

Evaluating the AD5770R with 6-Channel, 14-Bit, Current Output DAC and On-Chip Reference, SPI Interface

FEATURES

- Fully featured evaluation board for the AD5770R
- ▶ PC control in conjunction with Analog Devices[®] Inc., EVAL-SDP-CB1Z system development platform
- PC software for control

EVALUATION KIT CONTENTS

- EVAL-AD5770RSDZ evaluation board
- ▶ USB cable

EQUIPMENT NEEDED

- ▶ EVAL-SDP-CB1Z (SDP-B) board, board must be purchased separately
- PC running Windows 7 or Windows 10

SOFTWARE NEEDED

Evaluation software, available for download from the EVAL-AD5770RSDZ product page

EVALUATION BOARD PHOTOGRAPH

DOCUMENTS NEEDED

AD5770R data sheet

GENERAL DESCRIPTION

The EVAL-AD5770RSDZ is a fully featured evaluation board that is designed to help the user evaluate the AD5770R 6-channel, 14-bit, current output digital-to-analog converter (DAC).

The EVAL-AD5770RSDZ evaluation board is controlled by the following two methods: the on-board P11 connector and the EVAL-SDP-CB1Z (Connector P10). The system development (SDP-B) board uses the AD5770R evaluation software to control the EVAL-AD5770RSDZ evaluation board via a Windows® PC USB port.

The EVAL-AD5770RSDZ board contains a power solution that uses the ADP5073 switching regulator to generate -2 V from a +3.3 V supply and the ADP1741 linear regulator to generate +2 V from a +3.3 V supply. Alternatively, the AD5770R also uses a linear power supply connected through the nine on-board connectors (P0 to P8). The AD5770R incorporates an internal 1.25 V precision reference. The EVAL-AD5770RSDZ board contains an additional 1.25 V. 0.5 ppm/°C voltage reference.

The AD5770R evaluation software provides an intuitive graphic user interface (GUI) that configures and controls the AD5770R over the serial peripheral interface (SPI).

The AD5770R is a 6-channel, 14-bit resolution, low noise, programmable current output DAC for photonics control applications. The output current ranges are software selectable, and channels are routed to the MUX OUT pin for external monitoring.

See the AD5770R data sheet for full details and consult the AD5770R data sheet in conjunction with this user guide when using the EVAL-AD5770RSDZ board.

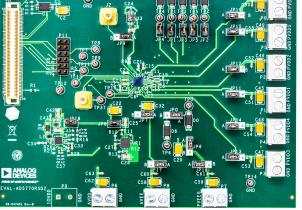


Figure 1.

TABLE OF CONTENTS

I
I
I
I
I
I
I
3
3
3
3
5
5
5
5
5
3
3

Main Window	7
REFERENCE CONFIG	
CHANNEL CONFIG	7
SET OUTPUT RANGE	7
SET DAC CURRENT	7
LDAC	7
PAGE MASK	8
MONITOR MUX	8
OUTPUT FILTER	8
ALARM	8
STATUS	8
RESET	8
Read All Function	8
Evaluation Board Artwork and Schematics	9
Ordering Information	12
Bill of Materials	12
Notes	13

REVISION HISTORY

8/2023—Rev. A to Rev. B	
Changes to Figure 18	9
3/2023—Rev. 0 to Rev. A	
Changes to External Power Supply Option Section	.3
Changes to Table 1	
Changes to Table 4	5
Changes to On-Board Reference Section	5
Changes to Figure 19 Caption1	
Changes to Figure 20 Caption	

2/2019—Revision 0: Initial Version

EVALUATION BOARD HARDWARE

POWER SUPPLIES AND LINK OPTIONS

The EVAL-AD5770RSDZ board is powered by using the on-board ADP5073 and ADP1741 regulators. Both regulators are powered with a 3.3 V supply through an on-board P6 connector. Power is also supplied to the evaluation board through the nine on-board connectors, P0 to P8. See Figure 2 for a functional block diagram of the on-board connectors.

POWER SOLUTION OPTION

To generate 2 V for the AD5770R pins, PVDD0 to PVDD5, with the on-board ADP1741 regulator, connect JP10, JP11, JP12, JP13, and JP14 to Position A, insert JP8, and connect 3.3 V to P6 (AVDD). To generate -2 V for PVEE0 and AVEE with the ADP5073, connect JP6, JP7, JP16, and JP17 to Position A and insert JP18 while applying an external 3.3 V to P6 (AVDD). To connect PVEE0 and AVEE to 0 V connect JP6 and JP7 to Position B. See Figure 2 for a diagram of all power connections.

