

Low phase noise Fundamental Quartz Crystal Oscillator IC

■FEATURES(V_{DD}=3.3V, f=49.152MHz, Ta=25°C)

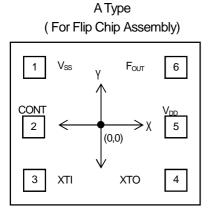
 Oscillation Frequency 	20MHz to 50MHz(Fundamental)
Phase noise	-103dBc/Hz(Typ.) @10Hz Offset
	-163dBc/Hz(Typ.) @1kHz Offset
 RMS Jitter 	0.05psec(Typ.) @12kHz to 20MHz
 Operating Voltage 	1.62V to 3.63V
On enerting of Oremand	

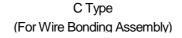
- Operating Current
- •Built In Divider
- 3.1mA(Typ.) @49.152MHz, CL=15pF
- $f_0, f_0/2$ (Factory set)
- •Stand-by Function (CONT Terminal: L)
- Oscillation Stop and High Impedance FOUT terminal.
- •3-State Output Buffer
- •Built-in Variable Pull-up Resistance (CONT: Pull-up Resistance large at the Stand-by mode.)
- •Oscillation Capacitors Cg and Cd
- •Operation Temperature -40°C to 125°C
- Package Outline Die / 8-inch wafer

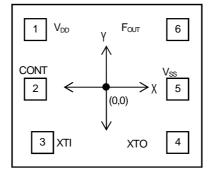
■GENERAL DESCRIPTION

The NJU6222 series is a C-MOS quartz crystal oscillator IC (20MHz to 50MHz) realized very low phase noise. It is consisted of an oscillation amplifier, divider (f_0 , $f_0/2$), and 3-state output buffer.

There are 2-type of pad location for Flip chip and Wire bonding that apply SMD's 2016-package and more miniature. The NJU6222 in low voltage operation features low phase noise, it is suitable for high quality Hi-Fi sound device, Communication device, and others by battery drive.

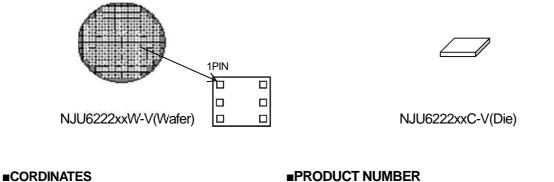

■APPLICATION

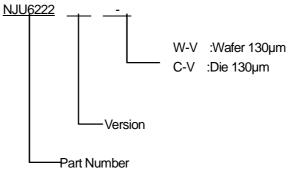

Low Noise Crystal Oscillator


■LINE-UP TABLE

Time No	Four	Version		
Type No		Type A	Туре С	
NULICOOO	f ₀	A1	C1	
NJU6222	f ₀ /2	A2	C2	

■PAD LOCATION





■PACKAGE OUTLINE

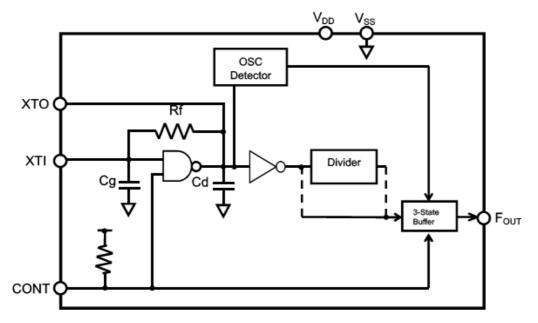
Υ Pad No. Х 1 -174 190 2 -186 0 3 -174 -190 4 174 -190 5 186 0 6 174 190

Starting Point: Die Center Unit[µm] Die Size: 0.580x0.588mm Die Thickness (C-V): 130 + 15µm Wafer Thickness (W-V): 130 + 20µm Pad size: 80x80µm Die Substrate: V_{SS} level

■ORDER INFORMATION

TYPE No.	OUT LINE	MOQ
NJU6222 A x W -V	Wafer	1Wafer (Around 75000pcs)
NJU6222 C x W -V	vvaler	
NJU6222 A x C - V	Die	75000pcs (5000pcs x 15pack)
NJU6222 C x C - V	Die	5000pcs/pack

