

45V, 2 MHz Zero-Drift Op Amp with EMI Filtering

Features

- High DC Precision:
	- V_{OS} Drift: 36 nV/°C (max.)
	- V_{OS} : 15 µV (max.)
	- Open-Loop Gain: 140 dB (min.)
	- PSRR: 134 dB (min.)
	- CMRR: 135 dB (min.)
- Low Noise:
	- 10.2 nV/√ Hz at 1 kHz
	- E_{ni} : 0.21 $\mu V_{\text{P-P}}$, f = 0.1 Hz to 10 Hz
- Low Power:
	- I_Q: 470 µA/Amplifier (typ.)
	- Wide Single or Dual Supply Voltage Range:
	- 4.5V to 45V, ±2.25V to ±22.5V
- Easy to Use:
	- Input Range incl. Negative Rail
	- Rail-to-Rail Output
	- EMI Filtered Inputs
	- Gain Bandwidth Product: 2 MHz
	- Slew Rate 1.2V/µs
	- Unity Gain Stable
- Small Packages:
	- Single: SOT-23-5, MSOP-8
	- Dual: MSOP-8, SOIC-8
	- Quad: SOIC-14
- Extended Temperature Range: -40°C to +125°C
- AEC Q100 Qualified, Grade 1 (MCP6V52 and MCP6V54 only). See **["Product Identification](#page-47-0) [System \(Automotive\)"](#page-47-0)**.

Typical Applications

- Industrial Instrumentation, PLC
- Process Control
- Power Control Loops
- Sensor Conditioning
- Electronic Weight Scales
- Medical Instrumentation
- Automotive
- High/Low-Side Current Sensing

Design Aids

- Microchip Advanced Part Selector (MAPS)
- SPICE Macro Models
- Application Notes

Related Parts

- **[MCP6V71/1U/2/4: Zero-Drift, 2 MHz, 1.8V to 5V](https://ww1.microchip.com/downloads/aemDocuments/documents/MSLD/ProductDocuments/DataSheets/20005385C.pdf)**
- **[MCP6V81/1U/2/4: Zero-Drift, 5 MHz, 1.8V to 5V](https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/20005419B.pdf)**

General Description

The Microchip Technology MCP6V51/2/4 operational amplifiers employ dynamic offset correction for very low offset and offset drift. These devices have a gain bandwidth product of 2 MHz (typical). They are unity gain stable, have virtually no 1/f noise, and have an excellent Power Supply Rejection Ratio (PSRR) and Common-Mode Rejection Ratio (CMRR). These products operate with a single or dual supply voltage that can range from $4.5V$ to $45V$ ($\pm 2.25V$ to $\pm 22.5V$), while drawing 470 µA/amp (typical) of quiescent current.

The MCP6V51/2/4 op amps are offered as single, dual and quad channel amplifiers, and are designed using an advanced CMOS process.

Typical Application Circuit

[Figure 1](#page-1-0) and [Figure 2](#page-1-1) show input offset voltage versus ambient temperature for different power supply voltages.

FIGURE 1: Input Offset Voltage vs. Ambient Temperature with V_{DD} = 4.5V

FIGURE 2: Input Offset Voltage vs. Ambient Temperature with V_{DD} = 45V

As seen in [Figure 1](#page-1-0) and [Figure 2](#page-1-1), the MCP6V51/2/4 op amps have excellent performance across temperature.

The input offset voltage temperature drift (TC_1) shown is well within the specified maximum values of:

31 nV/°C at $V_{DD} = 4.5V$ and 36 nV/°C at $V_{DD} = 45V$.

This performance supports applications with stringent DC precision requirements. In many cases, it is not necessary to correct for temperature effects (i.e., calibrate) in a design. In the other cases, the correction is small.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Rating[s†](#page-2-1)

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note 1: The inputs are clamped by internal back-to-back diodes. If differential input voltages exceed ±9V, the current must be limited to 5 mA or less. Also, see **[Section 4.2.1 "Input Protection"](#page-21-0).**

1.2 Electrical Specifications

DC ELECTRICAL SPECIFICATIONS

Note 1: Not production tested. Limits set by characterization and/or simulation and provided as design guidance only.

2: [Figure 2-17](#page-11-0) shows how V_{CML} and V_{CMH} changed across temperature for the first production lot.

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Note 1: Not production tested. Limits set by characterization and/or simulation and provided as design guidance only.

2: Figure 2-17 shows how V_{CML} and V_{CMH} changed across temperature for the first production lot.

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Note 1: Not production tested. Limits set by characterization and/or simulation and provided as design guidance only.

2: Figure 2-17 shows how V_{CML} and V_{CMH} changed across temperature for the first production lot.

AC ELECTRICAL SPECIFICATIONS

Note 1: Behavior may vary with different gains; see **[Section 4.3.3 "Offset at Power-up"](#page-23-0)**.

2: t_{STL} and t_{ODR} include some uncertainty due to clock edge timing.

TEMPERATURE SPECIFICATIONS

Note 1: Operation must not cause T_J to exceed Maximum Junction Temperature specification (+150°C).

1.3 Timing Diagrams

The Timing Diagrams provide a depiction of the Amplifier Step Response specifications listed under the **[AC Electrical Specifications](#page-5-3)** table.

