

2.5-450 MHz High Performance Differential MEMS Oscillator

Features

- Any Frequency Between 2.5 MHz and 450 MHz Accurate to 6 Decimal Places
- · LVPECL and LVDS Output Signaling Types
- 0.65 ps RMS Phase Jitter (Random) Over 12 kHz to 20 MHz Bandwidth
- · Low Current Consumption
- Industrial and Extended Commercial Temperature Ranges to +105°C
- Industry-Standard Packages: 2.5 mm × 2.0 mm, 3.2 mm × 2.5 mm, 5.0 mm × 3.2 mm, and 7.0 mm × 5.0 mm

Applications

- SONET, Synchronous Ethernet, SATA, SAS, 10 GB
- · Ethernet, Fibre Channel, PCI-Express
- Telecom, Networking, Broadband, Instrumentation
- · Military Application

PERFORMANCE SPECIFICATIONS

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
LVPECL and LVDS, Com	mon AC C	haracteri	stics			
Output Frequency Range	f _{OUT}	2.5	_	450	MHz	_
		-20		+20		Inclusive of initial tolerance at +25°C and
Frequency Stability	f _{STAB}	-25		+25	ppm	variations over operating temperature,
		– 50		+50		rated power supply voltage, and load.
First Year Aging	f _{AGING}	- 5		+5	ppm	25°C, ±1 ppm after 1st year
O		-20		+70		Commercial
Operating Temperature Range	T_{OP}	-40		+85	°C	Industrial
rango		-40	_	+105		Extended Industrial
Start-Up Time	t _{START}	_	5.5	6.0	ms	_
Duty Cycle	DC	48	_	52	%	_
LVPECL, DC, and AC Cha	aracteristic	cs				
Supply Voltage	V_{DD}	2.97	3.3	3.63	V	Pin 6 should connect with 0.1 μF cap
Supply Vollage	v DD	2.25	2.5	2.75	V	Till θ should connect with θ.1 μr cap
Current Consumption	I_{DD}	_	50		mA	f = 100 MHz
OE Disable Supply Current		_	23	_	mA	OE = Low, f = 100 MHz
Output High Voltage	V _{OH}	V _{DD} – 1.145	_	_	V	See Figure 1, RL = 50Ω
Output Low Voltage	V _{OL}	_	_	V _{DD} – 1.695	V	See Figure 1, RL = 50Ω
Output Differential Voltage Swing	V _{SWING}	ı	800	_	mV	See Figure 1, RL = 50Ω
Rise Time	t _r	_	200	250	ps	20% to 80%
Fall Time	t _f	_	250	300	ps	20% to 80%
OE Enable/Disable Time	l _{oe}	_	_	350	ns	

PERFORMANCE SPECIFICATIONS

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Enable Pull-Up Resistor	R _{PU}	_	1.5	_	МΩ	Output enabled if Pin 1 is floated
RMS Period Jitter	t _{JITT}	_	2.0	_	ps	f = 156.25 MHz
RMS Phase Jitter (random)	t _{PHJ}	_	0.65	_	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz
LVDS, DC, and AC Chara	cteristics					
Supply Voltage	W	2.97	3.3	3.63	V	Din 6 should connect with 0.1 uE con
Supply Voltage	V_{DD}	2.25	2.5	2.75	V	Pin 6 should connect with 0.1 μF cap
Current Consumption	I _{DD}	_	32	_	mA	f = 100 MHz
OE Disable Supply Current	I _{OE}	_	23	_	mA	OE = Low, f = 100 MHz
Differential Output Voltage	V _{OD}	250	350	450	mV	See Figure 2, Single-Ended
Offset Voltage	Vos	1.15	1.25	1.35	V	See Figure 2, R = 100Ω
Rise Time	t _r	120	170	220	ps	20% to 80%
Fall Time	t _f	_	_	220	ns	_
OE Enable/Disable Time	t _{oe}	_	_	350	ns	_
Enable Pull-Up Resistor	R _{PU}	_	1.5	_	ΜΩ	Output enabled if Pin 1 is floated
RMS Period Jitter	t _{JITT}	_	2.5	_	ps	f = 156.25 MHz
RMS Phase Jitter		_	0.65	_		12 kHz to 20 MHz @ 158.25 MHz, T _A = -40°C to +105°C
(random)	t _{PHJ}	_	0.9	_	ps	2 kHz to 20 MHz @ 158.25 MHz, T _A = -40°C to +125°C