∎TERMINAL DISCREPTION


SYMBOL	FUNCTION			
	Oscillation and 3-state Output Buffer Control			
	CONT	F _{OUT}		
CONT	H or OPEN	Output one frequency selected out of f_0 and $f_0/2$ Note1)		
	L	Oscillation Stop and High impedance Output		
XTI XTO	Quartz Crystal Connection terminals			
V _{SS}	GND terminal (V _{SS} =0V)			
F _{ουτ}	Frequency Output terminal (3-State Output Buffer)			
V _{DD}	Power Supply terminal V _{DD} =1.62 to 3.63V			

Note 1) Refer to the line-up table.

New Japan Radio Co., Ltd.-

■BLOCK DIAGRAM

■ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS UN	
Supply Voltage	V _{DD}	-0.6 to 6.0	V
Input Voltage	V _{IN} -0.6 to +V _{DD} +0.6 and 6.0V		V
Output Voltage	V _O -0.6 to V _{DD} +0.6		V
Input Current	I _{IN}	±10	mA
Output Terminal Current	Ι _Ο	±25	mA
Storage Temperature Range	T _{stg}	- 55 to 150	°C
Maximum Junction Temperature	T_{jmax}	150	°C

Note2) If the LSI used condition above the absolute maximum ratings, the LSI may be destroyed. Use beyond the electric characteristics conditions will cause mal-function and poor reliability.

■RECOMMEND OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	VALUE	UNIT
Supply Voltage	V _{DD}	Ta=25°C	1.62 to 3.63	V
Operating Temperature Range	T _{opr}		-40 to 125	°C
Input Voltage	V _{IN}	CONT	0 to 3.63	V
Output Voltage	V _{OUT}	F _{OUT}	0 to V _{DD}	V
Output Frequency	df/f	V _{DD} <u>+</u> 10%	<u>+</u> 1	ppm

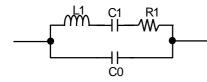
■ELECTRICAL CHARACTERISTICS

New Japan Radio Co., Ltd.-www.njr.com

(V_{DD}=1.62 to 3.63V, V_{SS}=0V, Ta=25°C)

	0/1400				1.02 10 3.03			
PARAMETER	SYMBOL	TEST CONDI	HON	MIN	TYP	MAX	UNIT	
		x1 version (f_0) No load TEST CIRCUIT (1) ⁽³⁾ $f_0=49.152$ MHz	V _{DD} =1.8V	-	1.8	2.9		
			V _{DD} =2.5V	-	3.3	4.8		
		Fout=49.152MHz	V _{DD} =3.3V	-	5.5	7.7		
		x2 version (f ₀ /2) No load	V _{DD} =1.8V	-	1.4	2.4		
		TEST CIRCUIT (1) ⁽³⁾ $f_0=49.152MHz$	V _{DD} =2.5V	-	2.7	4.1		
Operating Current		Fout=24.576MHz	V _{DD} =3.3V	-	4.8	6.6	mA	
Operating Current	I _{DD}	x1 version (f₀) C∟=15pF	V _{DD} =1.8V	-	3.1	4.1	mA	
		TEST CIRCUIT (1) ⁽³⁾ $f_0=49.152$ MHz	V _{DD} =2.5V	-	5.1	6.6		
		Fout=49.152MHz	V _{DD} =3.3V	-	7.9	9.9		
		x2 version CL=15pF TEST CIRCUIT (1) ⁽³⁾ f_0 =49.152MHz Fout=24.576MHz	V _{DD} =1.8V	-	2.0	3.0	-	
	TEST f₀=49.		V _{DD} =2.5V	-	3.6	4.9		
			V _{DD} =3.3V	-	5.9	7.7		
				V _{DD} =1.8V	-	3.0	25.0	
Stand-by Current	I _{STB}	TEST CIRCUIT(1) ⁽³⁾ CONT=V _{SS}	V _{DD} =2.5V	-	5.0	30.0	μA	
			V _{DD} =3.3V	-	9.0	35.0		
H Level Output Voltage	V _{OH}	TEST CIRCUIT(2) ⁽³⁾		V _{DD} -0.4	-	-	V	
L Level Output Voltage	V _{OL}	TEST CIRCUIT(2) ⁽³⁾		-	-	0.4	V	
H Level Input Voltage	VIH	TEST CIRCUIT(3) ⁽³⁾		$0.7V_{DD}$	-	-	V	
L Level Input Voltage	V _{IL}	TEST CIRCUIT(3) ⁽³⁾		-	-	$0.3V_{DD}$	V	
		TEST CIRCUIT(4) ^{(3),} V _{DD} =1.62V, CONT=V	/ _{DD}	-	-	0.065		
hand Querrat		TEST CIRCUIT(4) ⁽³⁾ , $V_{DD}=1.62V$, CONT= V_{SS}		-	-	-0.5		
Input Current	I _{IN}	TEST CIRCUIT(4) ⁽³⁾ , V _{DD} =3.63V, CONT=V	TEST CIRCUIT(4) ⁽³⁾ ,		-	0.150	μA	
		TEST CIRCUIT(4) ⁽³⁾ , V_{DD} =3.63V, CONT=V _{SS}		-10	-	-		
3-state off leakage current	I _{oz}	TEST CIRCUIT(5) ⁽³⁾ , $F_{OUT} = V_{DD} \text{ or } V_{SS}$		-	-	<u>+</u> 0.1	μA	