FIGURE 1-1: Amplifier Start-up

FIGURE 1-2: Offset Correction Settling Time

FIGURE 1-3: Output Overdrive Recovery

1.4 Test Circuits

The circuits used for most DC and AC tests are shown in [Figure 1-4](#page-6-0) and [Figure 1-5.](#page-6-1) Lay the bypass capacitors out as discussed in **[Section 4.3.10 "Supply Bypassing](#page-25-0)** [and Filtering"](#page-25-0). R_N is equal to the parallel combination of R_F and R_G to minimize bias current effects.

FIGURE 1-4: AC and DC Test Circuit for Most Noninverting Gain Conditions

FIGURE 1-5: AC and DC Test Circuit for Most Inverting Gain Conditions

The circuit in [Figure 1-6](#page-6-2) tests the input's dynamic behavior (i.e., $t_{\text{STR}}, t_{\text{STL}}$ and t_{ODR}). The potentiometer balances the resistor network (V_{OUT} should equal V_{REF} at DC). The op amp's Common-Mode Input Voltage is V_{CM} = $V_{IN}/3$. The error at the input (V_{ERR}) appears at V_{OUT} with a noise gain of approximately 10 V/V.

FIGURE 1-6: Test Circuit for Dynamic Input Behavior

NOTES:

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +4.5V$ to $+45V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, V_L = V_{DD}/2, R_L = 10 kΩ to V_L and C_L = 100 pF.

2.1 DC Input Precision

FIGURE 2-1: Input Offset Voltage

FIGURE 2-3: Input Offset Voltage vs. Power Supply Voltage

FIGURE 2-4: Input Offset Voltage vs. Output Voltage with V_{DD} = 4.5V

FIGURE 2-5: Input Offset Voltage vs. Output Voltage with V_{DD} = 45V

FIGURE 2-6: Input Offset Voltage vs. Common-Mode Voltage with V_{DD} = 4.5V

FIGURE 2-7: Input Offset Voltage vs. Common-Mode Voltage with V_{DD} = 45V

FIGURE 2-9: PSRR

FIGURE 2-11: CMRR and PSRR vs. Ambient Temperature

FIGURE 2-12: DC Open-Loop Gain vs. Ambient Temperature

FIGURE 2-13: Input Bias and Offset Currents vs. Common-Mode Input Voltage with T_A = +85 $^{\circ}$ C

FIGURE 2-14: Input Bias and Offset Currents vs. Common-Mode Input Voltage with T_A = +125 $^{\circ}$ C

FIGURE 2-15: Input Bias and Offset Currents vs. Ambient Temperature with $V_{DD} = 45V$

FIGURE 2-16: Input Bias Current vs. Input Voltage (Below V_{SS})

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +4.5V$ to $+45V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, R_L = 10 kΩ to V_L and C_L = 100 pF.

2.2 Other DC Voltages and Currents

FIGURE 2-17: Input Common-Mode Voltage Headroom (Range) vs. Ambient Temperature

FIGURE 2-18: Output Voltage Headroom vs. Output Current

FIGURE 2-19: Output Voltage Headroom vs. Ambient Temperature

*FIGURE 2-20: Output Voltage Headroom vs. Temperature RL = 10 k*Ω

FIGURE 2-21: Output Short-Circuit Current vs. Power Supply Voltage

Supply Voltage

FIGURE 2-22: Supply Current vs. Power

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +4.5V to +45V, V_{SS} = GND, V_{CM} = $V_{DD}/3$, V_{OUT} = $V_{DD}/2$, $V_L = V_{DD}/2$, R_L = 10 kΩ to V_L and C_L = 100 pF.

2.3 Frequency Response

Frequency

FIGURE 2-24: Open-Loop Gain vs. Frequency with $V_{DD} = 4.5V$

FIGURE 2-25: Open-Loop Gain vs. Frequency with V_{DD} = 45V

FIGURE 2-26: Gain Bandwidth Product and Phase Margin vs. Ambient Temperature

FIGURE 2-27: Gain Bandwidth Product and Phase Margin vs. Common-Mode Input Voltage

FIGURE 2-28: Closed-Loop Output Impedance vs. Frequency with V_{DD} = 4.5V

FIGURE 2-29: Closed-Loop Output Impedance vs. Frequency with V_{DD} = 45V

FIGURE 2-30: Maximum Output Voltage Swing vs. Frequency

FIGURE 2-32: Channel-to-Channel Crosstalk (MCP6V52)

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +4.5V$ to $+45V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, R_L = 10 kΩ to V_L and C_L = 100 pF.

2.4 Input Noise

FIGURE 2-33: Input Noise Voltage Density and Integrated Input Noise Voltage vs. Frequency

FIGURE 2-34: Input Noise vs. Time with 1 Hz and 10 Hz Filters and $V_{DD} = 4.5V$

FIGURE 2-35: Input Noise vs. Time with 1 Hz and 10 Hz Filters and V_{DD} = 45V

Note: Unless otherwise indicated, $T_A = +25^{\circ}$ C, $V_{DD} = +4.5V$ to $+45V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, R_L = 10 kΩ to V_L and C_L = 100 pF.