EXTERNAL POWER SUPPLY OPTION

The evaluation board is powered using external supplies. Follow the link connections under the external supply column in Table 1 to connect external voltages to P6 (AVDD), P0 to P5 (PVDD0 EXT to PVDD5_EXT), P7 (PVEE0_EXT), and P8 (AVEE_EXT). Refer to Table 2 for full link options. If the SDP-B board is controlling the EVAL-AD5770RSDZ board, do not apply 3.3 V to the IOVDD pin on P11 or P9. The IOVDD pin of P11 is only powered when the SDP-B is not used. Consult the AD5770R data sheet to determine the safety operating limits for all mentioned devices.

Tahla 1	Quick S	tart Link	Configura	tion for	Power	Solution	and R	onch	Sunnly
Table I.	QUICK 3		connyura		FOWer .	Solution	anu D	encii	Suppiy

Link	Power Solution	External Supply
JP6	В	В
JP7	В	В
JP8	Inserted	Removed
JP10	В	A
JP11	В	A
JP12	В	A
JP13	В	A
JP14	В	A
JP15	В	A
JP16	В	A
JP17	В	A
JP18	Inserted	Removed

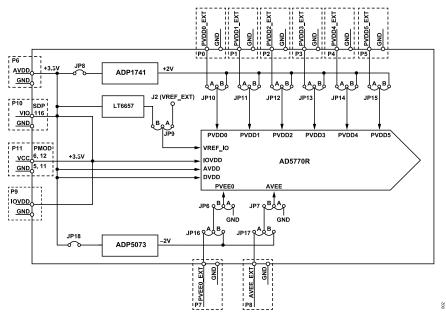


Figure 2. Powering the EVAL-AD5770RSDZ Evaluation Board

EVALUATION BOARD HARDWARE

Table 2. Link Options

Link No.	Description
JP0	Selects the connection of the IDAC0 pin on the AD5770R.
	Position A connects the AD5770R IDAC0 output to GND via D0.
	Position B connects the AD5770R IDAC0 output to TP6 via D6.
JP1	Insert this link to connect the AD5770R IDAC1 output to GND via D1.
JP2	Insert this link to connect the AD5770R IDAC2 output to GND via D2.
JP3	Insert this link to connect the AD5770R IDAC3 output to GND via D3.
JP4	Insert this link to connect the AD5770R IDAC4 output to GND via D4.
JP5	Insert this link to connect the AD5770R IDAC5 output to GND via D5.
JP6	Selects the power supply for PVEE0.
	Position B connects the AD5770R PVEE0 to the on-board -2 V when JP16 is in Position B and JP18 is inserted.
	Position B connects the AD5770R PVEE0 to P7 when JP16 is in Position A.
	Position A connects the AD5770R PVEE0 to GND.
JP7	Selects the power supply for AVEE.
	Position B connects the AD5770R AVEE to the on-board -2 V when JP17 is in Position B and JP18 is inserted.
	Position B connects the AD5770R AVEE to P8 when JP17 is in Position A.
	Position A connects the AD5770R AVEE to GND.
JP8	When inserted, the ADP1741 linear regulator is powered and the regulator output is set to the on-board 2 V.
JP9	External reference control.
	Position B connects the AD5770R VREF_IO pin to the 1.25 V reference voltage.
	Position A connects the AD5770R VREF_IO pin to J2.
JP10	Selects the power supply for PVDD0.
	Position B connects the AD5770R PVDD0 to 2 V.
	Position A connects the AD5770R PVDD0 to Connector P0. Ensure PVDD0 does not exceed AVDD - 0.4 V.
JP11	Selects the power supply for PVDD1.
	Position B connects the AD5770R PVDD1 to the on-board 2 V.
	Position A connects the AD5770R PVDD1 to Connector P1. Ensure PVDD1 does not exceed AVDD - 0.4 V.
JP12	Selects the power supply for PVDD2.
	Position B connects the AD5770R PVDD2 to the on-board 2 V.
	Position A connects the AD5770R PVDD2 to Connector P2. Ensure PVDD2 does not exceed AVDD - 0.4 V.
JP13	Selects the power supply for PVDD3.
	Position B connects the AD5770R PVDD3 to the on-board 2 V.
	Position A connects the AD5770R PVDD3 to Connector P3. Ensure PVDD3 does not exceed AVDD - 0.4 V.
JP14	Selects the power supply for PVDD4.
	Position B connects the AD5770R PVDD4 to the on-board 2 V.
	Position A connects the AD5770R PVDD4 to Connector P4. Ensure PVDD4 does not exceed AVDD - 0.4 V.
JP15	Selects the power supply for PVDD5.
	Position B connects the AD5770R PVDD5 to the on-board 2 V.
	Position A connects the AD5770R PVDD5 to Connector P5. Ensure PVDD5 does not exceed AVDD - 0.4 V.
JP16	Used with JP6 to select the power supply for PVEE0.
	Position B connects the AD5770R PVEE0 to the on-board -2 V when JP6 is in Position B.
	Position A connects the AD5770R PVEE0 to Connector P7 when JP6 is in Position B.
JP17	Used with JP7 to select the power supply for AVEE.
	Position B connects the AD5770R AVEE to the on-board -2 V when JP7 is in Position B.
	Position A connects the AD5770R AVEE to Connector P8 when JP7 is in Position B.
JP18	When inserted, the ADP5073 dc-to-dc inverting regulator is powered and the regulator output is set to the on-board -2 V.