- New Japan Radio Co.,Ltd.—

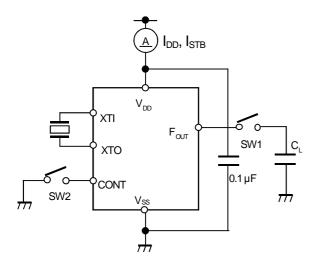

				(V _{DD} =1	.62 to 3.63V,	, V _{SS} =0V, Ta	a=25°C)
PARAMETER	SYMBOL	TEST CON	NDITION	MIN	TYP	MAX	UNIT
Feedback Resistance	Rf			-	50	-	k
Built-In	Cg	f _{OSC} =50MHz		-	8	-	pF
Oscillator Capacitance	Cd	f _{OSC} =50MHz		-	17	-	pF
Oscillation Frequency	F _{OSC}	Recommendation	(5)	-	-	50	MHz
Output Signal Symmetry	SYM	C _L =15pF, @V _{DD} /2		45	50	55	%
		x1 version (f_0)	10Hz Offset	-	-103	-	
		f _{OSC} =49.152MHz	1kHz Offset	-	-158	-	dBc /Hz
Phase Noise	SSB	V _{DD} =1.8V	Floor	-	-166	-	
Flase Noise	330	x1 version (f ₀) f _{OSC} =49.152MHz	10Hz Offset	-	-103	-	
				1kHz Offset	-	-163	-
		V _{DD} =3.3V	Floor	-	-172	-	
		TEST	V _{DD} =1.8V	-	3.1	4.7	ns
Output Signal rise Time	tr	CIRCUIT(1) ⁽³⁾	V _{DD} =2.5V	-	1.8	2.7	ns
		$0.1V_{DD}$ to $0.9V_{DD}$	V _{DD} =3.3V	-	1.3	2.0	ns
		TEST	V _{DD} =1.8V	-	2.8	4.2	ns
Output Signal fall Time		CIRCUIT(1) ⁽³⁾	V _{DD} =2.5V	-	1.8	2.7	ns
		$0.9V_{DD}$ to $0.1V_{DD}$	V _{DD} =3.3V	-	1.4	2.1	ns
Output Disable Time	t _{POZ}	TEST CIRCUIT (6		-	-	200	ns
Output Enable Time	t _{PZO}	TEST CIRCUIT (6) ⁽³⁾		-	-	1.0	ms
Oscillation Start Up Time	tosc	TEST CIRCUIT (1) ⁽³⁾	-	-	1.0	ms

Note 3) Decupling capacitor over than 0.01μ F ceramic capacitor should be connected between V_{DD} and V_{SS} due to the stabilized operation for the circuit.