2.5 Time Response

FIGURE 2-36: Input Offset Voltage vs. Time with Temperature Change

FIGURE 2-37: Input Offset Voltage vs. Time at Power-up

FIGURE 2-38: The MCP6V51/2/4 Shows No Input Phase Reversal with Overdrive

FIGURE 2-39: Noninverting Small Signal Step Response

FIGURE 2-40: Noninverting Large Signal Step Response

Response

FIGURE 2-42: Inverting Small Signal Step Response

Response

FIGURE 2-43: Inverting Large Signal Step

FIGURE 2-44: Inverting 40 V_{PP} Step Response

FIGURE 2-45: Slew Rate vs. Ambient Temperature

FIGURE 2-46: Output Overdrive Recovery vs. Time with G = -10 V/V

FIGURE 2-47: Output Overdrive Recovery Time vs. Inverting Gain

NOTES:

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in [Table 3-1](#page-18-0).

MCP6V51		MCP6V52		MCP6V54		
SOT23-5	MSOP-8	SOIC-8	MSOP-8	SOIC-14	Symbol	Description
	6				VOUT, VOUTA	Analog Output (Op Amp A)
4	$\overline{2}$	2	2	$\overline{2}$	V_{IN} , V_{INA} -	Inverting Input (Op Amp A)
3	3	3	3	3	V_{IN} +, V_{INA} +	Noninverting Input (Op Amp A)
5	7	8	8	4	V_{DD}	Positive Power Supply
		5	5	5	V_{INB} +	Noninverting Input (Op Amp B)
		6	6	6	V_{INB} -	Inverting Input (Op Amp B)
		7	7	7	V _{OUTB}	Output (Op Amp B)
				8	VOUTC	Output (Op Amp C)
				9	V _{INC}	Inverting Input (Op Amp C)
				10	V_{INC} +	Noninverting Input (Op Amp C)
2	4	4	4	11	V_{SS}	Negative Power Supply
				12	$VIND$ +	Noninverting Input (Op Amp D)
				13	V _{IND}	Inverting Input (Op Amp D)
				14	VOUTD	Output (Op Amp D)
	1, 5, 8				NC	Do Not Connect (no internal connection)

TABLE 3-1: PIN FUNCTION TABLE

3.1 Analog Outputs (V_{OUT}, V_{OUTA}, **VOUTB, VOUTC, VOUTD)**

The analog output pins (V_{OUT}) are low-impedance voltage sources.

3.2 Analog Inputs (V_{IN}+, V_{IN}-, V_{INA}+, **V_{INA}-, V_{INB}+, V_{INB}-, V_{INC}-, V_{INC}+, VIND-, VIND+)**

The noninverting and inverting inputs $(V_{IN}+, V_{IN}-, ...)$ are high-impedance CMOS inputs with low bias currents.

3.3 Power Supply Pins

The positive power supply (V_{DD}) is 4.5V to 45V higher than the negative power supply (V_{SS}) . For normal operation, the other pins are between V_{SS} and V_{DD} .

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} requires bypass capacitors.

NOTES:

4.0 APPLICATIONS

The MCP6V51/2/4 devices are designed for precision applications with requirements for small packages and low power. Their wide supply voltage range and low quiescent current make the MCP6V51/2/4 devices ideal for industrial applications.

4.1 Overview of Zero-Drift Operation

[Figure 4-1](#page-20-0) shows a simplified diagram of the MCP6V5X zero-drift op amp. This diagram explains how slow voltage errors are reduced in this architecture (much better V_{OS} , $\Delta V_{OS}/\Delta T_A$ (TC₁), CMRR, PSRR, A_{OL} and 1/f noise).

FIGURE 4-1: Simplified Zero-Drift Op Amp Functional Diagram

4.1.1 BUILDING BLOCKS

The main amplifier is designed for high gain and bandwidth, with a differential topology. Its main input pair (+ and – pins at the top left) is used for the higher frequency portion of the input signal. Its auxiliary input pair (+ and – pins at the bottom left) is used for the low-frequency portion of the input signal and corrects the op amp's input offset voltage. Both inputs are added together internally.

The auxiliary amplifier, chopper input switches and chopper output switches provide a high DC gain to the input signal. DC errors are modulated to higher frequencies, while white noise is modulated to low frequency.

The low-pass filter reduces high-frequency content, including harmonics of the chopping clock.

The output buffer drives external loads at the V_{OUT} pin $(V_{RFF}$ is an internal reference voltage).

The oscillator runs at $f_{OSC1} = 200$ kHz. Its output is divided by two to produce the chopping clock rate of f_{CHOP} = 100 kHz.

The internal Power-on Reset (POR) starts the part in a known good state, protecting against power supply brown-outs.

The digital control block controls switching and POR events.

4.1.2 CHOPPING ACTION

[Figure 4-2](#page-20-1) shows the amplifier connections for the first phase of the chopping clock and [Figure 4-3](#page-20-2) shows the connections for the second phase. Its slow voltage errors alternate in polarity, making the average error small.

FIGURE 4-2: First Chopping Clock Phase; Equivalent Amplifier Diagram

FIGURE 4-3: Second Chopping Clock Phase; Equivalent Amplifier Diagram

4.2 Other Functional Blocks

4.2.1 INPUT PROTECTION

The MCP6V5X op amps can be operated on a single supply, voltage ranging from 4.5V to 45V, or in a splitsupply application $(\pm 2.25V)$ to $\pm 22.5V$). The input Common-mode range extends below the negative rail, $V_{\text{CMI}} = V_{\text{SS}} - 0.3V$ at +25°C, while maintaining high CMRR (135 dB min. at 45 V_{DD}). The upper range of the input Common-mode is limited to V_{CMH} = V_{DD} – 2.1V. To ensure proper operation, these V_{CM} limits, along with any potential overvoltage/current conditions as described in the following paragraphs, should be taken into consideration.