EVALUATION BOARD HARDWARE

ON-BOARD CONNECTORS

Table 3 describes the 13 connectors on the EVAL-AD5770RSDZ board.

Table 3. On-Board Connectors

Connector	Function
P0 to P5	Supplies PVDD0 to PVDD5 pins externally
P6	Supplies AVDD pin externally
P7	Supplies PVEE0 pin externally
P8	Supplies AVEE pin externally
P9	Not inserted
P10	SDP board connector
P11	Digital interface pin header connector (PMOD).
J1	MUX_OUT pin connector
J2	REF_IO pin connector

CONNECTOR P11 PIN DESCRIPTIONS

Figure 3 shows both a peripheral module interface (PMOD) and connections for digital lines that serve as inputs and outputs to and from the external digital controller. Refer to Table 4 for descriptions of each pin number (digital line).

\int	7	8	9 □	10 □	11 □	12 □	
	□ 1	□ 2	□ 3	□ 4	□ 5	□ 6	003

Figure 3. Connector P11 Pin Configuration

Table 4. Connector P11 Pin Descri	ptions
-----------------------------------	--------

Pin No.	Mnemonic
1	CS
2	SDI
3	SDO
4	SCLK

Table 4. Connector P11 Pin Descriptions (Continued)

Pin No.	Mnemonic
5	GND
6	IOVDD/VCC
7	ALARM
8	RESET
9	LDAC
10	No connection
11	GND
12	IOVDD/VCC

ON-BOARD REFERENCE

The EVAL-AD5770RSDZ board contains the LT6657A-1.25 (1.25 V, 0.5 ppm/°C voltage reference). Place JP9 in Position B to use the LT6657A-1.25 as the reference source for the AD5770R. When using the AD5770R on-chip voltage reference, connect JP9 to Position A (see Figure 2).

MULTIPLEXER OUTPUT

The AD5770R diagnostic features output compliance voltages, output currents, and internal die temperature monitoring. The output compliance voltages and representative voltages of output current and internal die temperature are multiplexed on-chip and are available on the J1 connector (MUX_OUT pin). Refer to the AD5770R data sheet for more details on the multiplexer functionality.

PRECISION R_{SET} RESISTOR

The AD5770R integrates an on-chip 2.5 k Ω (10 ppm/°C, 0.1%) precision resistor that defines the reference current generation. Additionally, the EVAL-AD5770RSDZ board contains an on-board ±0.2 ppm/°C precision resistor that also defines the reference current generation. Refer to the AD5770R data sheet for more details on the precision resistor.

EVALUATION BOARD SOFTWARE

The AD5770R evaluation software controls and configures the AD5770R through a USB port. Take the following steps to set up the evaluation board for initial use:

- Install the AD5770R evaluation software. Download the evaluation software package from the EVAL-AD5770RSDZ product page and unzip it. Run the setup.exe from the unzipped folder and follow the instructions in the folder during the software installation process.
- After installing the AD5770R evaluation software, connect the SDP-B board to the EVAL-AD5770RSDZ board through Connector A on the SDP-B board.
- Power up the EVAL-AD5770RSDZ board as described in the Power Supplies and Link Options section. Use the supplied cable to connect the EVAL-AD5770RSDZ board, which is connected to the SDP-B board from the previous step, to the PC USB port. Wait for Windows to recognize the SDP-B board, which users are notified of through a notification in the desktop system tray.
- **4.** Launch the AD5770R evaluation software by following the steps in the Software Operation section.

