EPC·SPACE

Features

- Ultra-low Q_G For High Efficiency
- Logic Level
- Light Weight TBD grams
- New Compact Hermetic Package with Dual Gate
- Source Sense Pin
- Total Dose
 - Rated to 1000 krad
- Single Event
 - SEE immunity for LET of 85 MeV/mg/cm² with V_{DS} up to 100% of rated Breakdown
- Low Dose Rate at 100 mRad/sec
 - Maintains Pre-Rad specification
- Neutron
 - Maintains Pre-Rad specification for up to 3 x 10¹⁵ Neutrons/cm²

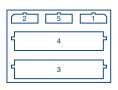
Applications

- Satellite EPS and Avionics
- Deep Space Probes
- High Speed Rad Hard DC-DC Conversion
- Rad Hard Motor Controllers
- Nuclear Facilities

Thermal Characteristics

Symbol	Parameter-Conditions	Value	Units
$R_{\theta JA}$	Thermal Resistance Junction to Ambient (Note 3)	48	°C/W
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case	1.53	C/ W

EPC7020G


Rad Hard eGaN[®] 200 V, 80 A, 14.5 m Ω Max Surface Mount

Description

EPC Space FSMD-G series of eGaN[®] power switching HEMTs have been specifically designed for critical applications in the high reliability or commercial satellite space environments. These devices have exceptionally high electron mobility and a low temperature coefficient resulting in very low $R_{DS(on)}$ values. The lateral structure of the die provides for very low gate charge (Q_G) and extremely fast switching times. These features enable faster power supply switching frequencies resulting in higher power densities, higher efficiencies and more compact packaging.

I/O Pin Assignment (Bottom View)

Pin	Symbol	Description
1	G	Gate
2	G	Gate
3	D	Drain
4	S	Source
5	SS	Source Sense

Absolute Maximum Rating ($T_c = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter-Conditions	Value	Units
M	Drain to Source Voltage (Note 1)	200	M
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	240	V
I _D	Continuous Drain Current ID @ V _{GS} = 5 V	80	
I _{DM}	Single-Pulse Drain Current t _{pulse} = 300 µs	200	A
V _{GS}	Gate to Source Voltage (Note 2)	+6 / -4	V
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	° 0
T _{SOL}	Package Mounting Surface Temperature	260	C°
ESD	ESD Class	ΔΑ	

Static Characteristics (Typical (TYP) values are for reference only.)

Symbol	Parameter	Test Condit	ions	MIN	ΤΥΡ	MAX	Units
B _{VDSS}	Drain to Source Voltage	$V_{GS} = 0 V, I_{D} = 0.4 mA$		200			V
I _{DSS} Drain to Source Leakage	Drain to Source Lookage	$V_{GS} = 0 V, V_{DS} = 200 V$	$T_{\rm C} = 25^{\circ}{\rm C}$		0.025	0.4	
	$V_{GS} = 0 V, V_{DS} = 200 V$	T _C = 125°C		0.25			
	Gate to Source Forward Leakage	$V_{GS} = 5 V$	$T_{\rm C} = 25^{\circ}{\rm C}$		0.013	0.3	mA
I _{GSS}	Gate to Source Forward Leakage#	$V_{GS} = 5 V$	T _C = 125°C		0.05	1.2	_
	Gate to Source Reverse Leakage	$V_{GS} = -4 V$	T _C = 25°C		0.03	0.5	
V _{GS(th)}	Gate to Source Threshold Voltage		T _C = 25°C	0.8	1.4	2.5	V
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage Temperature Coefficient	$V_{DS} = V_{GS}$, $I_D = 7 \text{ mA}$	-55°C < T _A < 150°C		-2.0		mV/°C
R _{DS(on)}	Drain to Source Resistance (Note 4)	$V_{GS} = 5 \text{ V}, \text{ I}_{D} = 30 \text{ A}$	$T_{\rm C} = 25^{\circ}{\rm C}$		9.5	14.5	mΩ
V _{SD}	Source to Drain Forward Voltage (Note 5)	I _S = 0.5 A, V _G = 0 V	T _C = 25°C		1.7		V

All measurements were done with substrate shorted to source.

Defined by design. Not subject to production test.

Dynamic Characteristics[#] ($T_c = 25^{\circ}$ C unless otherwise noted. Typical (TYP) values are for reference only.)