4.2.1.1 Phase Reversal

The input circuitry of the MCP6V5X amplifiers is designed to not exhibit phase reversal when the input pins (V_{IN} +, V_{IN} -) exceed the supply voltages. Typically, an amplifier is most susceptible to phase reversal when operated in a unity gain buffer configuration, where the input is prone to be driven beyond the specified Common-mode voltage range.

FIGURE 4-4: No Phase Reversal

[Figure 4-4](#page-21-1) shows an input voltage exceeding the supply voltages by 0.5V for each rail. The output voltage remains railed with no phase inversion while the input is overdriven. For this particular example, the supply voltage was kept lower in order to help visualize the relationship between the input and output voltages during an Overvoltage condition.

4.2.1.2 Input Voltage Limits

In order to prevent damage and/or improper operation of these amplifiers, the surrounding circuit must limit the voltage levels seen by the amplifier's input pins to within the specified limits (see **[Section 1.1 "Absolute](#page-2-4) [Maximum Ratings†"](#page-2-4)**). This input voltage limit requirement is independent of the current limits discussed later on.

[Figure 4-5](#page-21-2) illustrates the principle ESD protection scheme used for the MCP6V5X amplifiers. Each input is protected by a set of primary and secondary steering diodes in addition to series resistance. Furthermore, a set of anti-parallel diodes protect the input transistors from seeing a large differential voltage. This structure was chosen to protect the input transistors against many (but not all) ESD and Overvoltage conditions, while also minimizing the effects of additional input bias currents (I_{Bias}) resulting from the leakage current of the ESD devices. Note that this leakage current is temperature-dependent and dominates at higher temperatures (see [Figure 2-15](#page-10-0)).

FIGURE 4-5: Simplified Analog Input ESD Structures

The input ESD diodes clamp the inputs when they try to go more than one diode drop below V_{SS} . They also clamp any voltages well above V_{DD} . Their breakdown voltage is high enough to allow normal operation, but not low enough to protect against slow overvoltage (beyond V_{DD}) events. Very fast ESD events (that meet the specification) are limited so that damage can largely be prevented. The internal ESD protection scheme is intended to protect the device during the test, assembly and manufacturing process. Note that the internal protection is not intended to be used as clamping or limiting devices for sustained in-circuit operation. If such Overvoltage (i.e., exceeding the supply rails by more than 0.5V) and/or Overcurrent conditions (i.e., current flow at each input pin exceeding 5 mA) are expected as part of the application circuit, external protection devices may be needed.

[Figure 4-6](#page-22-0) shows one approach of protecting the inputs against Overvoltage conditions with external diodes. The device marked as D_{Fxt} may be small-signal silicon diodes, or Schottky diodes, for lower clamping voltages, or diode connected FETs for low leakage. Depending on the application, the additional diode capacitance should be considered.

FIGURE 4-6: Protecting the Analog Inputs Against High Voltages

A current limit resistor (R_{Limit}) may be needed to prevent excessive current flow through the external diodes (D_{Ext}). If the amplifier's input is subjected to Overvoltage conditions as part of the application, an additional resistor (R_{IN}) in series with the vulnerable input pin (here V_{IN} +) may be needed to limit the Fault current to a safe level (e.g., 2 mA).

4.2.1.3 Input Current Limits

In order to prevent damage and/or improper operation of these amplifiers, the circuit must limit the currents into the input pins (see **[Section 1.1 "Absolute Maximum](#page-2-4) [Ratings†"](#page-2-4)**). This requirement is independent of the voltage limits discussed previously. [Figure 4-7](#page-22-1) shows one approach to protect these inputs. The R1 and R2 resistors limit the possible current in or out of the input pins (and into D1 and D2).

FIGURE 4-7: Protecting the Analog Inputs Against High Currents

It is also possible to connect the diodes to the left of the R1 and R2 resistors. In this case, the currents through the D1 and D2 diodes need to be limited by some other mechanism (see [Figure 4-6](#page-22-0)). The resistors then serve as inrush current limiters; the DC current into the input pins (V_{IN} + and V_{IN} -) should be very small.

A significant amount of current can flow out of the inputs (through the ESD diodes) when the Commonmode Voltage (V_{CM}) is below ground (V_{SS}). See [Figure 2-16](#page-10-1) for further details.

4.2.2 INTEGRATED EMI FILTER

The MCP6V5X op amps have an integrated low-pass filter in their inputs for the dedicated purpose of reducing any Electromagnetic or RF Interference (EMI, RFI). The on-chip filter is designed as a second-order RC low-pass, which sets a bandwidth limit of approximately 115 MHz and attenuates the highfrequency interference. Performance results of the MCP6V51/2/4 devices' EMI Rejection Ratio (EMIRR) under various conditions can be seen in [Figure 2-31.](#page-13-0)

4.2.3 RAIL-TO-RAIL OUTPUT

The output voltage range of the MCP6V51/2/4 zero-drift op amps is typically V_{DD} – 100 mV and V_{SS} + 50 mV when R_L = 10 kΩ is connected to $V_{DD}/2$ and V_{DD} = 45V. Refer to [Figure 2-18,](#page-11-2) [Figure 2-19](#page-11-3) and [Figure 2-20](#page-11-4) for more information.

