

NuPower[™] C30R01 C-Band Solid State Power Amplifier

30 Watts CW, 5.03 GHz - 5.09 GHz 5% EVM @ 45 dBm

P/N: NW-PA-C-30-R01

(Includes NW-PA-ACC-CB09MC interface cable)

The NuPower[™] C30R01 is a small, highly efficient, solid state power amplifier that provides 30 watts of RF power to boost performance of data links and transmitters.

The NuPower C30R01 accepts a nominal 0 dBm (1 mW) RF input and provides 45 dB of gain from 5.03 GHz - 5.09 GHz for continuous wave (CW) and near-constant envelope waveforms.

Based on the latest gallium nitride (GaN) technology, the NuPower C30R01's 30% power efficiency and <10 in³ form factor make it ideal for size, weight, and power-constrained broadband RF telemetry, tactical communication systems, and electronic warfare systems.

NuPower PAs feature over-voltage and reverse-voltage protection and can operate over a wide temperature range of -40 $^{\circ}$ C to +85 $^{\circ}$ C (baseplate).

Extend your operational communication range with NuPower[™] amplifiers from NuWaves RF Solutions.

Features

C

- 30 Watts RF Output Power
- 5.03 GHz 5.09 GHz
- Small Form Factor (4.50" x 3.50" x 0.61")
- High-Efficiency GaN Technology
- 0 dBm Nominal RF Input
- Over-Voltage Protection
- Reverse-Voltage Protection
- Logic On/Off Control

Benefits

- Extended Range
- Improved Link Margin
- Reduced load on DC power budget due to high efficiency operation
- Requires less volume on space-constrained platforms

Applications

- Unmanned Aircraft Systems (UAS), Group 2 & 3
- Unmanned Ground Vehicles (UGV)
- Broadband RF Telemetry
- RF Communication Systems
- Electronic Warfare -Airborne Electronic Attack
- Software Defined Radios

Preliminary Specifications

Absolute Maximums

Parameter	Rating	Unit
Max Device Voltage	32	V
Max Device Current	5	A
Max RF Input Power, $Z_L = 50 \Omega$	15	dBm
Max Operating Temperature (ambient)	55	°C
Max Operating Temperature (baseplate)	85	°C
Max Storage Temperature	85	°C

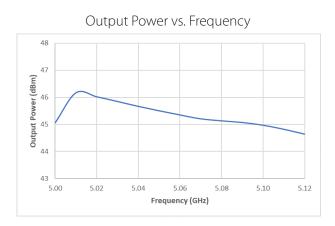
Export Classification	
EAR99	

Electrical Specifications @ 28 VDC, 25 °C, Z₅=Z₁=50 Ω

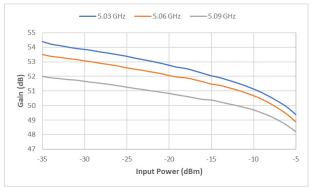
Parameter	Symbol	Min	Тур	Max	Unit	Condition
Operating Frequency	BW	5.03		5.09	GHz	
RF Output Power	P _{SAT}	30	35		W	5.03 GHz - 5.09 GHz, 0 dBm input
			40			5.03 GHz
Output Power @ P3dB Compression	P3dB		41		dBm	5.06 GHz
			42			5.09 GHz
			54			5.03 GHz, @ -30 dBm input
Small Signal Gain	G		53		dB	5.06 GHz, @ -30 dBm input
			52			5.09 GHz, @ -30 dBm input
Small Signal Gain Flatness	ΔG		2		dB	Pin = -30 dBm
Input VSWR	VSWR		2.3:1			
Nominal Input Drive Level	P _{IN}		0		dBm	
Operating Voltage	VDC	27	28	32	V	
Quiescent Current (RF Enable Off)	DQ		10		mA	
Quiescent Current (RF Enable On)	DQ		0.85		A	
Operating Current	DD		4.1		A	Pin = 0 dBm
Module Efficiency			30		%	
Switching Speed	TX _{ON/OFF}			2	μS	10% to 90%
Third Order Order Intercept Point (Two tone test at 1 MHz spacing, Pout = 20 dBm / tone)	OIP3		40		dBm	
	2nd		-70		ID -	
Harmonics	3rd		-70		dBc	
Output Mismatch (No Damage)				10:1	Ψ	No damage at all angles

Preliminary Specifications (cont.)

