

GLF1411

Dual Channel, IoSmart™ Load Switch with Slew Rate Control

Product Specification

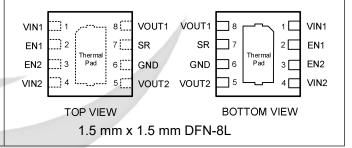
DESCRIPTION

The GLF1411 is an ultra-efficient dual channel load switch with slew rate control. The devices feature the ultra-efficient I_QSmart^{TM} technology that supports some of the lowest R_{ON} , quiescent currents (I_Q), and shutdown currents (I_{SD}) in an input voltage range from 1.5 V to 5.5 V.

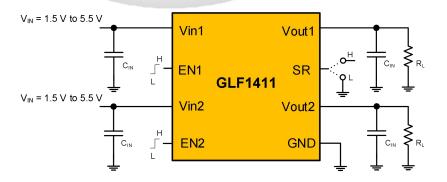
The integrated slew rate control can also enhance system reliability by mitigating bus voltage swings during switching events. Where uncontrolled switches can generate high inrush currents that result in voltage droop and/or bus reset events, the GLF1411 slew rate control specifically limits inrush current during turn-on to minimize voltage droop.

Each channel runs independently controlled by separate EN control pin. Both devices feature an integrated output discharge switch when they are turned off to discharge output capacitors quickly.

APPLICATIONS


- Smart Mobile Devices
- IoT Devices
- Low Power Subsystems

FEATURES


Per Channel

- Supply Voltage Range: 1.5 V to 5.5 V
- Low Ron:
 - 180 mΩ Typ @ 5.5 V_{IN}
 - 220 mΩ Typ @ 3.3 V_{IN}
 - 265 mΩ Typ @ 2.5 V_{IN}
- I_{OUT} Max: 1 A Continuous Output Current
- Ultra-Low Quiescent Current, Io
 - 10 nA Typ. at 5.5 V_{IN}
 - 5 nA Typ. at 3.3 V_{IN}
 - 4 nA Typ. at 2.5 V_{IN}
- Ultra-Low Stand-by Current, I_{SD}
 - 32 nA Typ. at 5.5 V_{IN}
 - 4 nA Typ. at 3.3 V_{IN}
 - 3 nA Typ. at 2.5 V_{IN}
- Slew Rate Control Pin of Output Rise Time
- Output Discharge Switch When Disabled

PACKAGE

APPLICATION DIAGRAM

ALTERNATE DEVICE OPTIONS

Part Number	Top Mark	R _{on} (Typ) at 5.5 V	TRCB	Output Discharge	V _{OUT} Rise Time t _R (Typ) at 3.3 V	EN Activity	Availability
GLF1411-D1G7	DR	180 mΩ	NA	95 Ω	380 μs at SR= High	Lligh	Released
GLF1421-D1G7	DS	160 11122	Yes	95 12	60 μs at SR= GND	High	In Dev.

FUNCTIONAL BLOCK DIAGRAM

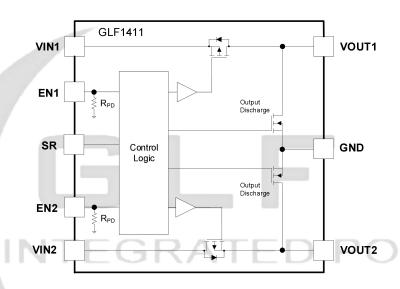


Figure 1. Functional Block Diagram

PIN CONFIGURATION

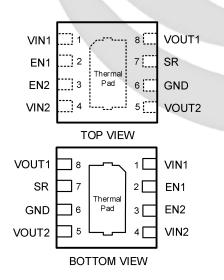


Figure 2. 1.5 mm x 1.5 mm DFN-8L

PIN DEFINITION

D'	NI	December 2
Pin	Name	Description
1	VIN1	Switch 1 input.
2	EN1	Active high signal to enable the switch 1
3	EN2	Active high signal to enable the switch 2
4	VIN2	Switch 2 input.
5	VOUT2	Switch 2 output
6	GND	Ground
7	SR	Slew rate control of V _{OUT} 1 and V _{OUT} 2. SR = High (Slow) SR = GND (Fast)
8	VOUT1	Switch 1 output
	Thermal pad	Tie to GND