4.2.4 THERMAL SHUTDOWN

Under certain operating conditions, the MCP6V5X amplifier can be subjected to a rise of its die temperature above the specified maximum junction temperature of +150°C. To control possible overheating and damage, the MCP6V5X amplifier has internal thermal shutdown circuitry. Especially when operating with the maximum supply voltage of 45V, observe that the ambient temperature and/or the amplifier's output current are such that the junction temperature remains below the specified limit. To estimate the Junction Temperature (T_{J}) , consider these factors: the total Power Dissipation of the device (P_D) and the Ambient Temperature at the device package (T_A) , and use [Equation 4-1](#page-22-2) below.

EQUATION 4-1:

$$
T_J = P_D \times \theta_{JA} + T_A
$$

Where:

 θ_{JA} = The thermal resistance between the die and the ambient environment, as shown in [Temperature Specifications](#page-5-4)

To derive the power dissipation of the device, add the terms for the devices' quiescent power and the load power, as shown in [Equation 4-2:](#page-23-1)

EQUATION 4-2:

$$
P_D = (V_{DD} - V_{SS}) \times I_Q + I_{OUT} \times (V_{DD} - V_{OUT})
$$

This assumes that the device is sourcing the load current (i.e., current flowing from the V_{DD} supply into the load). Use the term (I_{OUT} × (V_{OUT} – V_{SS})) when the device is sinking current. Note that this simple example assumes a constant (DC) signal current flow.

The thermal shutdown circuitry activates as soon as the junction temperature reaches approximately +175°C, causing the amplifier's output stage to be tristated (high-impedance), effectively disabling any output current flow. The amplifier remains in this disabled state until the junction temperature has cooled down to approximately +160°C. At this point, the thermal shutdown circuitry enables the output stage of the MCP6V5X amplifier and the device resumes normal operation.

If a Fault condition persists, for example, the amplifier's output (V_{OUT}) is shorted causing excessive output current, the thermal shutdown circuity may be triggered again and the previously described cycle repeats. This may continue until the Fault condition is removed.

It should be noted that the thermal shutdown feature of the MCP6V5X does not ensure that the device remains undamaged when operated under stress conditions, during which the device is placed into the Shutdown mode.

4.3 Application Tips

4.3.1 INPUT OFFSET VOLTAGE OVER **TEMPERATURE**

The **[DC Electrical Specifications](#page-2-5)** table gives both the linear and quadratic temperature coefficients (TC_1 and TC_2) of the input offset voltage. The input offset voltage, at any temperature in the specified range, can be calculated as follows:

EQUATION 4-3:

$$
V_{OS}(T_A) = V_{OS} + TC_1AT + TC_2AT^2
$$

Where:

 $\Delta T = T_A - 25$ °C

 $V_{OS}(T_A)$ = Input offset voltage at T_A

 V_{OS} = Input offset voltage at +25°C

 TC_1 = Linear temperature coefficient

 TC_2 = Quadratic temperature coefficient

4.3.2 DC GAIN PLOTS

[Figure 2-8,](#page-9-0) [Figure 2-9](#page-9-1) and [Figure 2-10](#page-9-2) are histograms of the reciprocals (in units of µV/V) of CMRR, PSRR and A_{OL} , respectively. They represent the change in Input Offset Voltage (V_{OS}) with a change in Common-Mode Input Voltage (V_{CM}) , Power Supply Voltage (V_{DD}) and Output Voltage (V_{OUT}).

The $1/A_{OL}$ histogram is centered near 0 µV/V because the measurements are dominated by the op amp's input noise. The negative values shown represent noise and tester limitations, *not* unstable behavior. Production tests make multiple V_{OS} measurements, which validate an op amp's stability; an unstable part would show greater V_{OS} variability or the output would stick at one of the supply rails.

4.3.3 OFFSET AT POWER-UP

When these parts power up, the Input Offset (V_{OS}) starts at its uncorrected value (usually less than ±5 mV). Circuits with high DC gain may cause the output to reach one of the two rails. In this case, the time to a valid output is delayed by an Output Overdrive Time (t_{ODR}), in addition to the Start-up Time (t_{STR}).

To avoid this extended start-up time, reducing the gain is one method. Adding a capacitor across the Feedback Resistor (R_F) is another method.

4.3.4 SOURCE RESISTANCES

The input bias currents have two significant components: switching glitches that dominate at room temperature and below, and input ESD diode leakage currents that dominate at +85°C and above.

Make the resistances seen by the inputs small and equal. This minimizes the output offset voltage caused by the input bias currents.

The inputs should see a resistance in the order of 10 Ω to 1 kΩ at high frequencies (i.e., above 1 MHz). This helps minimize the impact of switching glitches, which are very fast, on overall performance. In some cases, it may be necessary to add resistors in series with the inputs to achieve this improvement in performance.

Small input resistances may be needed for high gains. Without them, parasitic capacitances might cause positive feedback and instability.

4.3.5 SOURCE CAPACITANCE

The capacitances seen by the two inputs should be small. Large input capacitances and source resistances, together with high gain, can lead to instability.

4.3.6 CAPACITIVE LOADS

Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. These zero-drift op amps have a different output impedance compared to standard linear op amps, due to their unique topology.

