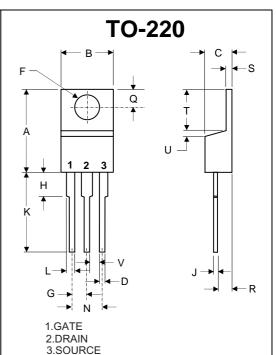


Micro Commercial Components

Micro Commercial Components 20736 Marilla Street Chatsworth CA 91311

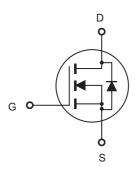
Phone: (818) 701-4933 Fax: (818) 701-4939

MCP140N10Y


Features

- Trench Power MV MOSFET technology
- Low R_{DS(ON)}
- Halogen free available upon request by adding suffix "-HF"
- Low Gate Charge
- · Optimized for fast-switching applications
- Epoxy meets UL 94 V-0 flammability rating
- Moisture Sensitivity Level 1

Maximum Ratings @ 25°C Unless Otherwise Specified


Symbol	Parameter		Rating	Unit	
V_{DS}	Drain-source Voltage		100	V	
I _{DM}	Pulsed Drain Current (Note 3)	500	Α		
I _D	Continuous Drain Current	$T_C = 25^{\circ}C$	140	•	
	(Note 7)	$T_C = 100$ °C	115	Α	
V_{GS}	Gate-source Voltage		±20	V	
P _{DSM}	Power Dissipation (Note 1)	T _C = 25°C T _C = 100°C	220 110	W	
E _{AS}	Single pulse avalanche energy (Note 3)		800	mj	
TJ	Operating Junction Temperature		-55 to +175	$^{\circ}\!\mathbb{C}$	
T _{STG}	Storage Temperature		-55 to +175	$^{\circ}$	

N-Channel Enhancement Mode Field Effect Transistor

	DIMENSIONS					
	INCHES					
DIM	MIN	MAX	MIN	MAX	NOTE	
Α	.560	.625	14.22	15.88		
В	.380	.420	9.65	10.67		
С	.140	.190	3.56	4.82		
D	.020	.045	0.51	1.14		
F	.134	.161	3.40	4.09	Ø	
G	.190	.110	2.29	2.79		
Н		.250		6.35		
J	.012	.025	0.30	0.64		
K	.500	.580	12.70	14.73		
L	.045	.060	1.14	1.52		
N	.190	.210	4.83	5.33		
Q	.100	.135	2.54	3.43		
R	.080	.115	2.04	2.92		
S	.045	.055	1.14	1.39		
Т	.230	.270	5.84	6.86		
U		.050		1.27		
V	.045		1.15			

Internal Block Diagram

Electrical characteristics (T_a=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC I	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		100			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V				1	μА
						5	
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		2	3	4	V
	Static Drain Source On Registance	V _{GS} =10V, I _D =50A			3.3	3.9	
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		5.3	6.2	mΩ
g _{FS}	Diode Forward Voltage	$V_{DS} = 5V, I_{D} = 50A$ 80		80			S
V_{SD}	Diode Forward Voltage	I _S =50A,V _{GS} =0V		0.85	0.99	V	
Is	Maximum Body-Diode Continuous Cur	rent (Note 7)			140	Α	
DYNAMIC	CPARAMETERS		•				•
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =50V, f=1MHz			6920		pF
C _{oss}	Output Capacitance				1026		pF
C_{rss}	Reverse Transfer Capacitance				34		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			2.6		Ω
SWITCHI	NG PARAMETERS		•		•		•
Q_g	Total Gate Charge	V _{GS} =10V, V _{DS} =50V, I _D =50A			117		nC
Q_{gs}	Gate Source Charge				40		nC
Q_{gd}	Gate Drain Charge				37		nC
t _{D(on)}	Turn-on Delay Time				48		ns
t _r	Turn-on Rise Time	V_{GS} =10V, V_{DS} =50V, R_L =2.5 Ω , R_{GEN} =3 Ω			56		ns
$t_{D(off)}$	Turn-off Delay Time			75		ns	
t _f	Turn-off Fall Time			33		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A,di/dt=500A/μs		60		ns	
Q_{rr}	Body Diode Reverse Recovery charge	I _F =20A,di/dt=500A/μs	}		560		nC

^{1.} The value of R_{DJA} is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with T_{A} =25° C. The Power dissipation P_{DSM} is based on R_{BJA} t ≤ 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

^{2.} The power dissipation P_D is based on $T_{J(MAX)}$ =175 $^{\circ}$ C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

^{3.} Single pulse width limited by junction temperature $T_{J(MAX)}$ =175° C.