ABSOLUTE MAXIMUM RATINGS

Parameter	Minimum	Maximum
Storage Temperature	–55°C	+150°C
V_{DD}	-0.3V	+4.0V
Electrostatic Discharge (HBM)	_	+4000V
Soldering Temperature (follow standard Pb-Free soldering guidelines)	_	+260°C

ENVIRONMENTAL COMPLIANCE

Parameter	Condition/Test Method		
Mechanical Shock	MIL-STD-883F, Method 2002		
Mechanical Vibration	MIL-STD-883F, Method 2007		
Temperature Cycle	JESD22, Method A104		
Solderability	MIL-STD-883F, Method 2003		
Moisture Sensitivity Level	MSL1 @ 260°C		

1.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 1-1.

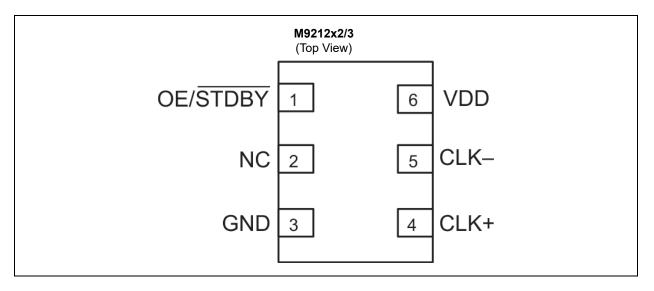


TABLE 1-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	OE or STBY	Input. Open Enable or Active-Low Standby (with pull-up). H or Open: Specified frequency output. L: Output is high impedance.
H2	NC	Do Not Connect. Leave it floating.
3	GND	VDD Power Supply Ground.
4	OUT+	Oscillator Output.
5	OUT-	Complementary Oscillator Output.
6	VDD	Power Supply Voltage.

2.0 TERMINATION CIRCUIT EXAMPLES

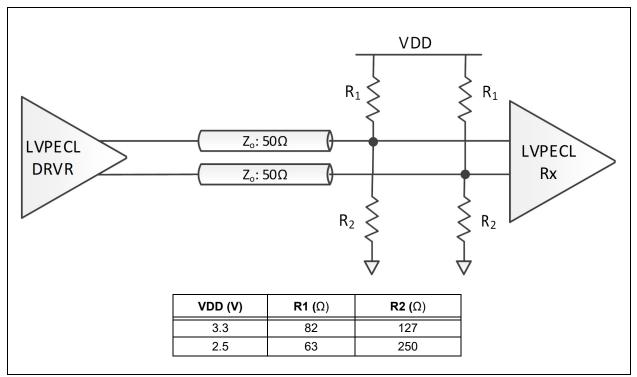


FIGURE 2-1: LVPECL TYPICAL TERMINATION.

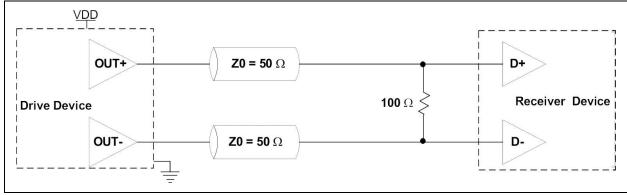
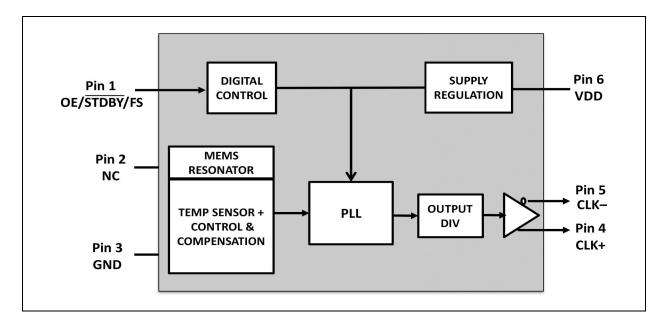



FIGURE 2-2: LVDS SINGLE TERMINATION (LOAD TERMINATED).