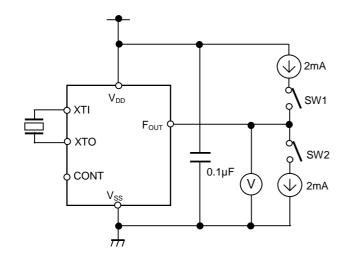
Note 4) The Phase noise characteristics is applied to NJU6222A1/C1 (f₀).

Note 5) NJR's standard crystal is used for measurement of the oscillation frequency range and it does not guarantee oscillation. (Refer to EXAMPLE OF CRYSTAL PARAMETERS FOR MEASUREMENT CIRCUITS)

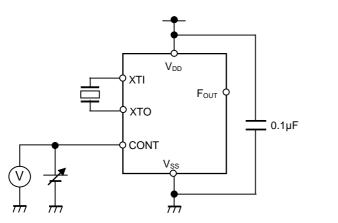
■EXAMPLE OF CRYSTAL PARAMETERS FOR MEASUREMENT CIRCUITS


f[MHz]	R1[Ω]	L1[mH]	C1[fF]	C0[pF]
49.152	17.7	3.83	2.74	1.23

New Japan Radio Co., Ltd. -www.njr.com


■TYPICAL TEST CIRCUIT

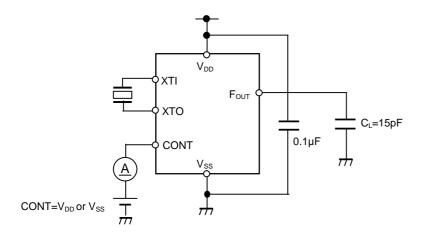
(1) Operating Current, Stand-by Current, Output Signal Symmetry, Output Signal rise / Fall Time, Oscillation Start-Up Time


PARAMETER	SW1	SW2
I _{DD} (C _L =0pF)	OFF	OFF
I _{DD} (C _L =15pF)	ON	OFF
I _{STB}	ON or OFF	ON
SYM, tr, tf	ON	OFF
tosc	ON	OFF

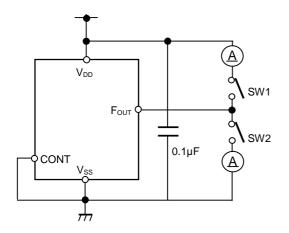
(2) High-level / Low-level Output Voltage (V_{OH}/ V_{OL})

PARAMETER	SW1	SW2
V _{OH}	ON	OFF
V _{OL}	OFF	ON

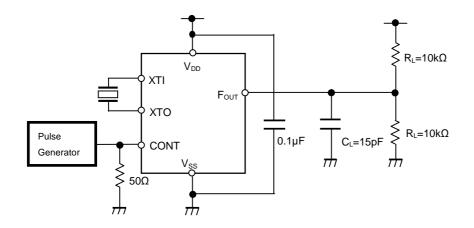
(3) High-level / Low-level Input Voltage (V_H/ V_L)



PARAMETER	Fout
$CONT > 0.7V_{DD}$	Oscillation
$CONT < 0.3V_{DD}$	Stop


New Japan Radio Co., Ltd.-www.njr.com

(4) Input Current (I_{IN})



(5) 3-State Off Leakage Current (I_{IOZ})

PARAMETER	SW1	SW2
I _{OZH}	ON	OFF
I _{OZL}	OFF	ON

(6) Output Disable Time, Output Enable Time (T_{POZ}/T_{PZO})

New Japan Radio Co., Ltd.