Symbol		Test Conditions	MIN	TYP	MAX	Units
C _{ISS}	Input Capacitance			1313		
C _{RSS}	Reverse transfer Capacitance	$V_{GS} = 0$ V, $V_{DS} = 100$ V		4		
C _{OSS}	Output Capacitance			640		pF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related			750		
C _{OSS(TR)}	Effective Output Capacitance, Time Related	$V_{GS} = 0 V$, $V_{DS} = 0$ to 100 V		925		-
Q _G	Total Gate Charge	$V_{GS} = 5 \text{ V}, V_{DS} = 100 \text{ V},$ $I_{D} = 30 \text{ A}$		13.5		
Q _{GS}	Gate to Source Charge	100 V L 00 A		3.8		
Q _{GD}	Gate to Drain Charge	V _{DS} = 100 V, I _D = 30 A		2.5		nC
Q _{OSS}	Output Charge (Note 6)	V _{GS} = 0 V, V _{DS} = 100 V		93		
Q _{RR}	Source to Drain Recovery Charge			0		

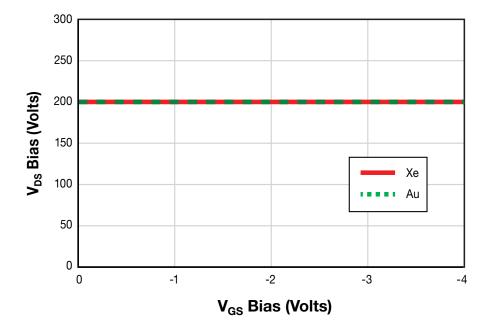
All measurements were done with substrate shorted to source.

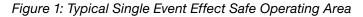
Defined by design. Not subject to production test.

Radiation Characteristics

EPC Space eGaN[®] HEMTs are tested according to MIL-STD-750 Method 1019 for total ionizing dose validation. Every manufacturing lot is tested for total ionizing dose of Gamma radiation with an in-situ bias for (i) $V_{GS} = 5 V$, (ii) $V_{DS} = V_{GS} = 0 V$ and (iii) $V_{DS} = 80\% B_{VDSS}$.

			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Parameter	Symbol	Test Conditions	MIN	ТҮР	MAX	Units
Maximum Drain to Source Voltage	V _{DSMAX}	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 0.4 \text{ mA}$	200			
Gate to Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 7 \text{ mA}$	0.8	1.4	2.5	V
Drain to Source Leakage	I _{DSS}	$V_{GS} = 0 \text{ V}, \text{ V}_{DS} = 200 \text{ V}$		0.025	0.4	
Gate to Source Forward Leakage		$V_{GS} = 5 V$		0.013	0.3	mA
Gate to Source Reverse Leakage	IGSS	$V_{GS} = -4 V$		0.05	1.2	
Drain to Source Resistance (Note 4)	R _{DS(on)}	V _{GS} = 5 V, I _D = 30 A		9.5	14.5	mΩ


Electrical Characteristics up to 1000 krads (*T_J* = 25°C unless otherwise noted. Typical (TYP) values are for reference only.)

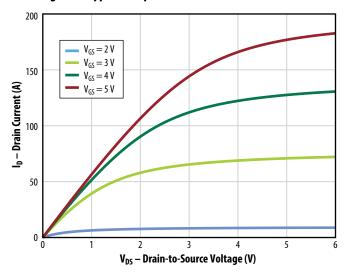
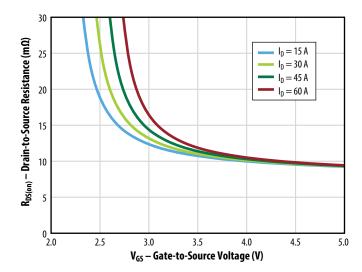
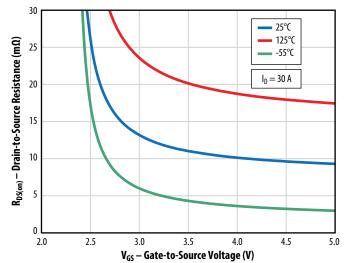

Typical Single Event Effect Safe Operating Area

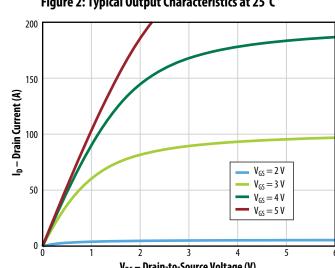
Note : All Single Event Effect testing is performed on the K-500 Cyclotron at Texas A&M University

Test		Environment			V _{DS} Vol	tage (V)
	lon	LET MeV/mg/cm ²	Range µm	Energy MeV	$V_{GS} = 0 V^*$	$V_{GS} = -4 V^*$
See SOA	Xe	50	131	1653	200	200
	Au	83.7	130	2482	200	200

*Pending qualification

200 150 100 $V_{GS} = 2 V$ $V_{GS} = 3 V$ 50 $V_{GS} = 4 V$ $V_{GS} = 5 V$ 0 5 0 1 2 3 4 6 V_{DS} – Drain-to-Source Voltage (V)