Dual Channel, IoSmart™ Load Switch with Slew Rate Control

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter				Max.	Unit
V _{IN} , V _{OUT,} EN, SR	Each Pin to GND			-0.3	6	V
	Maximum Continuous Switch Current				1	Α
Іоит	Waximum Continuous Switch Curre	T _A = 85 °C		0.8	Α	
T _J	Maximum Junction Temperature				150	°C
T _{STG}	Storage Junction Temperature				150	°C
T _A	Ambient Operating Temperature Range				85	°C
θ_{JA}	Thermal Resistance, Junction to A	Thermal Resistance, Junction to Ambient				°C/W
θ _{JC_Top}	Thermal Resistance, Junction to Case				95	°C/W
ESD	Electrostatic Discharge	Human Body Model, JESD22-A114		5		Is\/
ESD	Capability	Charged Device Model, JESD22-C101		2		kV

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	Supply Voltage	1.5	5.5	V
TA	Ambient Operating Temperature	-40	+85	°C

Dual Channel, IoSmart™ Load Switch with Slew Rate Control

ELECTRICAL CHARACTERISTICS (Per Channel)

Values are at V_{IN} = 3.3 V and T_A = 25 °C unless otherwise noted.

Symbol	Parameter		Conditions		Min	Тур	Max	Units
Basic Ope	eration					•		
		EN = V _{IN} , I _{OL}	_{JT} = 0 mA, V _{IN} = 1.5 V			3		
		EN = V _{IN} , I _{OU}	_{JT} = 0 mA, V _{IN} = 1.8 V			3.5		A
	Quiescent Current (1)	EN = V _{IN} , I _{OU}	_{JT} = 0 mA, V _{IN} = 2.5 V			4		
lQ	Each Channel	EN = V _{IN} , I _{OL}	_{JT} = 0 mA, V _{IN} = 3.3 V			5	20	nA
			_{JT} = 0 mA, V _{IN} = 5.5 V			10		
		EN = V _{IN} , I _{OL}	_{JT} = 0 mA, V _{IN} = 5.5 V,	Ta= 85 °C ⁽⁴⁾		19		
		EN = 0 V, Iou	_{JT} = 0 mA, V _{IN} = 1.5 V			2		
		EN = 0 V, I _{OU}	$_{\rm JT}$ = 0 mA, $V_{\rm IN}$ = 1.8 V			2		
I _{SD}	Shut Down Current	EN = 0 V, lou	JT= 0 mA, VIN= 2.5 V			3		nA
190	Each Channel	EN = 0 V, lou	JT= 0 mA, V _{IN} = 3.3 V			4	50	
		EN = 0 V, I _{OL}	$_{\rm JT}$ = 0 mA, $V_{\rm IN}$ = 5.5 V			32		
		EN = 0 V, lou	$_{JT}$ = 0 mA, V_{IN} = 5.5 V,	Ta= 85 °C ⁽⁴⁾		100		
		\/ = E E \/ 1.	= 500 m A	Ta= 25 °C		180	240	
		$V_{IN} = 5.5 \text{ V}, \text{ Ic}$	DUT- DUU IIIA	Ta= 85 °C (4)		220		
- 1		V _{IN} = 3.3 V, I _{OUT} = 500 mA		Ta= 25 °C		220	300	mΩ
R_{ON}	On-Resistance	V _{IN} = 2.5 V, I _{OUT} = 300 mA		Ta= 25 °C		265		
	INIT	V _{IN} = 1.8 V, I _{OUT} = 300 mA			71	375		2
		V _{IN} = 1.5 V, I _O	Ta= 25 °C		470			
R _{DSC}	Output Discharge Resistance	EN = 0 V, I _{FC}	EN = 0 V, I _{FORCE} = 10 mA			95		Ω
V_{IH}	EN Input Logic High Voltage	V _{IN} = 1.5 V to	5.5 V		1.1			V
V_{IL}	EN Input Logic Low Voltage	V _{IN} = 1.5 V to	5.5 V				0.45	V
R _{EN}	EN Internal Resistance	Internal Pull-	down Resistance		/	20		ΜΩ
I _{EN}	EN Current	EN= V _{IN} or 0	V			0.25		μA
Switching	Characteristics (2)							
t_{dON}	Turn-On Delay (4)					840		
t_R	V _{OUT} Rise Time ⁽⁴⁾	SR= High				570		
t_{dOFF}	Turn-Off Delay (3), (4)	_ ort riigii				19		
t⊧	V _{OUT} Fall Time (3), (4)		V _{IN} = 1.8 V			10		
t _{dON}	Turn-On Delay (4)		$C_{OUT}=0.1 \mu F, R_L=15$	0 Ω		120		
t _R	V _{OUT} Rise Time ⁽⁴⁾	SR= GND				70		
t _{dOFF}	Turn-Off Delay (3), (4)	1				20		
t _F	V _{OUT} Fall Time (3), (4)					10		μs
t _{dON}	Turn-On Delay					380		
t _R	V _{OUT} Rise Time	SR= High				390		
t_{dOFF}	Turn-Off Delay (3), (4)		V - 2 2 V			20		
t_{\scriptscriptstyleF}	V _{OUT} Fall Time (3), (4)	$V_{IN} = 3.3 \text{ V}$ $C_{OUT} = 0.1 \mu\text{F}, R_{L} = 150 \Omega$		in O		12]
t _{dON}	Turn-On Delay		_ 5.1 μι, κ 10			60		
t _R	V _{OUT} Rise Time	SR= GND				45		
t _{dOFF}	Turn-Off Delay (3), (4)					20		