SOFTWARE OPERATION

To start the software, complete the following steps:

- From the Start menu, click Analog Devices > AD5770R > AD5770R Evaluation Software. The main window of the software opens (see Figure 4), and the software recognizes the EVAL-AD5770RSDZ board. The user can identify when the software has recognized the evaluation board by seeing SDP & Evaluation in the Connection section of the pane in Figure 5.
- 2. The software opens a window that prompts the user to select an interface (see Figure 4). Connect to the EVAL-AD5770RSDZ board by clicking SDP & Evaluation Board and then clicking Work Online. To run the software without connecting the EVAL-AD5770RSDZ board, click Sim Device and then click Work Online. This mode allows users to examine the various tabs in the GUI without communicating with a device.

Sim Device	Refresh
SDP & Evaluation Board	Kenesi
	Identify
	- Identity

Figure 4. Select Interface Window

200

JP	AD5770R Evaluation Software	Connection SDP & Evaluation] \$	Exit
REFE	RENCE CONFIG CHANNEL CONFIG SET OUTPUT	RANGE SET DAC CURRENT LDAC PAGE MASK	MONITOR MUX OUTPUT FILTER ALARM STATE	US RESET
	EFERENCE_VOLTAGE_SEL Read White External 2.5V V	2		
4	External 2.5V			
	EFERENCE_RESISTOR_SEL Read Writ	e		
6	inema Nesision			
		READ ALL		

Figure 5. AD5770R Evaluation Software Main Window

EVALUATION BOARD SOFTWARE

MAIN WINDOW

The main window is divided into the following eleven tabs: REFER-ENCE CONFIG, CHANNEL CONFIG, SET OUTPUT RANGE, SET DAC CURRENT, LDAC, PAGE MASK, MONITOR MUX, OUTPUT FILTER, ALARM, STATUS and RESET.

Read and **Write** buttons are located in all tabs. The **Read** button executes a readback of the respective register, and the **Write** button writes the selected or filled in register contents.

Refer to the AD5770R data sheet for more information on all tab functions and features.

REFERENCE CONFIG

The **REFERENCE CONFIG** tab allows users to select the internal or external reference voltage and the internal or external precision R_{SET} resistor.

REFERENCE CONFIG	CHANNEL CONFIG	SET OUTPUT RANGE
REFERENCE_VOLT External 2.5V	AGE_SEL	Write
REFERENCE_RESIS	STOR_SEL	ad Write
Internal Resistor	_	

Figure 6. REFERENCE CONFIG Tab

CHANNEL CONFIG

The **CHANNEL CONFIG** tab allows users to enable or disable each AD5770R output.

ENCE CONFIG	CHANNEL CONFIG	SET OUTPUT RANGE	SET DAC CURRENT	LDAC	PAGE MASK	MONITOR MUX	OUTPUT FIL
CH0_SINK_EN	Rea	d Write		CH0_EN	1	Read	Write
Disable	•			Power	Down	•	
CH0_SHUTDO	WN_B Rea	d Write		CH1 EN	1	Read	Write
Output Shute	lown 💌			Power		•	
CH1_SHUTDO	WN_B Rea	d Write		CH2 EN		Read	Write
Output Shute	lown 💌			Power		• Kead	write
CH2_SHUTDO	WN_B Rea	d Write		au a 64			
Output Shute	lown			CH3_EN Power		Read	Write
CH3_SHUTDO	WN_B Rea	d Write					
Output Shuto	lown 🔹			CH4_EN		Read	Write
				Power	Down	-	
CH4_SHUTDO		d Write					
Output Shuto	lown 💌			CH5_EN	4	Read	Write
				Power	Down	-	
CH5_SHUTDO		d Write					
Output Shute	lown 💌						

Figure 7. CHANNEL CONFIG Tab

SET OUTPUT RANGE

The **SET OUTPUT RANGE** tab sets the output range of each channel by allowing users to select the available options from the dropdown list of each channel. Additionally, the **SET OUTPUT RANGE** tab can set the output current scaling of each channel. Refer to the AD5770R data sheet for more details on the output current scaling feature.

REFERENCE CONFIG CHANNEL CONFIG SET OUTPUT RANGE SET DAC CURRENT LDAC PA	AGE MASK MONITOR MUX OUTPUT FILTER
--	--

CH0_MODE	Read Write	CH0_OUTPUT_SCALING Read Write
0mA to 300mA		a a ∎ 0
CH1_MODE	Read Write	CH1_OUTPUT_SCALING Read Write
0mA to 140mA - Low	1	2 0
CH2_MODE	Read Write	CH2_OUTPUT_SCALING Read Write
0mA to 55mA		
CH3_MODE	Read Write	CH3 OUTPUT SCALING Read Write
0mA to 45mA		CH3_OUTPUT_SCALING Read Write
CH4_MODE	Read Write	
0mA to 45mA		CH4_OUTPUT_SCALING Read Write
CH5_MODE	Read Write	9-
0mA to 45mA		CH5_OUTPUT_SCALING Read Write
		0

Figure 8. SET OUTPUT Range Tab

SET DAC CURRENT

The **SET DAC CURRENT** tab allows users to set the output current of each channel by writing to the DAC registers. The **SET DAC CURRENT** tab also writes to the input registers by inputting the hex code equivalent to the 14-bit value of the target input register.