3.0 FUNCTIONAL BLOCK DIAGRAM

4.0 RECOMMENDED REFLOW PROFILES FOR Pb-Free & Sn-Pb

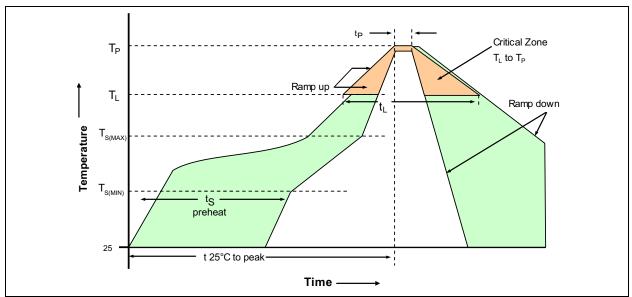


FIGURE 4-1: Reflow Profile.

TABLE 4-1: REFLOW PROFILE

Profile Feature	Symbol	Sn-Pb Assembly	Pb-Free Assembly
Average Ramp-Up Rate	T _L to T _P	3°C/second max.	3°C/second max.
Pre-Heat Minimum Temperature	T _{S(MIN)}	135°C	150°C
Pre-Heat Maximum Temperature	T _{S(MAX)}	155°C	200°C
Pre-Heat Time (from min. to max.)	t _S	60 to 90 seconds	60 to 180 seconds
T _{S(MAX)} to T _L Ramp-Up Rate	_	3°C/second max.	3°C/second max.
Low Temperature of Critical Reflow Zone	T _L	183°C	217°C
Time Maintained Above T _L	_	40 to 60 seconds	60 to 150 seconds
Peak Temperature	T _P	230°C max.	260°C max.
Time from 25°C to Peak Temperature	_	4 minutes max.	8 minutes max.
Time within 5°C of Actual Peak Temperature	t _P	10 to 20 seconds max.	20 to 40 seconds max.
Ramp-Down Rate	_	6°C/second max.	6°C/second max.

Note: All temperatures refer to the topside of the package, measured on the package body surface.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

4-Lead 7.0 mm × 5.0 mm DFN* 4-Lead 5.0 mm x 3.2 mm VDFN*

4-Lead 3.2 mm × 2.5 mm VDFN*

4-Lead 2.5 mm × 2.0 mm VLGA*

XXXXXXXX XXXYYWW SSS

Example

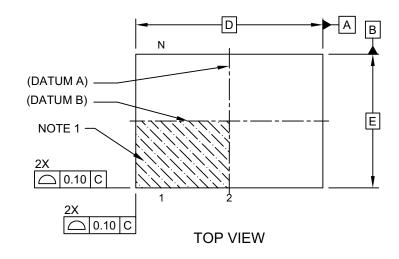
100M0000 DCP1834 724

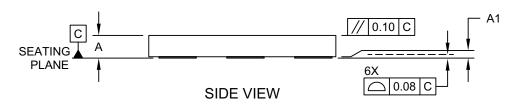
Legend: XX...X Product code or customer-specific information
Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
SSS Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ((e3))
can be found on the outer packaging for this package.

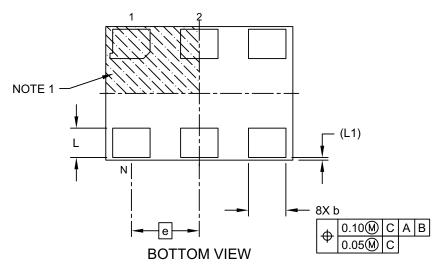
•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (¯) symbol may not be to scale.