GLF1411 Dual Channel, IoSmart Load Switch with Slew Rate Control

						۰
t _F	V _{OUT} Fall Time (3), (4)			12		
t _{dON}	Turn-On Delay (4)			230		
t _R	V _{OUT} Rise Time ⁽⁴⁾	SR= High	V_{IN} = 5.0 V C_{OUT} =0.1 μF, R_L =150 Ω	320		
t_{dOFF}	Turn-Off Delay (3), (4)	SK-Tilgii	C_{OUT} =0.1 μ F, R_L =150 Ω	20		
t _F	V _{OUT} Fall Time (3), (4)			12		
t _{dON}	Turn-On Delay (4)			43		
t _R	V _{OUT} Rise Time ⁽⁴⁾	SR= GND	V _{IN} = 5.0 V	30	110	
t _{dOFF}	Turn-Off Delay (3), (4)	SIX- GIVD	C _{OUT} =0.1 μF, R _L =150 Ω	20	μs	
t _F	V _{OUT} Fall Time (3), (4)			12		

Notes:

- 1. Io does not include Enable pull down current through the pull-down resistor RPD.
- 2. $t_{ON} = t_{dON} + t_{R}$, $t_{OFF} = t_{dOFF} + t_{F}$
- Output discharge path is enabled during off.
 By design; characterized, not production tested.

TIMING DIAGRAM

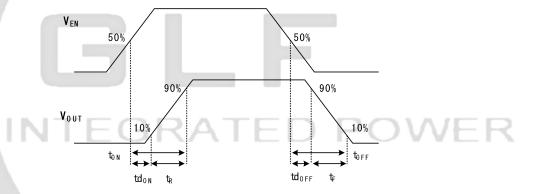
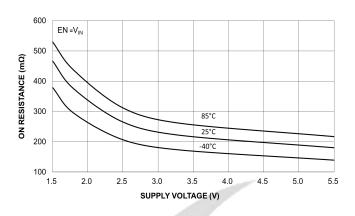



Figure 3. Timing Diagram

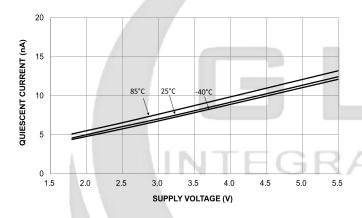
TYPICAL PERFORMANCE CHARACTERISTICS (Per Channel)