When driving a capacitive load with these op amps, a series resistor at the output $(R_{ISO}$ in [Figure 4-9\)](#page-24-0) improves the feedback loop's phase margin (stability) by making the output load resistive at higher frequencies. The bandwidth is generally lower than the bandwidth with no capacitive load.

[Figure 4-8](#page-24-1) gives recommended R_{ISO} values for different capacitive loads and gains. The x-axis is the Load Capacitance (C_L) . The y-axis is the Resistance (R_{ISO}) .

 G_N is the circuit's noise gain. For noninverting gains, G_N and the signal gain are equal. For inverting gains, G_N is 1+|Signal Gain| (e.g., -1 V/V gives G_N = +2 V/V).

FIGURE 4-8: Recommended RISO Values for Capacitive Loads

After selecting R_{ISO} for your circuit, double check the resulting frequency response peaking and step response overshoot. Modify the R_{ISO} value until the response is reasonable. Bench evaluation is helpful.

4.3.7 STABILIZING OUTPUT LOADS

This family of zero-drift op amps has an output impedance [\(Figure 2-28](#page-12-0) and [Figure 2-29](#page-13-1)) that has a double zero when the gain is low. This can cause a large phase shift in feedback networks that have lowimpedance near the part's crossover frequency. This phase shift can cause stability problems.

[Figure 4-9](#page-24-0) shows that the load on the output is $(R_L + R_{ISO}) || (R_F + R_G)$, where R_{ISO} is before the load. This load needs to be large enough to maintain stability; it is recommended to design for a total load of 10 kΩ, or higher.

FIGURE 4-9: Output Resistor, R_{ISO} Stabilizes Capacitive Loads

4.3.8 GAIN PEAKING

[Figure 4-10](#page-24-2) shows an op amp circuit that represents noninverting amplifiers (V_M is a DC voltage and V_P is the input) or inverting amplifiers (V_P is a DC voltage and V_M is the input). The C_N and C_G capacitances represent the total capacitance at the input pins. They include the op amp's Common-mode input capacitance (C_{CM}) , board parasitic capacitance and any capacitor placed in parallel. The C_{FP} capacitance represents the parasitic capacitance coupling between the output and the noninverting input pins.

FIGURE 4-10: Amplifier with Parasitic Capacitance

 C_G acts in parallel with R_G (except for a gain of +1 V/V), which causes an increase in gain at high frequencies. C_G also reduces the phase margin of the feedback loop, which becomes less stable. This effect can be reduced by either reducing C_G or $R_F||R_G$.

 C_N and R_N form a low-pass filter that affects the signal at V_P. This filter has a single real pole at $1/(2\pi R_N C_N)$.

The largest value of R_F that should be used depends on the noise gain (see G_N in **[Section 4.3.6](#page-24-3)** ["Capacitive Loads"](#page-24-3)), C_G and the open-loop gain's phase shift. An approximate limit for R_F is shown in [Equation 4-4.](#page-24-4)

EQUATION 4-4:

$$
R_F \leq 10 \, k\Omega \times \frac{3.5 \, pF}{C_G} \times G_N^2
$$

Some applications may modify these values to reduce either output loading or gain peaking (step response overshoot).

At high gains, R_N needs to be small in order to prevent positive feedback and oscillations. Large C_N values can also help.

4.3.9 REDUCING UNDESIRED NOISE AND SIGNALS

Reduce undesired noise and signals with:

- Low Bandwidth Signal Filters:
	- Minimize random analog noise
	- Reduce interfering signals
- Good PCB Layout Techniques:
	- Minimize crosstalk
	- Minimize parasitic capacitances and inductances that interact with fast switching edges
- Good Power Supply Design:
	- Isolation from other parts
	- Filtering of interference on supply line(s)

4.3.10 SUPPLY BYPASSING AND FILTERING

With this operational amplifier, the power supply pins (only V_{DD} for single supply) should have a low-ESR ceramic bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm of the pins for good high-frequency decoupling.

It is recommended to place a bulk capacitor (i.e., $1 \mu F$ or larger) within 100 mm of the device to provide large, slow currents. This bulk capacitor can be shared with other low-noise analog parts.

In some cases, high-frequency power supply noise (e.g., Switched-Mode Power Supplies) may cause undue intermodulation distortion with a DC offset shift; this noise needs to be filtered. Adding a small resistor or ferrite bead into the supply connection can be helpful.

4.3.11 PCB DESIGN FOR DC PRECISION

In order to achieve DC precision on the order of ± 1 µV, many physical errors need to be minimized. The design of the Printed Circuit Board (PCB), the wiring and the thermal environment have a strong impact on the precision achieved. A poor PCB design can easily be more than 100 times worse than the MCP6V51/2/4 op amps' specifications.

4.3.11.1 PCB Layout

Any time two dissimilar metals are joined together, a temperature-dependent voltage appears across the junction (the Seebeck or thermojunction effect). This effect is used in thermocouples to measure temperature. The following are examples of thermojunctions on a PCB:

- Components (resistors, op amps, …) soldered to a copper pad
- Wires mechanically attached to the PCB
- Jumpers
- Solder joints
- PCB vias

Typical thermojunctions have temperature-to-voltage conversion coefficients of 1 to 100 µV/°C (sometimes higher).

Microchip's Application Note – AN1258, "*Op Amp Precision Design: PCB Layout Techniques*" (DS01258) contains in-depth information on PCB layout techniques that minimize thermojunction effects. It also discusses other effects, such as crosstalk, impedances, mechanical stresses and humidity.