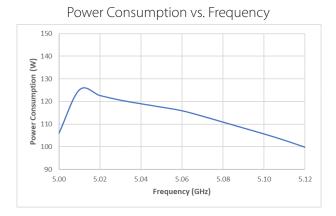
Mechanical Specifications

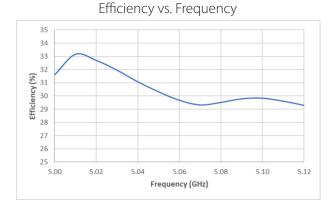

Parameter	Value	Unit	Limits
Dimensions	4.5 x 3.5 x 0.61	in	Max
Weight	9	0Z	Max
RF Connectors, Input/Output	SMA Female		
Interface Connector	Micro-D, 9-pin Socket		
Cooling	Adequate Heatsink Required		

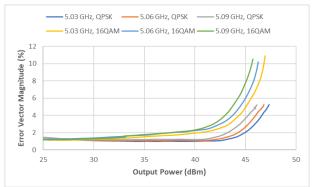
Environmental Specifications


Parameter	Symbol	Min	Тур	Max	Unit
Operating Temperature (ambient)	T _A	-40		+55	°C
Operating Temperature (baseplate)	Tc	-40		+60	°C
Storage Temperature	T _{STG}	-55		+85	°(
Relative Humidity (non-condensing)	RH			95	%
Altitude MIL-STD-810F – Method 500.4	ALT			30,000	ft
Vibration / Shock Profile (Random profile in x,y, z axis, as per Figure for 15 minute duration in each axis)	Power Spectral Density, g ² /Hz	*3 ^{dBlocta}	0.04 g 0.04 g 80 Frequei	350	¹⁸ foctave 2000

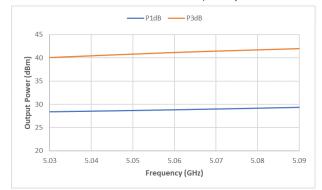
Performance Plots


Test Conditions: +28 VDC, +25 °C, $Z_S=Z_L=50$ Ω , Pin=0 dBm

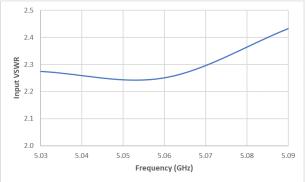




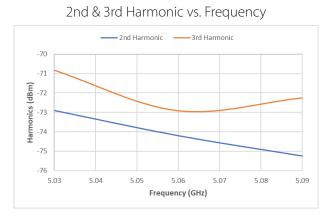
Performance Plots (cont.) Test Conditions: +28 VDC, +25 °C, Z_S=Z_L=50 Ω, Pin=0 dBm



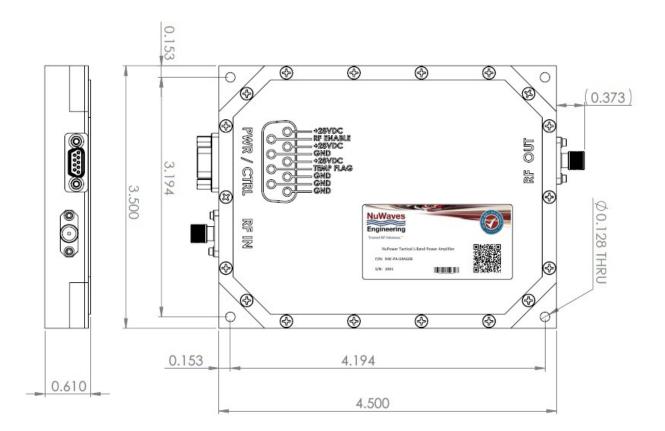
EVM (%) vs. Output Power



P1dB & P3dB vs. Frequency

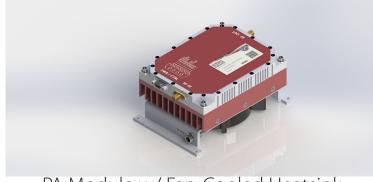


Input VSWR vs. Frequency


Performance Plots (cont.)

Test Conditions: +28 VDC, +25 °C, $Z_S=Z_L=50$ Ω , Pin=0 dBm

Mechanical Outline


PA Module and Accessory Images

PA Module

Optional Fan-Cooled Heatsink

PA Module w/ Fan-Cooled Heatsink

Accessory Part Numbers

Part Number	Description		
NW-PA-ACC-CB09MC	Standard Interface Cable Assembly – Flying Leads (included with module)		
NW-PA-ACC-CT09MC	Upgraded Interface Cable Assembly – Banana Plug Termination		
NW-PA-ACC-KT03 Accessory Kit, which includes Fan-C Heatsink and Upgraded Interface (
NW-PA-ACC-HS05	Heatsink with Integrated Fan		

Pinout

Function	I/O	Pin
DC Power (+28 Volts)	1	3, 4, 5
Ground		1, 2, 6, 8
Over Temperature Flag 0V = temperature fault +5V = no fault	0	7
$ \begin{array}{c} RF \ Enable \\ O \ V \ or \ GND = RF \ ON \\ +5V \ or \ NC = RF \ OFF \end{array} $	I	9

For information on product disposal (end-of-life), please refer to this document: https://nuwaves.com/wp-content/uploads/Product-Disposal-End-of-Life.pdf

Contact NuWaves

NuWaves RF Solutions 132 Edison Drive Middletown, OH 45044

www.nuwaves.com sales@nuwaves.com 513.360.0800

Rev 110821 ©2021 NuWaves Ltd. Specifications subject to change without notice. Export of NuWaves Ltd. products are subject to U.S. export controls. U.S. export licenses may be required.