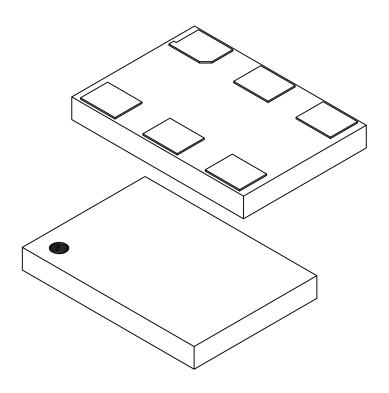

Note: If the full seven-character YYWWSSS code cannot fit on the package, the following truncated codes are used based on the available marking space:


6 Characters = YWWSSS; 5 Characters = WWSSS; 4 Characters = WSSS; 3 Characters = SSS;


2 Characters = SS; 1 Character = S.

6-Lead Very Thin Plastic Dual Flat, No-Lead Package (HPA) - 7.0 mm \times 5.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-1227 Rev A Sheet 1 of 2

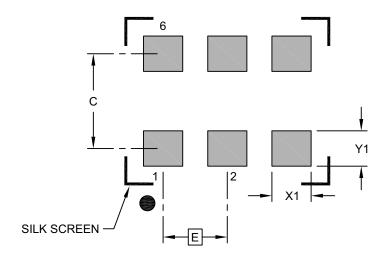
6-Lead Very Thin Plastic Dual Flat, No-Lead Package (HPA) - 7.0 mm \times 5.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dim	ension Limits	MIN	NOM	MAX	
Number of Terminals	N		6		
Pitch	е	2.54 BSC			
Overall Height	Α	0.80 0.85 0.90			
Standoff	A1	0.00	0.02	0.05	
Overall Length	D	7.00 BSC			
Overall Width	Е	5.00 BSC			
Terminal Width	b	1.30 1.40 1.50			
Terminal Length	L	L 1.00 1.10 1.20			
Pullback	L1	0.10 REF			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

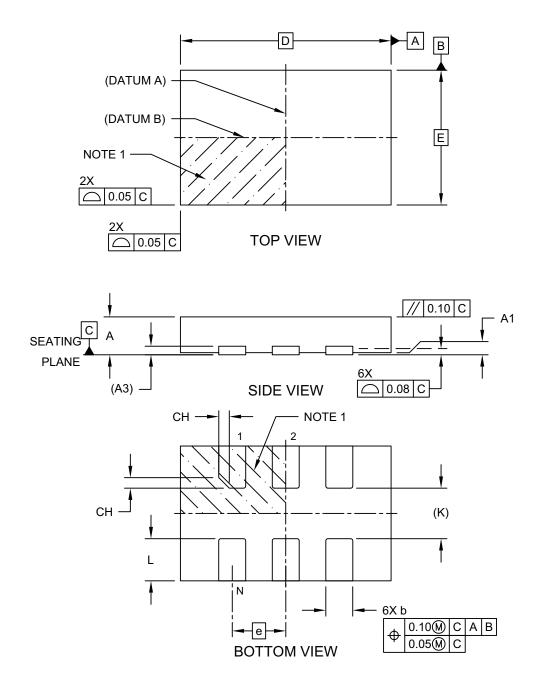
Microchip Technology Drawing C04-1227 Rev A Sheet 2 of 2

6-Lead Very Thin Plastic Dual Flat, No-Lead Package (HPA) - 7.0 mm \times 5.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	2.54 BSC		
Contact Pad Spacing	С		3.90	
Contact Pad Width (X6)	X1			1.55
Contact Pad Length (X6)	Y1			1.40

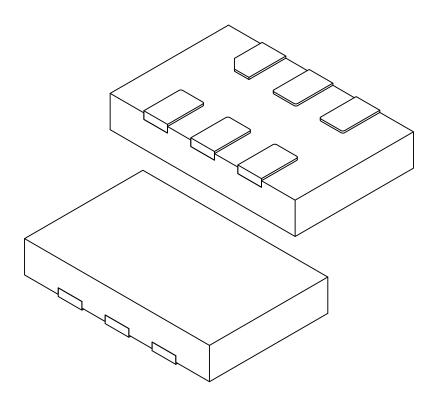

Notes:

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3227 Rev A

6-Lead Very Thin Plastic Dual Flat, No-Lead Package (H7A) - 5.0 mm × 3.2 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-1009 Rev A Sheet 1 of 2

Note:

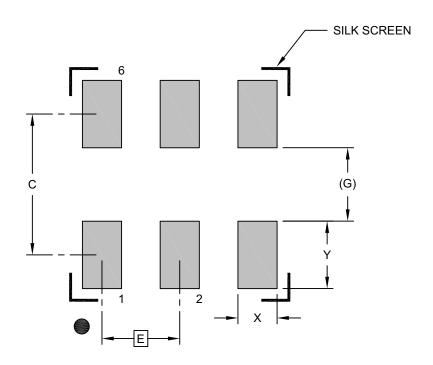
6-Lead Very Thin Plastic Dual Flat, No-Lead Package (H7A) - 5.0 mm × 3.2 mm Body [VDFN]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S	
Dimension	Dimension Limits			MAX	
Number of Terminals	N		6		
Pitch	е		1.27 BSC		
Overall Height	Α	0.80 0.85 0.90			
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.203 REF			
Overall Length	D	5.00 BSC			
Overall Width	Е		3.20 BSC		
Terminal Width	b	0.59	0.64	0.69	
Terminal Length L		0.90	1.00	1.10	
Terminal 1 Index Chamfer	CH	0.25 REF			
Terminal-to-Terminal	K		1.20 REF	·	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1009 Rev A Sheet 2 of 2

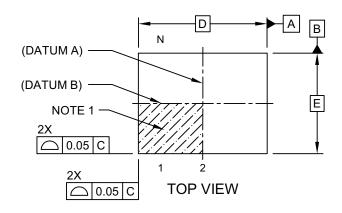
6-Lead Very Thin Plastic Dual Flat, No-Lead Package (H7A) - $5.0 \text{ mm} \times 3.2 \text{ mm}$ Body [VDFN]

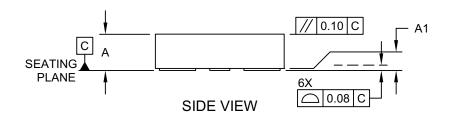
For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

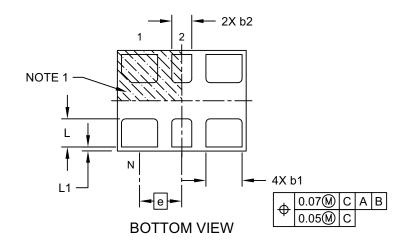
RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch E		1.27 BSC		
Contact Pad Spacing	С		2.30	
Contact Pad Width (X6)	Х			0.64
Contact Pad Length (X6	Υ			1.10
Contact Pad to Contact Pad (X4)	G		1.20 REF	

Notes:

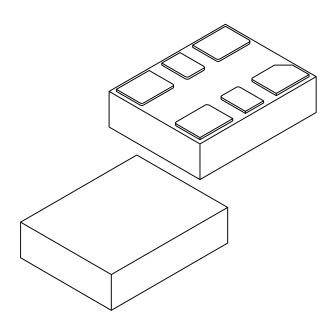

Note:


- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process


Microchip Technology Drawing C04-3009 Rev A Sheet 1 of 2

6-Lead Very Thin Plastic Dual Flat, No-Lead Package (HSA) - 3.2 mm \times 2.5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-1007B Sheet 1 of 2

6-Lead Very Thin Plastic Dual Flat, No-Lead Package (HSA) - 3.2 mm \times 2.5 mm Body [VDFN]