4.3.11.2 Crosstalk

DC crosstalk causes offsets that appear as a larger input offset voltage. Common causes include:

- Common-mode noise (remote sensors)
- Ground loops (current return paths)
- Power supply coupling

Interference from the mains (usually 50 Hz or 60 Hz) and other AC sources can also affect the DC performance. Nonlinear distortion can convert these signals to multiple tones, including a DC shift in voltage. When the signal is sampled by an ADC, these AC signals can also be aliased to DC, causing an apparent shift in offset.

To reduce interference:

- Keep traces and wires as short as possible
- Use shielding
- Use ground plane (at least a star ground)
- Place the input signal source near the DUT
- Use good PCB layout techniques
- Use a separate power supply filter (bypass capacitors) for these zero-drift op amps

4.3.11.3 Miscellaneous Effects

Keep the resistances seen by the input pins as small, and as near to equal as possible, to minimize bias current related offsets.

Make the (trace) capacitances seen by the input pins small and equal. This is helpful in minimizing switching glitch induced offset voltages.

Bending a coax cable with a radius that is too small causes a small voltage drop to appear on the center conductor (the triboelectric effect). Make sure the bending radius is large enough to keep the conductors and insulation in full contact.

Mechanical stresses can make some capacitor types (such as some ceramics) output small voltages. Use more appropriate capacitor types in the signal path and minimize mechanical stresses and vibration.

Humidity can cause electrochemical potential voltages to appear in a circuit. Proper PCB cleaning helps, as does the use of encapsulants.

4.4 Typical Applications

4.4.1 LOW-SIDE CURRENT SENSE

The Common-mode input range of the MCP6V51/2/4 typically extends to 0.3V below ground (V_{SS}) , which makes this amplifier a good choice for low-side current sense application, especially where an operation on higher supply voltages is required. One such example is shown in [Figure 4-11.](#page-26-0) Here, the Load Current (I_L) ranges from 0A to 1.5A, which results in a voltage drop across the shunt resistor of 0 to 75 mV. The gain on the MCP6V51/2/4 is set to 201 V/V, which gives an output voltage range of about 0V to +15V.

FIGURE 4-11: Low-Side Current Sense for 1.5A Maximum Load Current

This circuit example can be adapted to a wide range of similar applications:

- For V_{DD} voltages from 4.5V up to 45V
- Adjusting the shunt resistor and/or gain for higher or lower load currents.

Because the MCP6V51/2/4 has a very low offset drift and virtually no 1/f noise, very small shunt resistor values can be selected, which helps in mediating the heating and size problems that may arise in such applications.

4.4.2 WHEATSTONE BRIDGE

Many sensors are configured as Wheatstone bridges. Strain gauges and pressure sensors are two common examples. These signals can be small, and the Common-mode noise can be large. Amplifier designs with high differential gain are desirable.

[Figure 4-12](#page-26-1) shows how to interface to a Wheatstone bridge with a minimum of components. Because the circuit is not symmetric, the ADC input is single-ended and there is a minimum of filtering; the CMRR is good enough for moderate Common-mode noise.

FIGURE 4-12: Simple Design

[Figure 4-13](#page-27-0) shows a higher performance circuit for a Wheatstone bridge signal conditioning design. This example offers a symmetric, high-impedance load to the bridge with superior CMRR performance. It maintains this high CMRR by driving the signal differentially into the ADC.

FIGURE 4-13: Higher Performance Design

4.4.3 RTD SENSOR

The ratiometric circuit in [Figure 4-14](#page-27-1) conditions a two-wire RTD for applications with a limited temperature range. U_1 acts as a difference amplifier with a low-frequency pole. The sensor's Wiring Resistance (R_W) is corrected in firmware. Failure (open) of the RTD is detected by an out-of-range voltage.

5.0 DESIGN AIDS

Microchip provides the basic design aids needed for the MCP6V51/2/4 op amp.

5.1 Microchip Advanced Part Selector (MAPS)

MAPS is a software tool that helps efficiently identify Microchip devices that fit a particular design requirement. Available at no cost from the Microchip website at [www.microchip.com/maps,](http://www.microchip.com/maps/main.aspx???) MAPS is an overall selection tool for Microchip's product portfolio that includes Analog, Memory, MCUs and DSCs. Using this tool, a customer can define a filter to sort features for a parametric search of devices and export side-by-side technical comparison reports. Helpful links are also provided for data sheets, purchases and sampling of Microchip parts.

5.2 Analog Demonstration and Evaluation Boards

Microchip offers a broad spectrum of Analog Demonstration and Evaluation Boards that are designed to help customers achieve faster time to market. For a complete listing of these boards and their corresponding user's guides and technical information, visit the Microchip website at [www.microchip.com/](www.microchip.com/analogtools) [analog tools](www.microchip.com/analogtools).