INPUT_DATA	0 Read V	/rite	DAC_D	ATA0	Read	Write
2 0 2 0			0			
INPUT_DATA	1 Read V	/rite	DAC_D	ATA1	Read	Write
0 N			0 10			
INPUT_DATA	2 Read V	/rite	DAC_D	ATA2	Read	Write
0 g			A 0			
INPUT_DATA	3 Read V	/rite	DAC_D	ATA3	Read	Write
0 0 N			0 20			
INPUT_DATA	4 Read V	Irite	DAC_D	ATA4	Read	Write
0			0 10			
INPUT_DATA	5 Read V	/rite	DAC_D	ATA5	Read	Write
0			0			

Figure 9. SET DAC Current Tab

LDAC

900

The LDAC tab can issue a software LDAC command to each channel. To issue a command, users choose the Load DAC command from the dropdown box and then click Write. The LDAC tab also enables LDAC pin activity (hardware LDAC) to be ignored on any channel. Users can enable the ignore function by selecting the appropriate mask LDAC command from a dropdown box in each channel.

RENCE CONFIG	CHANNEL CONFIG	SET OUTPUT RANGE	SET DAC CURRENT	LDAC	PAGE MASK	MONITOR MUX	OUTP
SW_LDAC	_CH0	Write	HW_LC	AC_MAS	K_CH0	Read Wri	te
No Opera	ition 💌		No Op	eration	•		_
SW_LDAC	CH1	Write	HW_LD	AC_MAS	K_CH1	Read Wri	te
No Opera	ition 💌		No Op	eration	•		
SW_LDAC	CH2	Write	HW_LC	AC_MAS	K_CH2	Read Wri	te
No Opera	ition 💌		No Op	eration	*		
SW_LDAC	СНЗ	Write	HW_LC	AC_MAS	K_CH3	Read Wri	te
No Opera	ition 💌		No Op	eration	•		
SW_LDAC	CH4	Write	HW_LC	AC_MAS	K_CH4	Read Wri	te
No Opera	ition 💌		No Op	eration	•		
SW_LDAC	CH5	Write	HW_LC	AC_MAS	K_CH5	Read Wri	te
No Opera	ition 💌		No Op	eration	•		

Figure 10. LDAC Tab

EVALUATION BOARD SOFTWARE

PAGE MASK

The **PAGE MASK** tab allows users to write to any combination of DAC and input registers in a single SPI transaction.

FFFRENCE CONFIG CHANNEL CONFIG SET OUTPUT RANGE SET DAC CURRENT LDAC	PAGE MASK MONITOR MUX	OUTPUT FILTER ALARM
INPUT_PAGE_MASK Read Write	SEL_CH0	Read Write
dan an a	No Operation	1
DAC_PAGE_MASK Read Write	SEL_CH1	Read Write
DAL_PAGE_MASK Read Write	No Operation	
	SEL_CH2	Read Write
	No Operation	•
	SEL_CH3	Read Write
	No Operation	
and burning	SEL_CH4	Read Write
age Mask Tab: . Select channels to update using SEL_CH[5:0] bits	No Operation	
Write to DAC_PAGE_MASK register: DAC register of selected channel is updated with contents of DAC_PAGE_MASK register	SEL_CH5	Read Write
I. Write to INPUT_PAGE_MASK: - INPUT register of selected channel is updated with contents of INPUT_PAGE_MASK register	No Operation	

Figure 11. PAGE MASK Tab

MONITOR MUX

The **MONITOR MUX** tab can configure the multiplexer on the AD5770R. Refer to the AD5770R data sheet for more details on the multiplexer functionality.

EFERENCE CONFIG	CHANNEL CONFIG	SET OUTPUT RANGE	SET DAC CURRENT	LDAC	PAGE MASK	MONITOR MUX	(
MON_FUNCT		ead Write					
Disable	•						
MUX_BUFFER	Re	ad Write					
Bypass	-						
IB_EXT_EN	Re	ad Write					
Internal Bias		au wiite					
MON CH	Re	ad Write					
Channel 0	- Ne	au wine					
							~
							012
	Fig	ure 12. MOI	NITOR MU)	(Tal	b		

OUTPUT FILTER

The **OUTPUT FILTER** tab allows users to set the output filter resistor for each channel. Refer to the AD5770R data sheet for more details on the output filter.

