le Fxtal_max$; outputs are terminated @ 50 Ω to $V_{DDO}/2$, see waveforms.

2. Differential external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as VDD/2

3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

4. These parameters are guaranteed, but not tested. Max delay is 5 cycles. Min. setup time = 3ns.

AC Characteristics

Over Operating Range: $V_{DD} = 2.5V \pm 5\%$, $V_{DDO} = 1.2V \pm 0.06V$, $T_A = -40^{\circ}$ to 85°C

Parameters	Description		Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f _{MAX}	Output Frequency	Using External Clock Source ⁽²⁾		DC		125	MHz
ode	Output Duty Cycle		125MHz, 5pF load	40		60	%
t _{sk(0)}	Output Skew ⁽³⁾					60	ps
tjit(Ø)	RMS Phase Jitter (Random)		25MHz @ (Integration Range: 100Hz-1MHz)		0.13		ps
tjit(additive)	Additive RMS Phase Jitter (Random)		125MHz @ (Integration Range: 12kHz-20MHz)		0.01		ps
$t_{\rm R}/t_{\rm F}$	Output Rise/Fall Time		20% to 80%		1000	1900	ps
t _{EN}	Output Enable Time ⁽⁴⁾					6	cycles
t _{DIS}	Output Disable Time ⁽⁴⁾					6	cycles
MUX _{isolation}	MUX Isolation		150MHz		72		dB

Notes:

1. Unless noted otherwise, all parameters are tested with xtal (@ $f \le Fxtal_max$,; outputs are terminated (@ 50Ω to $V_{DDO}/2$, see waveforms.

2. Differential external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as $V_{DD}/2$

3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.

AC Test Circuit Load

Crystal Characteristic

(link to "https://www.diodes.com/products/connectivity-and-timing/crystal-and-crystal-oscillator/xtals-crystals/" for more detailed and different size crystal specifications)

Parameters	Description	Min	Тур	Max.	Units
OSCMODE	Mode of Oscillation	Fundamental			
FREQ	Frequency	10	25	50	MHz
ESR ⁽¹⁾	Equivalent Series Resistance	30		50	Ω
CLOAD	Load Capacitance		18		pF
CSHUNT	Shunt Capacitance			7	pF
DRIVE level				1	mW

Note:

1. ESR value is dependent upon frequency of oscillation

Application Notes

Crystal Circuit Connection

The following diagram shows PI6C49X0208 crystal circuit connection with a parallel crystal. For the CL=18pF crystal, it is suggested to use C1=18pF, C2=18pF. C1 and C2 can be adjusted to fine tune to the target ppm of crystal oscillator according to different board layouts. R1 is not recommended.

Crystal Oscillator Circuit

Part Marking

PI6C4 0208Z YYWW)X HIE /XX
 YY: Date 0 WW: Date	Code (Year) Code (Workweek)
1st X: Ass 2nd X: Fa	embly Site Code

Packaging Mechanical

32-WQFN (ZH)

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Description
PI6C49X0208ZHIEX	ZH	W-QFN5050-32

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm

antimony compounds.

4. I = Industrial

5. E = Pb-free and Green

6. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RE-1. GARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT-ABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4 Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-andconditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/importantnotice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2023 Diodes Incorporated. All Rights Reserved.

www.diodes.com