■TIMING CHART

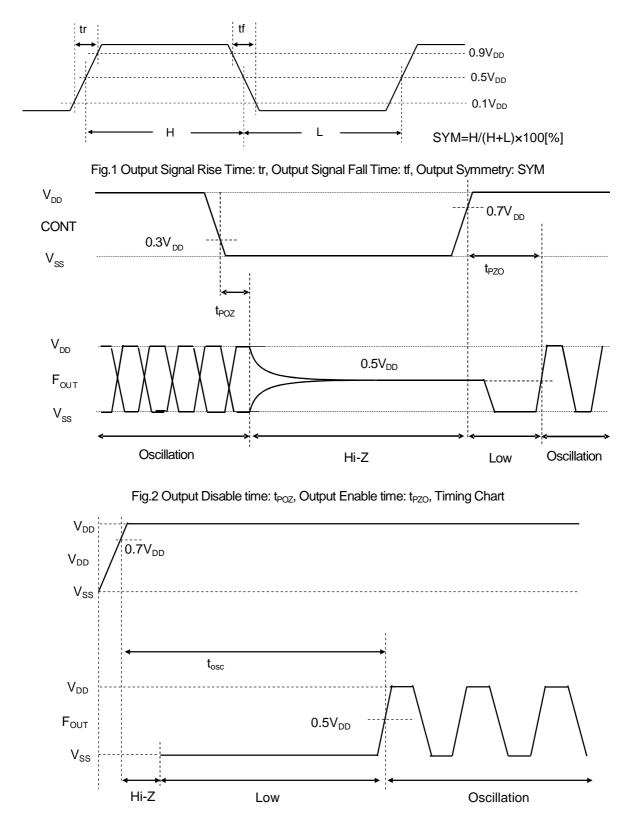
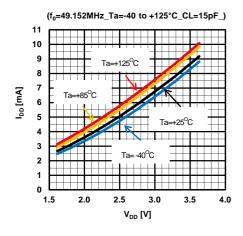
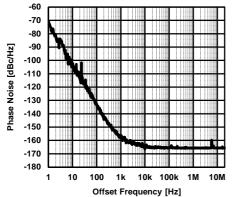
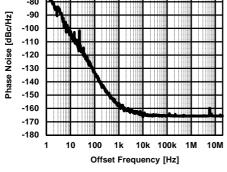


Fig.3 Oscillation Start time: t_{OSC}


New Japan Radio Co., Ltd.-

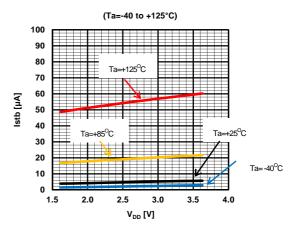
Ver.1.0

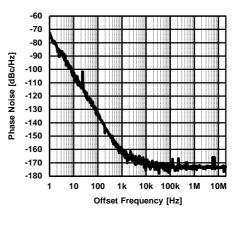

■TYPICAL CHARACTERISTICS

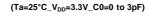

Operation Current

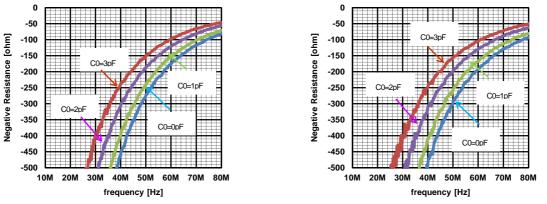
Phase Noise

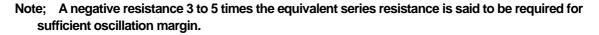
(f0=49.152MHz _Ta= +25°C V_{DD}=1.8V)



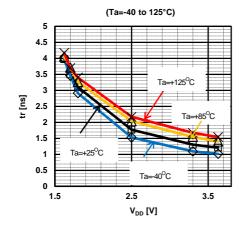

 $(Ta=25^{\circ}C_V_{DD}=1.8V_C0=0 \text{ to } 3pF)$

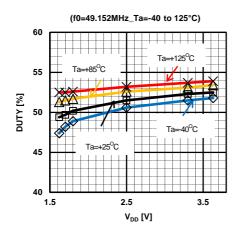


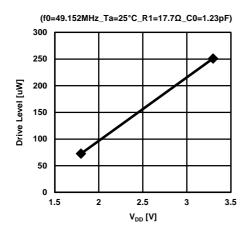

Stand-by Current

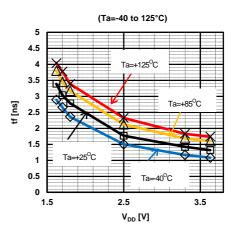


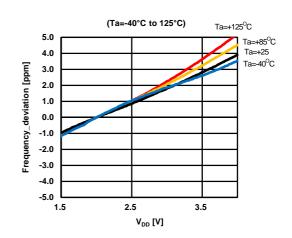
(f0=49.152MHz _Ta= +25°C_ V_{DD}=3.3V)