OUTPUT FILTER	MONITOR MUX	PAGE MASK	LDAC	SET DAC CURRENT	SET OUTPUT RANGE	CHANNEL CONFIG	EFERENCE CONFIG
1	Read Write	RESISTOR3	FILTER	OUTPUT	Read Write	LTER_RESISTOR0	OUTPUT_F
		•		60 Ohm		•	60 Ohm
1	Read Write	RESISTOR4	FILTER	OUTPUT	Read Write	LTER_RESISTOR1	OUTPUT_F
		•		60 Ohm			60 Ohm
1	Read Write	ESISTORS	FILTER	OUTPUT	Read Write	LTER_RESISTOR2	OUTPUT_F
				60 Ohm		•	60 Ohm

Figure 13. OUTPUT FILTER Tab

ALARM

The **ALARM** tab configures the various alarms on the AD5770R. Refer to the AD5770R data sheet for more details on the alarm function.

ENCE CONFIG	CHANNEL CONFIG	SET OUTPUT RANGE	SET DAC CURRENT	LDAC	PAGE MASK	MONITOR MUX	OUTPUT FILTER	ALARI
BACKGROU	ND_CRC_ALARM_MA	SK Read W	rite T	EMP_WA	RNING_ALARM	MASK Rei	ad Write	
Normal Op	peration	•	•	Vormal O	peration			
IREF_FAULT	ALARM_MASK	Read	ite B	ACKGRO	UND_ORC_EN	Real	d Write	
Normal Op	peration	-	[Disable B	ackground CRC			
NEGATIVE	CHANNELO ALARM N	ASK Read W	ite	HERMAL	SHUTDOWN E	N Re	ad Write	
Normal Op	veration 💌			Disable TI	hermal Shutdow	wn - 💌		
OVER_TEM	P_ALARM_MASK	Read	ite O	PEN_DRA	NN_EN	Rei	ad Write	1
	veration	•		AL ADMA O	pen Drain Disat	ble •		

Figure 14. ALARM Tab

The STATUS tab is a read-only tab that allows the user to read the

STATUS

Figure 15. STATUS Tab

RESET

The **RESET** tab can issue a software reset command to place the AD5770R into a power-on state.

REFERENCE CONFIG	CHANNEL CONFIG	SET OUTPUT RANGE	SET DAC CURRENT	LDAC	PAGE MASK	MONITOR MUX	OUTPUT FILTER	ALARM	STATUS	RESET
lust select Tritiste :	Software Reset" on t	roth SW_RESET bits bek	ter to reset the ADS77	OP.						
		SW_RESET		Read	Write					
		Do Nothi	ng 💌							
		SW_RESET		Read	Write					
		Do Nothi	ng 💌							
			READ ALL RE	SET BITS						

Figure 16. RESET Tab

READ ALL FUNCTION

When clicked, the **READ ALL** button in the main window can read all register contents displayed in the software.

	Wybe		
REFERENCE_VOLTAGE_SEL External 2.5V	N154		
REFERENCE, RESETOR, SEL Internal Resistor	Write		

