


# CMPA5259050F

# 50 W, 4.9 – 5.9 GHz, 28 V, GaN MMIC for Radar Power Amplifiers

#### Description

Wolfspeed's CMPA5259050F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). It is designed specifically for high efficiency, high gain, and wide bandwidth capabilities, which makes CMPA5259050F ideal for 4.9 - 5.9 GHz radar amplifier applications. The transistor is supplied in a 0.5 inch square ceramic/metal flange package.



#### Features

- 30 dB Small Signal Gain •
- 50% Efficiency at P<sub>SAT</sub> Operation up to 28 V •
- High Breakdown Voltage
- 0.5 inch-square package

#### **Applications**

- **AESA Radar**
- **Defense Radar**
- **Fire Control Radar**
- Naval, Marine, Ground Protection Radar
- Weather Radar

### Typical Performance Over 4.9 - 5.9 GHz ( $T_c = 25^{\circ}$ C) of Demonstration Amplifier

| Parameter              | 5.2 GHz | 5.5 GHz | 5.9 GHz | Units |
|------------------------|---------|---------|---------|-------|
| Small Signal Gain      | 31.4    | 30.8    | 31.0    | dB    |
| Output Power           | 59.6    | 56.0    | 55.2    | W     |
| Power Added Efficiency | 51.5    | 52      | 52      | %     |

Note:

100  $\mu$ sec Pulse Width, 10% Duty Cycle, P<sub>IN</sub> = 26 dBm



## Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

| Parameter                                         | Symbol           | Rating    | Units           | Conditions                                                                         |
|---------------------------------------------------|------------------|-----------|-----------------|------------------------------------------------------------------------------------|
| Drain-source Voltage                              | V <sub>DSS</sub> | 84        | V <sub>DC</sub> |                                                                                    |
| Gate-source Voltage                               | V <sub>gs</sub>  | -10, +2   | V <sub>DC</sub> |                                                                                    |
| Storage Temperature                               | T <sub>stg</sub> | -55, +150 | °C              |                                                                                    |
| Operating Junction Temperature                    | T,               | 225       | °C              |                                                                                    |
| Soldering Temperature                             | Τ <sub>s</sub>   | 245       | °C              |                                                                                    |
| Screw Torque                                      | τ                | 40        | in-oz           |                                                                                    |
| Thermal Resistance, Junction to Case <sup>1</sup> | R <sub>ejc</sub> | 1.60      | °C/W            | $P_{DISS} = 61 \text{ W}, T_{CASE} = 85 \degree \text{C}, 500 \ \mu\text{s}, 20\%$ |
| Case Operating Temperature                        | T <sub>c</sub>   | -40, +105 | °C              |                                                                                    |
| Forward Gate Current                              | I <sub>GS</sub>  | 16.8      | mA              |                                                                                    |

# Electrostatic Discharge (ESD) Classifications

| Parameter           | Symbol | Class             | Test Methodology    |
|---------------------|--------|-------------------|---------------------|
| Human Body Model    | НВМ    | 1A (> 250 V)      | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | 2 (125 V < 250 V) | JEDEC JESD22 C101-C |