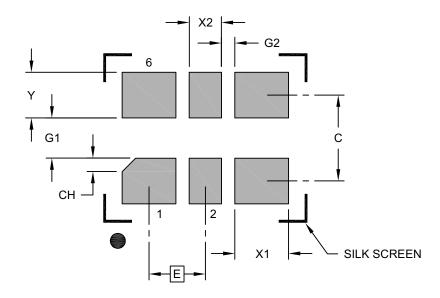
For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		Units	MILLIMETERS			
	Dimension Limits		MIN	NOM	MAX	
Number of Terminals		N		6	=	
Pitch		е		1.05 BSC		
Overall Height		Α	0.80 0.85 0.90			
Standoff		A1	0.00	0.02	0.05	
Overall Length		D	3.20 BSC			
Overall Width		Е		2.50 BSC		
Terminal Width		b1	0.85	0.90	0.95	
Terminal Width		b2	0.45	0.50	0.55	
Terminal Length L		0.65	0.70	0.75		
Terminal Pullback		L1	0.10 REF			

Notes:

Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1007B Sheet 2 of 2

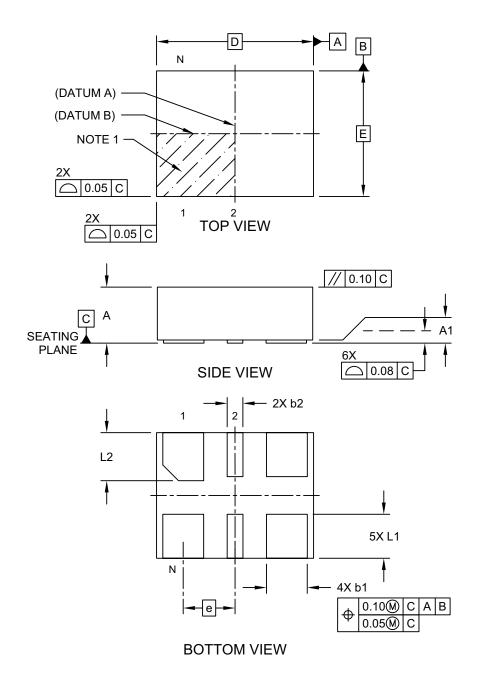
6-Lead Very Thin Plastic Dual Flat, No-Lead Package (HSA) - 3.2 mm \times 2.5 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E		1.05 BSC		
Contact Pad Spacing	С		1.60		
Contact Pad Width (X4)	X1			1.00	
Contact Pad Width (X2)	X2			0.60	
Contact Pad Length (X6)	Υ			0.85	
Space Between Contacts (X4)	G1	0.75			
Space Between Contacts (X3)	G2	0.25			
Pin 1 Index Chamfer (X4)	CH		0.25		

Notes:

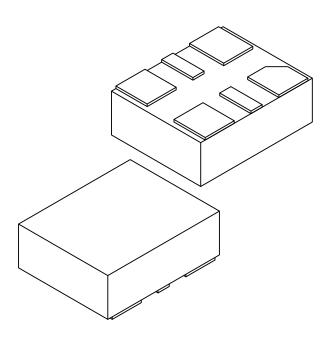

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-3007B

6-Lead Very Thin Plastic Dual Flat, No-Lead Package (J7A) - 2.5 mm × 2.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing $\,$ C04-1005 Rev B Sheet 1 of 2

Note:

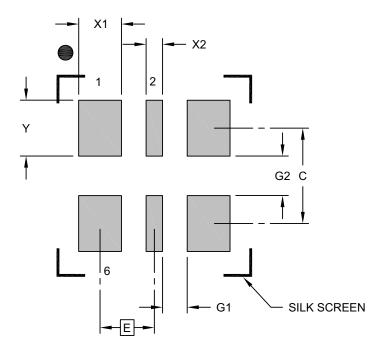
6-Lead Very Thin Plastic Dual Flat, No-Lead Package (J7A) - 2.5 mm × 2.0 mm Body [VDFN]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	IILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	6				
Pitch	е	0.825 BSC			
Overall Height	Α	0.80	0.85	0.90	
Standoff	A1	0.00	0.02	0.05	
Overall Length	D	2.50 BSC			
Overall Width	Е	2.00 BSC			
Terminal Width	b1	0.60	0.65	0.70	
Terminal Width	b2	0.20	0.25	0.30	
Terminal Length	L1	0.60	0.70	0.80	
Terminal Length	L2	0.665	0.765	0.865	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1005 Rev B Sheet 2 of 2