Figure 5: R_{DS(on)} vs. V_{GS} for Various Drain Currents

5.0

Figure 4: Typical Transfer Characteristics

25℃

■ 125°C

-55℃

 $V_{DS} = 6 V$

200

150

100

50

0 0

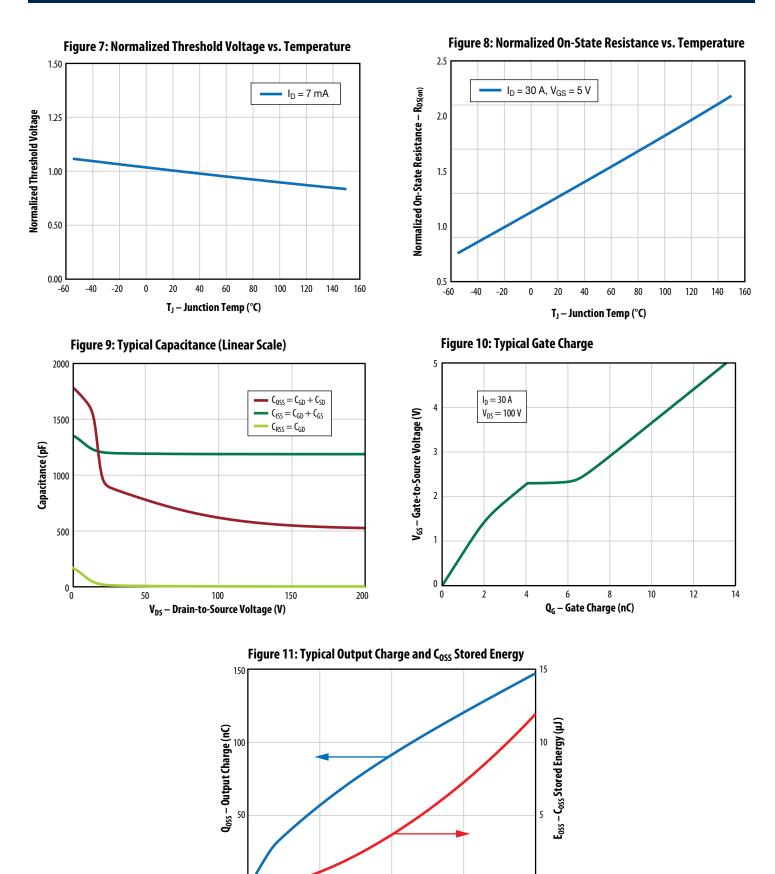
1.0

1.5

2.0

2.5

V_{GS} – Gate-to-Source Voltage (V)


3.0

3.5

4.0

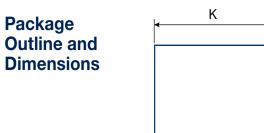
4.5

l_b – Drain Current (A)

100

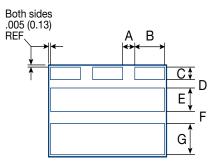
V_{DS} – Drain-to-Source Voltage (V)

150

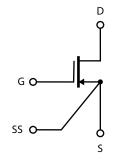

_____0 200

EPC.SPACE

0


0

50


J

Symbol	Inches		Inches Millimeters		Note
Gymbol	MIN	MAX	MIN	MAX	Note
A (2x)	0.028	0.038	0.711	0.965	
B (3x)	0.075	0.085	1.905	2.159	
C (3x)	0.025	0.035	0.635	0.889	
D	0.015	0.025	0.381	0.635	
Е	0.051	0.061	1.295	1.549	
F	0.024	0.034	0.61	0.864	
G	0.07	0.08	1.778	2.032	
Н	0.078	0.088	1.981	2.235	
J	0.215	0.225	5.461	5.715	
К	0.311	0.321	7.899	8.153	

Standard Terminal Pad finish is a solder alloy of 63%Pb 37%Sn

Package Connections

NOTE: SS pin is connected directly to source of internal die.

Notes

- Note 1. NEVER exceed the absolute maximum V_{DS} of the device otherwise permanent damage/destruction may result.
- Note 2. NEVER exceed the absolute maximum V_{GS} of the device otherwise permanent damage/destruction may result. We recommend use at no greater than +5 V as the HEMT is fully conducting at this point.
- Note 3. R_{0JA} measured with LCC3 package mounted to double-sided PCB, 0.063" thickness with 1.0 square inches of copper area on the top (mounting side) and a flood etch (3 square inches) on the bottom side.
- Note 4. Measured using four wire (Kelvin) sensing and pulse measurement techniques. Measurement pulse width is 80 µs and duty cycle is 1%, maximum.
- Note 5. Operation of the device in the third quadrant region is not recommended.
- Note 6. Guaranteed by design/device construction. Not tested.