Some boards that are especially useful are:

- MCP6V01 Thermocouple Auto-Zeroed Reference Design (P/N MCP6V01RD-TCPL)
- MCP6XXX Amplifier Evaluation Board 1 (P/N DS51667)
- MCP6XXX Amplifier Evaluation Board 2 (P/N DS51668)
- MCP6XXX Amplifier Evaluation Board 3 (P/N DS51673)
- MCP6XXX Amplifier Evaluation Board 4 (P/N DS51681)
- Active Filter Demo Board Kit (P/N DS51614)
- 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board (P/N SOIC8EV)
- 14-Pin SOIC/TSSOP/DIP Evaluation Board (P/N SOIC14EV)

5.3 Application Notes

The following Microchip Application Notes are available on the Microchip website a[t www.microchip.](http://www.microchip.com/wwwcategory/TaxonomySearch.aspx?show=Application%20Notes&ShowField=no) [com/appnotes](http://www.microchip.com/wwwcategory/TaxonomySearch.aspx?show=Application%20Notes&ShowField=no) and are recommended as supplemental reference resources.

- ADN003, *"Select the Right Operational Amplifier for your Filtering Circuits"* (DS21821)
- AN722, *"Operational Amplifier Topologies and DC Specifications"* (DS00722)
- AN723, *"Operational Amplifier AC Specifications and Applications"* (DS00723)
- AN884, *"Driving Capacitive Loads With Op Amps"* (DS00884)
- AN990, *"Analog Sensor Conditioning Circuits An Overview"* (DS00990)
- AN1177, *"Op Amp Precision Design: DC Errors"* (DS01177)
- AN1228, *"Op Amp Precision Design: Random Noise*" (DS01228)
- AN1258, *"Op Amp Precision Design: PCB Layout Techniques"* (DS01258)

6.0 PACKAGING INFORMATION

8-Lead MSOP **(MCP6V51, MCP6V52)** Example

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

Microchip Technology Drawing C04-091-OT Rev H Sheet 1 of 2

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

SHEET 1

Notes:

protrusions shall not exceed 0.25mm per side. 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-091-OT Rev H Sheet 2 of 2

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

RECOMMENDED LAND PATTERN

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091-OT Rev H

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: http://www.microchip.com/packaging For the most current package drawings, please see the Microchip Packaging Specification located at

Microchip Technology Drawing C04-111-MS Rev F Sheet 1 of 2

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111-MS Rev F Sheet 2 of 2

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

RECOMMENDED LAND PATTERN

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2111-MS Rev F

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Microchip Technology Drawing No. C04-057-SN Rev K Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- protrusions shall not exceed 0.15mm per side. 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or
- 4. Dimensioning and tolerancing per ASME Y14.5M
	- BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-SN Rev K Sheet 2 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

RECOMMENDED LAND PATTERN

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-SN Rev K

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 1 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- or protrusion, which shall not exceed 0.25 mm per side. 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash
- 4. Dimensioning and tolerancing per ASME Y14.5M
	- BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 2 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **Note:**

RECOMMENDED LAND PATTERN

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065-SL Rev D

NOTES:

APPENDIX A: REVISION HISTORY

Revision D (May 2023)

- 1. Added **[Product Identification System](#page-47-0) [\(Automotive\)](#page-47-0)** section.
- 2. Updated **[Section 6.0 "Packaging](#page-29-0) [Information"](#page-29-0)**.
- 3. Updated **[Section 3.0 "Pin Descriptions"](#page-18-1)**.

Revision C (January 2023)

- 1. Updated **[Features](#page-0-0)** section.
- 2. Updated **[Electrical Specifications](#page-2-6)** section.
- 3. Updated **[Packaging Information](#page-29-0)** section.
- 4. Updated **[Product Identification System](#page-46-0)** section.

Revision B (May 2022)

1. Added MCP6V52 and MCP6V54 devices.

Revision A (December 2018)

1. Initial release of this document.

MCP6V51

NOTES:

٠

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PRODUCT IDENTIFICATION SYSTEM (AUTOMOTIVE)

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at [https://](https://www.microchip.com/en-us/support/design-help/client-support-services) [www.microchip.com/en-us/support/design-help/client-support](https://www.microchip.com/en-us/support/design-help/client-support-services)[services.](https://www.microchip.com/en-us/support/design-help/client-support-services)

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018-2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2345-8

[For information regarding Microchip's Quality Management Systems,](www.microchip.com/quality) [please visit](www.microchip.com/quality) www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: [http://www.microchip.com/](http://support.microchip.com) support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733 **China - Beijing**

Tel: 86-10-8569-7000 **China - Chengdu** Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 **India - Pune**

Tel: 91-20-4121-0141 **Japan - Osaka**

Tel: 81-6-6152-7160 **Japan - Tokyo**

Tel: 81-3-6880- 3770 **Korea - Daegu**

Tel: 82-53-744-4301 **Korea - Seoul**

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366 **Taiwan - Kaohsiung**

Taiwan - Taipei Tel: 886-2-2508-8600

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Israel - Ra'anana Tel: 972-9-744-7705

> **Italy - Milan** Tel: 39-0331-742611 Fax: 39-0331-466781

EUROPE Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 **Denmark - Copenhagen** Tel: 45-4485-5910 Fax: 45-4485-2829 **Finland - Espoo** Tel: 358-9-4520-820 **France - Paris** Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany - Garching** Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400 **Germany - Heilbronn** Tel: 49-7131-72400 **Germany - Karlsruhe** Tel: 49-721-625370 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 **Germany - Rosenheim** Tel: 49-8031-354-560

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Tel: 48-22-3325737

Tel: 40-21-407-87-50

Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Tel: 886-7-213-7830

Thailand - Bangkok Tel: 66-2-694-1351

Poland - Warsaw

Romania - Bucharest

Spain - Madrid Tel: 34-91-708-08-90