6-Lead Very Thin Plastic Dual Flat, No-Lead Package (J7A) - 2.5 mm × 2.0 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е	0.825 BSC		
Contact Pad Width (X4)	X1			0.65
Contact Pad Width (X2)	X2	0.25		
Contact Pad Length (X6)	Υ	0.85		
Contact Pad Spacing	С		1.45	
Space Between Contacts (X4)	G1	0.38		
Space Between Contacts (X3)	G2	0.60		

Notes:

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3005A

M	q	2	1	2	X	2	/3
IVI	U				/\		J

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (April 2023)

• Initial release of M9212x2/3 as Microchip data sheet DS20006777A.

M	19	2'	12	X	2	13
IVI	U			./\		J

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

xxxxx	<u>X</u>		<u>x</u>	<u>x</u>		<u>x</u>	<u>x</u>	-XXXXXXXX	[X] [X_XXXX]
Device	Feature Pin		Output Format	Package	Tempera	ature Range I	Stability	Frequency	Media Type
Device:	M9212	=	High Performance Diff	erential MEMS Osc	illator	Examples:			
Feature Pin:	0 2	= =	Active-Low Standby In Enable/Disable Input v			a) M9212220 63M00000T	CL1-	M921222, Enable/I Pull-Up Feature Pir put, 6-Lead 3.2 mm Package, -40°C to Range, ±50 ppm St 63.0000 MHz Frequ	n, LVPECL out- x 2.5 mm VDFN +105°C Temp. tability,
Format:	3	=				b) M921223E	212	Reel (1000/Reel)	Nooble langut with
Package:	N B C D	= = =	0 L000 0.0 11111 0.L 1	nm VDFN nm VDFN		87M35154	510-	M921223, Enable/I Pull-Up Feature Pir 6-Lead 5.0 mm × 3 Package, -40°C to Range, ±20 ppm St 087.35154 MHz Fr Tape/non-TR (50/Ti	n, LVDS output, .2 mm VDFN +85°C Temp. tability, equency, Cut
Temperature Range: Stability:	L E 1 2	= = = = = = =	-40°C to +105°C -40°C to +85°C -40°C to +70°C ±50 ppm ±25 ppm			c) M921222I 25M00000T_		M921222, Enable/I Pull-Up Feature Pir put, 6-Lead 2.5 mm Package, –40°C to Range, ±20 ppm Si 025.000 MHz Frequ Reel (1000/Reel)	n, LVPECL out- x 2.0 mm VDFN +85°C Temp. tability,
Frequency:	xMxxxxx xxMxxxx xxxMxxxx	= = =				d) M9212230 25M00000	CI3-	M921222, Enable/I Pull-Up Feature Pir 6-Lead 3.2 mm × 2 Package, -40°C to Range, ±20 ppm St 025.000 MHz Frequ	n, LVDS output, .5 mm VDFN +85°C Temp. tability,
Media Type:	 t T T_SNPB	= = =	Cut Tape/non-TR quar Tape and Reel Tin Lead (SnPb) Solde			Note 1:	log part nui used for or the device Sales Offic	non-TR (50/Tube) Reel identifier only ap mber description. Th dering purposes and package. Check with e for package availa Reel option.	is identifier is is not printed on your Microchip

M9212X2/3

TABLE 0-1: MINIMUM ORDER QUANTITY

Package or Media Type	Pieces	Notes	
Package A	50 pieces per tube	100 piece minimum order	
Package B	72 pieces per tube	144 piece minimum order	
Package C	110 pieces per tube	_	
Package M	140 pieces per tube	_	
Package J	100 pieces per bag	_	
Package H	100 pieces per bag	_	
Tape and Reel	1000 pieces per reel	_	
SnPb Solder Dip	500 pieces per reel	_	

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach. Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2285-7

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Tel: 281-894-5983 Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910

Fax: 45-4485-2829 Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820