600 EN = V_{IN}

400

V_{IN}=1.5V

V_{IN}=2.5V


V_{IN}=3.3V

200
V_{IN}=5.5V

T_J, JUNCTION TEMPERATURE (°C)

Figure 4. On-Resistance vs. Supply Voltage

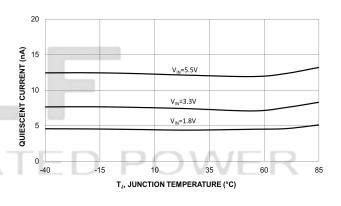
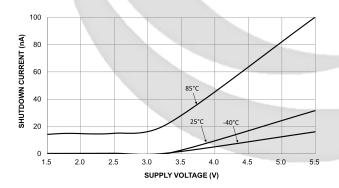



Figure 6. Quiescent Current vs. Supply Voltage

Figure 7. Quiescent Current vs. Temperature

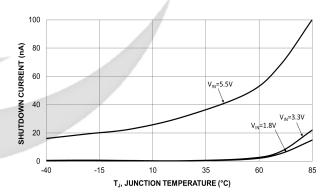
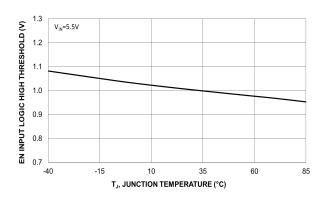
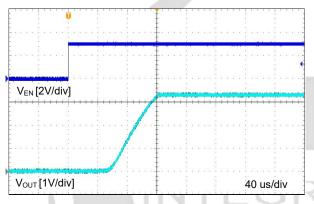



Figure 8. Shutdown Current vs. Supply Voltage

Figure 9. Shutdown Current vs. Temperature


GLF1411

INPUT LOGIC LOW THRESHOLD (V) 0.7 0.6 0.5 0.4 0.3 **교** 0.2 10 60 85 T_J, JUNCTION TEMPERATURE (°C)

Figure 10. EN Input Logic High Threshold vs. Temperature

Figure 11. EN Input Logic Low Threshold vs. Temperature

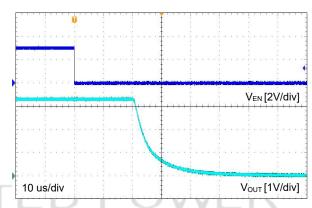
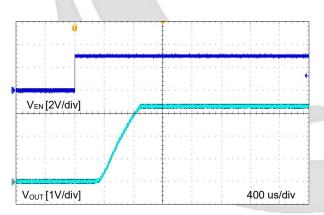



Figure 12. Turn-On Response V_{IN} =3.3 V, SR=GND, C_{IN} =0.1 μ F, C_{OUT} =0.1 μ F, R_L =150 Ω

Figure 13. Turn-Off Response V_{IN} =3.3 V, SR=GND, C_{IN} =0.1 μ F, C_{OUT} =0.1 μ F, R_L =150 Ω

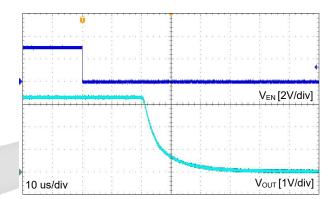


Figure 14. Turn-On Response V_{IN} =3.3 V, SR=High, C_{IN} =0.1 μF , C_{OUT} =0.1 μF , R_{L} =150 Ω

Figure 15. Turn-Off Response V_{IN} =3.3 V, SR=High, C_{IN} =0.1 μ F, C_{OUT} =0.1 μ F, R_L =150 Ω

APPLICATION INFORMATION

The GLF1411 is an integrated 800 mA, Ultra-Efficient I_QSmart[™] dual channel load switch devices with a fixed slew rate control to limit the inrush current during turn on. Each device is capable of operating independently over a wide input range from 1.5 V to 5.5 V with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current to avoid unwanted standby current and save limited input power. The package is a 1.5 mm x 1.5 mm DFN-8L package, saving space in compact applications.