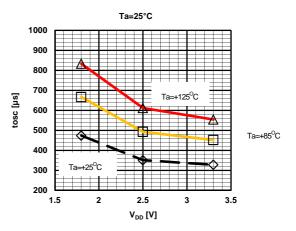





Output Signal rise Time


Output Signal Symmetry


· Drive Level


· Output Signal fall Time

Output Frequency Stability

Oscillation Start-Up Time

New Japan Radio Co., Ltd.-www.njr.com

Ver.1.0

■Application Note

■FUNCTIONAL DESCRIPTION

Standby Function

When CONT Terminal is "Low", the $\mathsf{F}_{\mathsf{OUT}}$ Terminal output is High impedance.

CONT	F _{OUT} Oscillato	
High(Open)	Frequency output	Normal operation
Low	High impedance	Stop

When not using Stand-by function, CONT terminal is recommended to connect to V_{DD} .

•Built-in Variable Pull-up Resistance of CONT terminal

The built-in pull-up resistance value of CONT Terminal changes in response to the input level. When CONT is "Low" level, the pull-up resistance value is large to reduce the current consumption by the resistance. When CONT is open or connected to V_{DD} , the pull-up resistance value is small to decrease the input susceptibility to external noise. It works to prevent an unexpectedly stopping of the output by external noise.

•VIRSION DISCRIMINATION INTERNAL COMPONENTS

PAD layout version of the NJU6222 series is determined by the version name in chip. Divide version of the NJU6222 series is determined by the internal fuse trimming.

Laser-trimmed versions are identified externally by the combination of the version name marking (1) and the locations of trimmed fuses (2). (Table 1 shows the chip version identification)

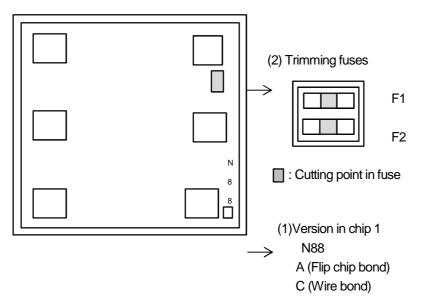


Table 1: Frequency version and Cutting point in fuse.

	Mask / Version set by trimming fuses		
Version name	Mask	Trimming fuses	
	Version	F1	F2
NJU6222A1	A	-	-
NJU6222A2	A	*	-
NJU6222C1	С	-	-
NJU6222C2	C	*	-

Note 1) "-": Uncut, "*": Cutting

New Japan Radio Co., Ltd.

[CAUTION]

- NJR strives to produce reliable and high quality semiconductors. NJR's semiconductors are intended for specific applications and require proper maintenance and handling. To enhance the performance and service of NJR's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures
- 2. The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial property rights. All other trademarks mentioned herein are the property of their respective companies.
- 3. To ensure the highest levels of reliability, NJR products must always be properly handled. The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
- 4. NJR offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact NJR's Sale's Office if you are uncertain about the products listed in this datasheet.
- 5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
- 6. The products listed in this datasheet may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.
 - · Aerospace Equipment
 - · Equipment Used in the Deep Sea
 - · Power Generator Control Equipment (Nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - Fire Alarms / Intruder Detectors
 - · Vehicle Control Equipment (Airplane, railroad, ship, etc.)
 - Various Safety Devices
- 7. NJR's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. NJR shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. The products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.
- 8. Warning for handling Gallium and Arsenic (GaAs) Products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 9. The product specifications and descriptions listed in this datasheet are subject to change at any time, without notice.

New Japan Radio Co., Ltd.