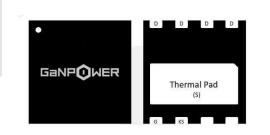
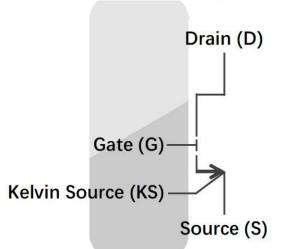


GPIHV14DF

N-channel 1200V 14A GaN Power HEMT in DFN 8X8 Package

Datasheet version 1.2 Preliminary


Features


BV _{dss}	R _{dson}	l _{ds}	Q _g
1200 V	125 mΩ	14 A	4.0 nC

- · Ultra-low RDS(on)
- High dv/dt capability
- · Extremely low input capacitance
- · Zero Qrr
- · Outstanding switching performance
- Low Profile

Applications

- Switching Power Applications
- · Adapters, Quick Chargers

Description

These devices are N-channel 650 V Power GaN HEMTs based on proprietary E-mode GaN on silicon technology. The resulting product has extremely low on state resistance, very low input capacitance and zero reverse recovery charge making it especially suitable for applications which require superior power density, ultra-high switching frequency and outstanding efficiency.

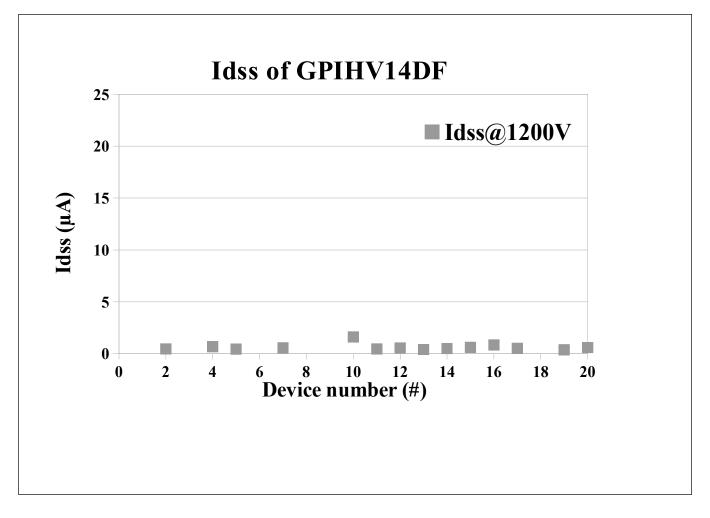
Device Characteristics

Sta	Static Parameters			Test data			
	Parameters		Conditions	Min	Typical	Max	Unit
1	V _{gs(TH)}	Gate threshold voltage	V _{ds} =V _{gs} , I _d =3.5 mA (T _J =25 °C)	1.2			V
2	BV _{dss}	Drain-Source breakdown voltage	V _{gs} =0V, I _d < 1 μA (T _J =25 °C)	1200			V
3	l _{dss}	Zero gate voltage drain leakage current	V _{gs} =0V, V _{ds} = 650V T _J = 25 °C		0.6	25	μΑ
4	l _{gss}	Gate-Source Leakage	$V_{gs} = 6V, V_{ds} = 0V$		30	100	μĄ
5	R _{dson}	drain-source on resistance	V _{gs} =6V, I _d =2.5A T _J = 25 ℃		125		mΩ
6	V_{sd}	Reverse conduction voltage	I _{sd} =1A, V _{gs} =0V	1.4	2.2	3	V
7	R _g	Gate resistance	f=25Mhz Open drain		1.1		Ω
Dynamic Parameters			Test data				
	Parameters		Conditions	Min	Typical	Max	Unit
1	C _{ISS}	Input capacitance	$V_{gs} = 0 V$		60		pf
2	C _{OSS}	Output capacitance	V _{ds} = 500 V		16		pf
3	C _{RSS}	Reverse transfer capacitance	f = 100 kHz		0.37		pf
4	CO(er)	Effective output capacitance, energy related	Vds = 0 - 500V		22.7		pf
5	Qg	Gate charge	Vds = 500V		4.0		nC
6	Q _{gs}	Gate to source charge	Id = 1.75A		0.6		nC
7	Q _{gd}	Gate to drain charge	Vgs = 6V		0.9		nC
8	Q _{oss}	Output Charge	Vds = 0 - 500V		34		nC
9	Q _{rr}	Reverse recovery charge			0		nC
Sw	itching Perform	nance			Test da	ata	
	Parameters		Conditions	Min	Typical	Max	Unit
1	t _{d(on)}	Turn-on delay time	V _{ds} = 800 V		7		ns
2	t _r	Rise time	$I_d = 4 A$		61		ns

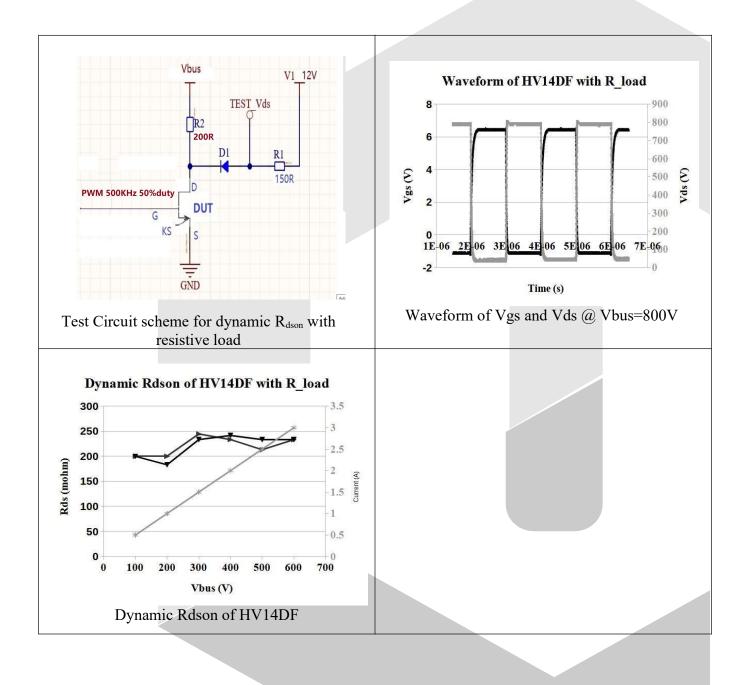
3	t _{d(off)}	Turn-off delay time	R _g = 10Ω	3	ns
4	t _f	Fall time	V _{gs} = 6V	23	ns