EPC Space Part Number Information

Ordering Information Availability

Screening Options	Rad Assurance Options
1 character	1 character
C = Developmental Unit S = Space Level ¹	H = 1000 krad LET = 84

Part Number	Screening Level	Shipping
EPC7020GC	Developmental Units	Moffle trove
EPC7020GSH	Space Level	Waffle trays

¹ Screening and qualification consistent to an equivalent MIL-PRF-19500 specification.

EPC7020GC devices are intended for engineering development purposes only and are NOT intended to be used as flight units.

EPC Space Rad Hard HEMT are not sensitive to Total Ionizing Dose as such the H level covers the R,F,G radiation levels.

Screening Flow Equivalent to a MIL-PRF-19500 General Specification

Operation	Test	Test Methods Per Mil STD 750	Sample Size	Space Level	C01		
	Probe Testing	EPC SPACE Internal	100%	√	✓		
Pre-Assembly	Visual inspection	EPC SPACE Internal	100%	✓	✓		
	Die Shear	2,017	5	✓	~		
Post-Assembly	X-Ray	2076	5	✓	✓		
	Serilialization		100%	✓			
	Electricals	3411,3413,3421,3404	100%	✓	✓		
	Temp Cycling	1051	100%	✓			
	Constant Acceleration	2006	100%	✓			
	PIND	2052	100%	✓			
	Initial Electricals (Read and Record)	3411,3413,3421,3404	100%	✓			
	HTGB	1042 Condition B	100%	✓			
	Interim Electricals (Read and Record)	3411,3413,3421,3404	100%	✓			
	HTRB	1042 Condition A 240 Hours	100%	✓			
Screening	Final Electricals (Read and Record)	3411,3413,3421,3404	100%	\checkmark			
	Final Electricals (High and Low Temperatures)	3411,3413,3421,3404	100%	✓			
	Deltas	Per Procurement Specification	100%	✓			
	Percent Defective Allowable	Per Procurement Specification	100%	✓			
	Dynamic RDSON	EPC SPACE Internal	100%	✓			
	OutLiers Removal	EPC SPACE Internal	100%	✓			
	X-RAY	2076	100%	✓			
	Tinning		100%	✓			
	Hermetic Seal, Fine & Gross Leak	1071	100%	✓			
	Final Electricals	3411,3413,3421,3404	100%	\checkmark			
	A-2 DC Static Tests at 25°C	3411,3413,3421,3404	116	\checkmark			
Group A Inspection	A-3 High & Low Temp DC Static Tests	3411,3413,3421,3404	116	✓			
Conformance)	A-7 Gate Charges	3471 Condition B	45	✓			
	A-7 Capacitance	3473	45	\checkmark			
Group B Inspection (Conformance)	B-1, B-2, B-3, B-4, B-5	Sample base equivalent to a M procureme	IL-PRF-19500 flo nt specificcation		d by		
Group C Inspection (Conformance)	C-1, C-2, C-3, C-4, C-6, C-7	Sample base performed yearly per package style equivalent to a MIL-PRF-19500 flow or as required by procurement specification					
Group D Inspection	TID	1019	15	✓			
Conformance)	SEE	1080	5	✓			
Group E Inspection	E-1, E-2, E-5, E-6 E-7	Performed during product intro equivalent to a MII -PRF			nge		
nspection)	E8 Switching	•	equivalent to a MIL-PRF-19500 flow or as required by procurement specification				

SPAC

Disclaimers

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. EPC Space Corporation, its affiliates, agents, employees, and all persons acting on its or their behalf (collectively, "EPC Space"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. EPC Space makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose. To the maximum extent permitted by applicable law. EPC Space disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on EPC Space market knowledge of typical requirements that are often placed on similar technologies in generic applications. Product specifications do not expand or otherwise modify EPC Space terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, EPC Space products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the EPC Space product could result in personal injury or death. Customers using EPC Space products not expressly indicated for use in such applications do so at their own risk. Please contact authorized EPC Space personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of EPC Space. Product names and markings noted herein may be trademarks of their respective owners.

Export Administration Regulations (EAR)

The products described in this datasheet could be subjected to the Export Administration Regulations (EAR). They may require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

International Traffic in Arms Regulations (ITAR)

The products described in this datasheet could be subjected to the International in Arms Regulations (ITAR). They require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Patents

EPC Corporation and EPC Space hold numerous worldwide patents. Any that apply to the product(s) listed in this document are identified by markings on the product(s) or on internal components of the product(s) in accordance with local patent laws.

eGaN[®] is a registered trademark of Efficient Power Conversion Corporation, Inc. Data and specification subject to change without notice.

Revisions

Datasheet Revision	Product Status
REV Q1	Characterization and Qualification
Preliminary	Production Released

Information subject to change without notice. Revised April, 2023