Figure 17. READ ALL Button

017

EVALUATION BOARD ARTWORK AND SCHEMATICS

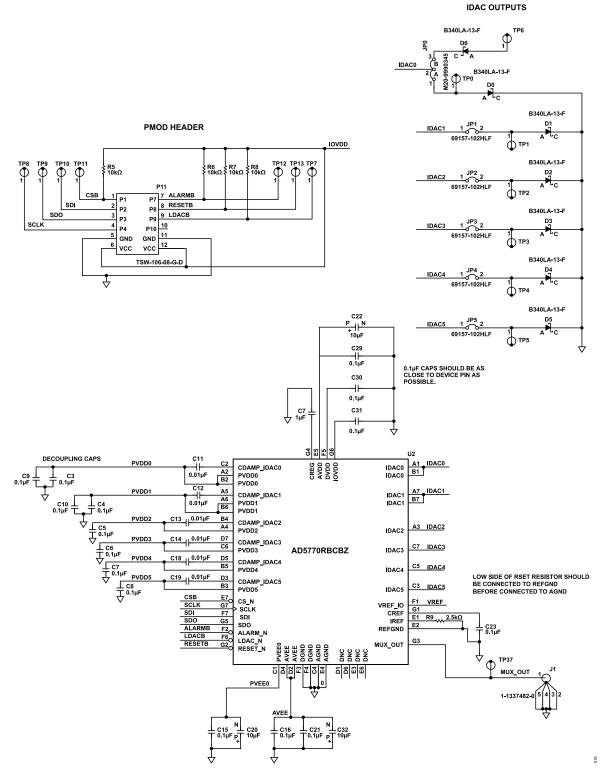


Figure 18. EVAL-AD5770RSDZ Schematics—Main Device and PMOD Connections

EVALUATION BOARD ARTWORK AND SCHEMATICS

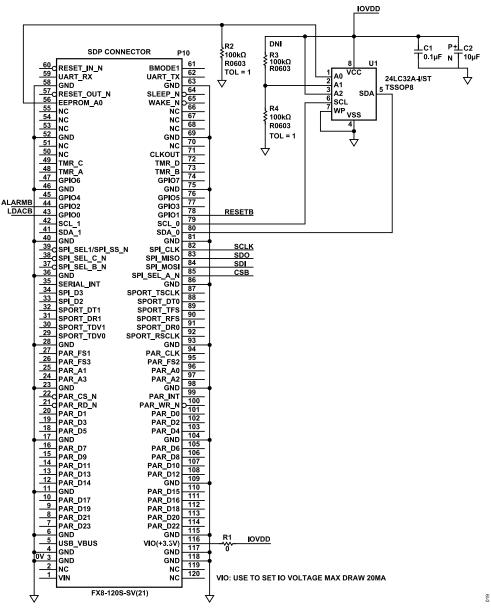


Figure 19. EVAL-AD5770RSDZ Schematic—SDP Interface Connector

EVALUATION BOARD ARTWORK AND SCHEMATICS

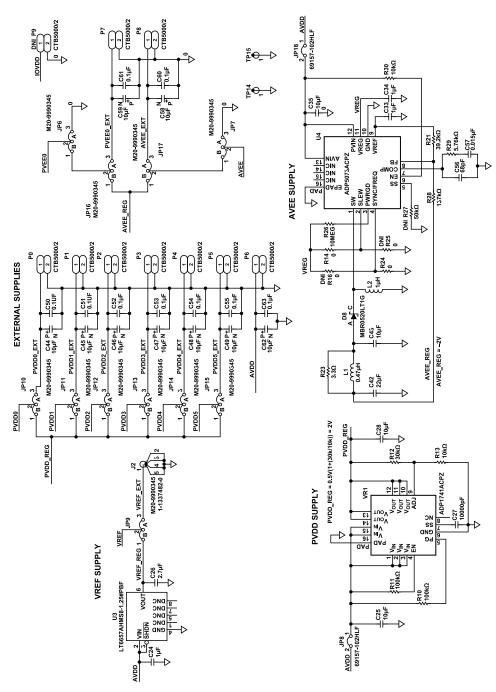


Figure 20. EVAL-AD5770RSDZ Schematic—Supplies and Power Links

ORDERING INFORMATION

BILL OF MATERIALS

Table 5. Bill of Materials

Qty	Reference Designator	Description	Manufacturer	Part Number
	U1	32K, I ² C EEPROM	Microchip Technology	24LC32A-I/ST
	U2	6-channel, 13-bit, current output DAC	Analog Devices, Inc.	AD5770RBCBZ
	U3	1.25 V low noise, buffered reference	Analog Devices, Inc.	LT6657AHMS8-1.25#PBF
	U4	DC to dc inverting regulator	Analog Devices, Inc.	ADP5073ACPZ-R7
	VR1	Low dropout, adjustable output Linear regulator	Analog Devices, Inc.	ADP1741ACPZ-R7
	C1, C3 to C10	Ceramic capacitors, 0.1 µF, 16 V, X7R, 0402	Murata	GRM155R71C104KA88D
	C11 to C14, C18, C19	Ceramic capacitors, 10 µF, 25 V, X5R, 0402	AVX	04023D103KAT2A
	C15, C16, C21, C23, C29, C30, C31	Ceramic capacitors, 0.1 µF, 16 V, X7R, 0603	Kemet	C0603C104K4RAC
	C17, C24, C33, C34	Ceramic capacitors, 1 µF, 16 V, X5R, 0603	Murata	GRM188R61C105KA93D
3	C2, C20, C22, C32, C44 to C48, C58, C59, C62	Tantalum capacitors, 10 µF, 10%, 16 V, 1411	Kemet	TAJB106K016RNJ
	C25, C28, C35	Ceramic capacitors, 10 µF, 16 V, X5R, 0805	Murata	GRM21BR61C106KE15L
	C26	Ceramic capacitor, 2.7 µF, 10 V, X5R, 0805	Kemet	C0805C275K8PACTU
	C27	Ceramic capacitor, 10 µF, 25 V, X7R, 0603	TDK	C1608X7R1E103K
	C42	Ceramic capacitor, 22 µF, 6.3 V, X5R, 0805	Murata	GRM21BR60J226ME39L
	C43	Ceramic capacitor, 22 µF, 6.3 V, X5R, 0805	Murata	GRM188R60J106ME47D
	C50 to C55, C60, C61, C63	Ceramic capacitors, 0.1 µF, 25 V, X7R, 0603	Kemet	C0603C104K3RACTU
	C56	Ceramic capacitor, 68 pF, 50 V, C0G/NP0, 0402	Murata	GRM1555C1H680JA01D
	C57	Ceramic capacitor, 15 nF, 16 V, X7R, 0402	Murata	GRM155R71C153KA01D
	D0 to D6,	Schottky diodes, 40 V, 3 A, SMA	Diodes Inc.	B340LA-13-F
	D8	Schottky diode, 20 V, 500 MA, SOD123	ON Semiconductor	MBR0520LT1G
	J1, J2	SMB connectors	TE Connectivity Ltd	1-1337482-0
2	JP0, JP6, JP7, JP9, JP10 to JP17	3-pin male headers, 2.54 mm pitch	Harwin	M20-9990345