Absolute Max. Ratings

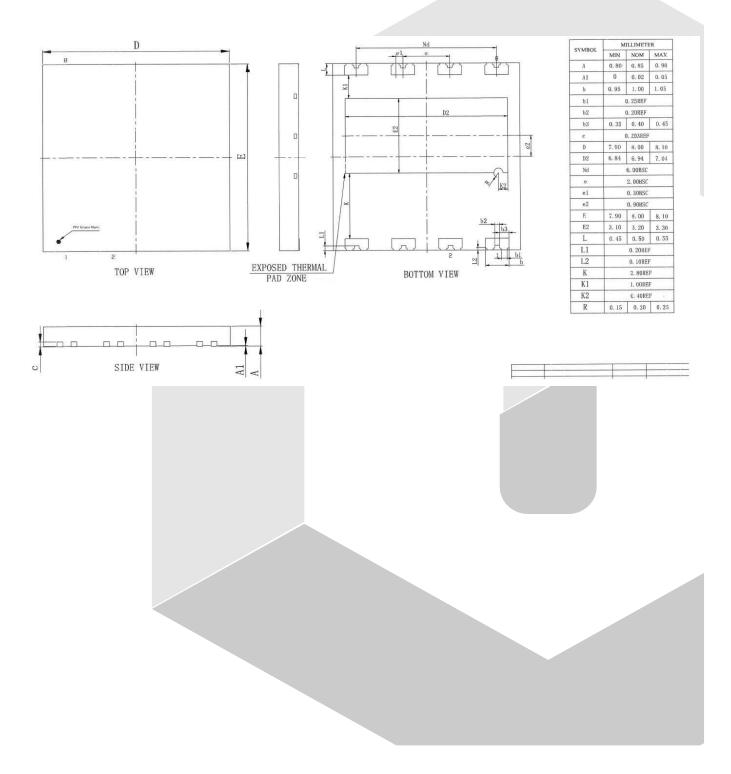
	Symbols	Parameters	Value	Unit
1	$V_{\text{DS-max}}$	Breakdown voltage transient @ T _{case} =25°C	1350	V
2	V _{DS} -max	Breakdown voltage transient @ T _{case} =125°C	1200	V
3	V_{GS-max}	Gate to source max. voltage @ T _{case} =25°C	-12 to +7.5	V
4	I _{ds-max}	Drain to source pulse current @ $T_{case}=25^{\circ}C$, pulse width 10 μ s, $V_{GS} = 6 V$	26	А
5	I _{ds-max}	Drain to source pulse current @ T _{case} =150°C	14	А
6	dv/dt _{-max}	Drain to source voltage slew rate	200	V/ns
7	T _{J-max}	Max junction temperature	150	°C
8	T _{S-storage}	Storage temperature	-55 to 150	°C


Thermal and Soldering Characteristics (Typical)

	Symbols	Parameters	Value	Unit
1	R_{thJC}	Thermal resistance (junction to case)	2.2	°C /W
2	R_{thJA}	Thermal resistance (junction to ambient)	62	°C /W
3	T_{solder}	Reflow soldering temperature	250	°C


Ordering

Order Code	Package	Packaging Method	Qty	
	Туре			
GPI65007DF88	DFN surface mount, bottom cooled, 8X8 mm			



Package Information

Gan HEMT Frequently Asked Questions

1	Q: Can we do pin to pin switch for silicon MOSFET or IGBT? A: The short answer is no. GaN HEMT power devices are far superior than the best silicon devices such as super junction MOSFETs. However, due to different requirements of gate driving voltage and extremely high dv/dt slew rate, special drivers and optimized PCB layouts are recommended to minimize the impact from circuit parasitics.
2	Q: How do GaN power devices compare with SiC?
	A: Currently GaN power HEMT devices are most suitable for low to medium voltage (\leq 1200V) and power (<20KW) applications. GaN is the ideal choice for high frequency applications. SiC devices are better choice for
	high voltage and high-power applications (>20KW).
3	Q: Do we need to parallel an FRD for applications such as inverters?
	A: GaN devices are different from silicon MOSFET or IGBT in that they have no inherent PN junction diodes
	that cause reverse recovery issue. User do not need to parallel an FRD for the purpose of suppressing the body diode reverse recovery effect, since GaN HEMT can operate in both first and third quadrants. However,
	care should be taken for the dead time power loss
	since the Vsd voltage of GaN HEMT is usually close to 2V. This is especially true when a negative
	gate voltage is applied.
4	Q: Can we parallel GaN HEMT devices?
	A: Yes, GaN HEMT is ideal for paralleling, due to the positive temperature coefficient of R _{ds,on} . Hence,
	paralleling GaN HEMT devices are encouraged.