Input Capacitor

A capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

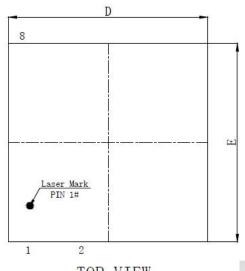
Output Capacitor

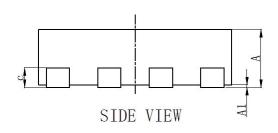
The GLF1411 does not require an output capacitor. However, use of an output capacitor is recommended to mitigate voltage undershoot on the output pin when the switch is turning off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be spaced close to the VOUT and GND pins.

EN pin

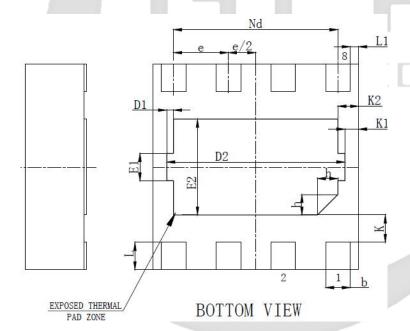
The GLF1411 can be activated by forcing EN pin high level. Note that the EN pin has an internal pull-down/ pull-up resistor to help pull the main switch to a known "off state" when no EN signal is applied from an external controller.

Output Discharge Function

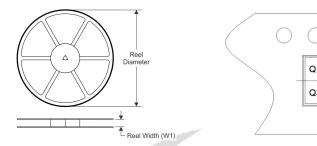

The GLF1411 have an internal discharge N-channel FET switch on the VOUT pin. When EN signal turns the main power FET to an off state, the N-channel switch turns on to discharge an output capacitor quickly

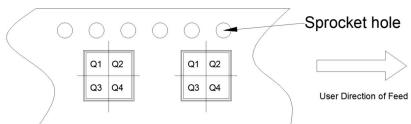

Board Layout

All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VIN, VOUT, and GND will help reduce signal degradation and parasitic effects during dynamic operation as well as improve the thermal performance at high load current.

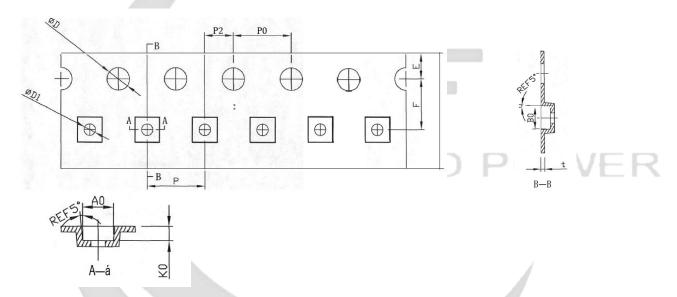


PACKAGE OUTLINE




SYMBOL	MILLIMETER						
STWIDOL	MIN	NOM	MAX				
A	0.40	0.45	0. 50				
A1	0.00	0.02	0.05				
ь	0. 13	0. 18	0. 23				
С		0. 152REF	0.00				
D	1. 45	1.50	1. 55				
D1		0. 05REF					
D2	1. 20	1.30	1. 40				
e	0. 40BSC						
Nd		1. 20BSC					
Е	1. 45	1.50	1. 55				
E1		0. 20REF					
E2	0.60	0.70	0.80				
L	0. 15	0.20	0. 25				
L1		0.06REF					
K	0.20REF						
K1	0.10REF						
K2	0.15REF						
h	0.10	0.15	0.20				

TAPE AND REEL INFORMATION


REEL DIMENSIONS

QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

Device	Package	Pins	SPQ	Reel Diameter (mm)	Reel Width W1	Α0	В0	K0	Р	w	Pin1
GLF1411- D1G7	DFN1.5x1.5	8	3000	178	8.6	1.7	1.7	0.76	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape

Rev. 0.1, Feb 2023

P1: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.