^{4.} The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

^{5.} The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

^{6.} These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_J(MAX)=175° C. The SOA curve provides a single pulse rating.

^{7.} The maximum current rating is package limited.

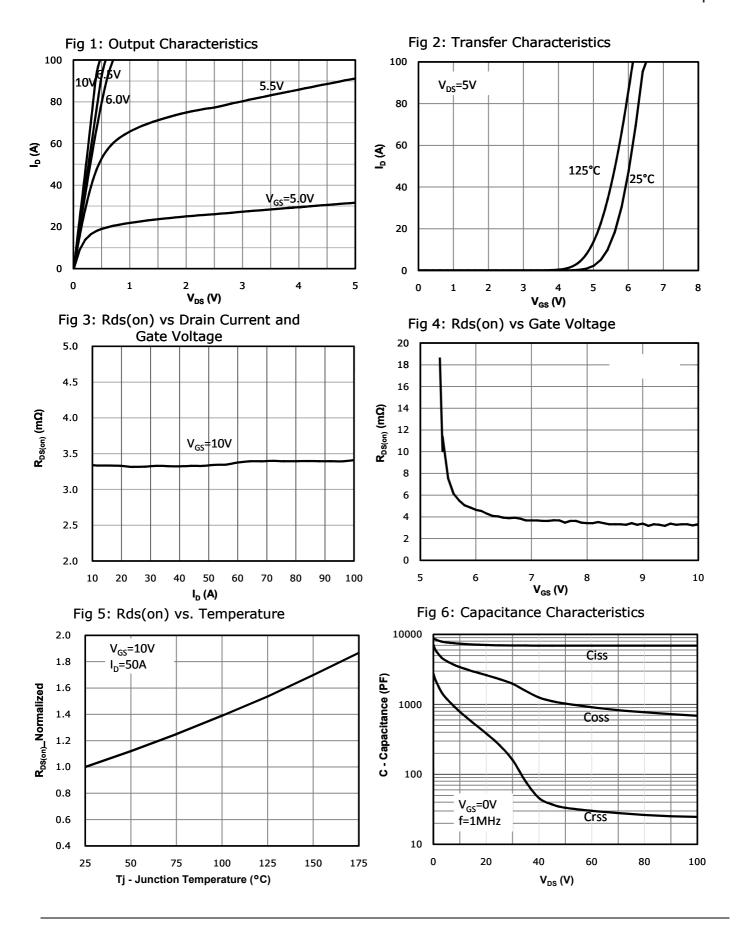


Fig 7: Gate Charge Characteristics

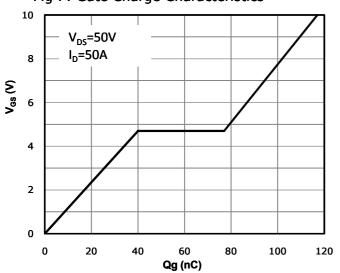


Fig 8: Body-diode Forward

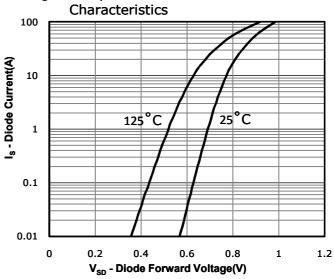


Fig 9: Power Dissipation

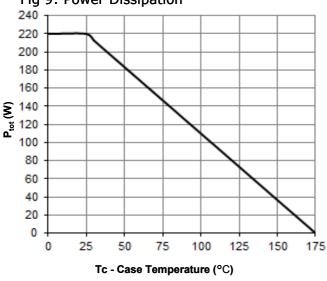


Fig 10: Drain Current Derating

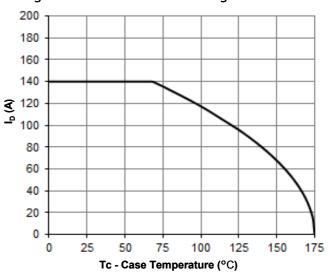
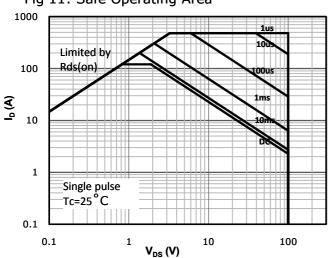



Fig 11: Safe Operating Area

Revision: A 4 of 5 **2017/01/27**

Ordering Information:

Device	Packing
Part Number-BP	Bulk;1Kpcs/Box

Note: Adding "-HF" suffix for halogen free, eg. Part Number-BP-HF

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.