	JP1 to JP5, JP8, JP18	2-pin male headers, 2.54 mm pitch	Amphenol FCI	69157-102HLF
	L1	Inductor shielded power, 1.3 A, 0.1 Ω dc resistance (DCR)	Coilcraft, Inc.	PFL1609-471MEU
	L2	Inductor shielded power, 0.23 Ω DCR, 0.85 A	Coilcraft, Inc.	PFL1609-102MEU
	P0 to P8	Terminal blocks, 0.5 mm pitch	CamdenBoss Ltd.	CTB5000/2
	P10	SDP connector	HRS	FX8-120S-SV(21)
	P11	12-pin male header, 2.54 mm pitch, PMOD connector	SAMTEC	TSW-106-08-G-D
	R1, R14, R24	Resistors, SMD, 0 $\Omega,$ 1%, 1/16 W, 0603, thick film	Multicomp	MC0603WG00000T5E-TC
	R10, R11	Resistors, SMD, 100 k $\Omega,$ 5%, 1/10 W, 0603, thick film	Yageo	RC0603JR-07100KL
	R12	Resistor, SMD, 30 k $\Omega,$ 0.1%, 1/10 W, 0603, thin film	Panasonic	ERA-3AEB303V
	R13, R30	Resistors, SMD, 10 k $\Omega,$ 1%, 1/10 W, 0603, thick film	Panasonic	ERJ-3EKF1002V
	R2, R4	Resistors, SMD, 100 k $\Omega,$ 1%, 1/10 W, 0603, thick film	Panasonic	ERJ-3EKF1003V
	R21	Resistor, SMD, 39.2 k $\Omega,$ 1%, 1/10 W, 0603, thick film	Yageo	RC0603FR-0739K2L
	R23	Resistor, SMD, 3.3 $\Omega,$ 1%, 1/16 W, 0603, thick film	Multicomp	MC 0.063W 0603 1% 3R3
	R26	Resistor, SMD, 10 m $\Omega,$ 5%, 1/10 W, 0603, thick film	ROHM	MCR03EZPJ106
	R28	Resistor, SMD, 137 k $\Omega,$ 1%, 1/16 W, 0603, thick film	Multicomp	MC0063W06031137K
	R29	Resistor, SMD, 5.76 k $\Omega,$ 1%, 1/10 W, 0402, thick film	Panasonic	ERJ-2RKF5761X
	R5 to R8	Resistors, SMD, 10 k $\Omega,$ 5%, 1/16 W, 0402, thick film	Vishay	CRCW040210K0JNED
	R9	Resistor, SMD, 2.5 k $\Omega,$ 0.01%, 1/5 W, 0805, metal foil	Vishay	Y16242K50000T9R
7	TP0 to TP15, TP37	Test points red	Components Corporation	TP-104-01-02

ORDERING INFORMATION

NOTES

I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board', and (ii) permit any Third Party includes any entity other than ADI. Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board os ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board'. Lostomer their enalypeves, affiliates and in-house consultants. Customer any not disclose or transfer any portion of the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disclose or transfer any portion of the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disclose or transfer any portion of the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disclose or the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disclose or

©2019-2023 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887-2356, U.S.A.