# **Electrical Characteristics** $(T_c = 25°C)$

| Characteristics                   | Symbol           | Min. | Тур. | Max. | Units           | Conditions                                                                                                                             |
|-----------------------------------|------------------|------|------|------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|
| DC Characteristics <sup>1</sup>   |                  |      |      |      |                 |                                                                                                                                        |
| Gate Threshold Voltage            | $V_{GS(th)}$     | -3.6 | -2.5 | -2.4 | V <sub>DC</sub> | $V_{\rm DS} = 10 \text{ V}, \text{ I}_{\rm DS} = 16.8 \text{ mA}$                                                                      |
| Gate Quiescent Voltage            | $V_{_{GS(Q)}}$   | -    | -2.7 | -    | V <sub>DC</sub> | $V_{\rm DS} = 10 \text{ V}, \text{ I}_{\rm D} = 16.8 \text{ mA}$                                                                       |
| Saturated Drain Current           | I <sub>DS</sub>  | 12.6 | 18.6 | -    | А               | $V_{\rm DS} = 6 \text{ V}, V_{\rm GS} = 2 \text{ V}$                                                                                   |
| Drain-Source Breakdown Voltage    | V <sub>BD</sub>  | 84   | 100  | -    | V <sub>DC</sub> | V <sub>GS</sub> = -8 V, I <sub>DS</sub> = 16.8 mA                                                                                      |
| RF Characteristics <sup>2,3</sup> |                  |      |      |      |                 |                                                                                                                                        |
| Small Signal Gain                 | G <sub>ss</sub>  | 28   | 31   | -    | dB              | $V_{_{DD}} = 28 \text{ V}, \text{ I}_{_{DQ}} = 1.0 \text{ A}, \text{ Freq} = 4.9-5.9 \text{ GHz}, \text{ P}_{_{IN}} = -20 \text{ dBm}$ |
| Power Output                      | P <sub>out</sub> | 46   | 59.6 | -    | W               | $V_{_{DD}} = 28 \text{ V}, I_{_{DQ}} = 1.0 \text{ A}, \text{ Freq} = 5.2 \text{ GHz}, P_{_{IN}} = 24 \text{ dBm}$                      |
| Power Output                      | P <sub>out</sub> | 46   | 56.0 | -    | W               | $V_{_{DD}} = 28 \text{ V}, I_{_{DQ}} = 1.0 \text{ A}, \text{ Freq} = 5.5 \text{ GHz}, P_{_{IN}} = 24 \text{ dBm}$                      |
| Power Output                      | P <sub>out</sub> | 46   | 55.2 | -    | W               | $V_{_{DD}} = 28 \text{ V}, I_{_{DQ}} = 1.0 \text{ A}, \text{ Freq} = 5.9 \text{ GHz}, P_{_{IN}} = 24 \text{ dBm}$                      |
| Power Added Efficiency            | PAE              | 40.5 | 51   | -    | %               | $V_{_{DD}} = 28 \text{ V}, I_{_{DQ}} = 1.0 \text{ A}, \text{ Freq} = 5.2 \text{ GHz}, P_{_{IN}} = 24 \text{ dBm}$                      |
| Power Added Efficiency            | PAE              | 42   | 52   | -    | %               | $V_{_{DD}} = 28 \text{ V}, I_{_{DQ}} = 1.0 \text{ A}, \text{ Freq} = 5.5 \text{ GHz}, P_{_{IN}} = 24 \text{ dBm}$                      |
| Power Added Efficiency            | PAE              | 42   | 52   | _    | %               | $V_{_{DD}} = 28 \text{ V}, I_{_{DQ}} = 1.0 \text{ A}, \text{ Freq} = 5.9 \text{ GHz}, P_{_{IN}} = 24 \text{ dBm}$                      |
| Power Gain                        | G <sub>P</sub>   | _    | 21.8 | _    | dB              | $V_{_{DD}} = 28 \text{ V}, \text{ I}_{_{DQ}} = 1.0 \text{ A}, \text{ Freq} = 5.2-5.9 \text{ GHz}, \text{ P}_{_{IN}} = 26 \text{ dBm}$  |
| Input Return Loss                 | S11              | _    | -12  | _    | dB              | $V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 1.0 A, Freq = 5.2 - 5.9 GHz, $P_{_{IN}}$ = -20 dBm                                                   |
| Output Return Loss                | S22              | _    | -17  | 4    | dB              | $V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 1.0 A, Freq = 5.2 - 5.9 GHz, $P_{_{IN}}$ = -20 dBm                                                   |
| Output Mismatch Stress            | VSWR             | _    | 3:1  | _    | Ψ               | No damage at all phase angles $V_{DD}$ = 28 V, $I_{DQ}$ = 1.0 A,<br>P <sub>IN</sub> = 26 dBm                                           |

Notes:

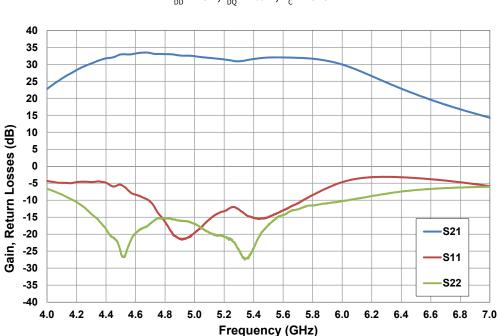
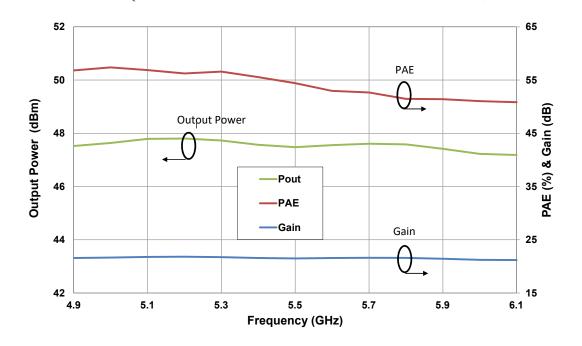
<sup>1</sup> Measured on wafer prior to packaging.

<sup>2</sup> Measured in CMPA5259050F-TB test fixture.

 $^{\scriptscriptstyle 3}$  Pulse width = 100  $\mu sec$ , 10% duty cycle



#### **Typical Pulsed Performance**

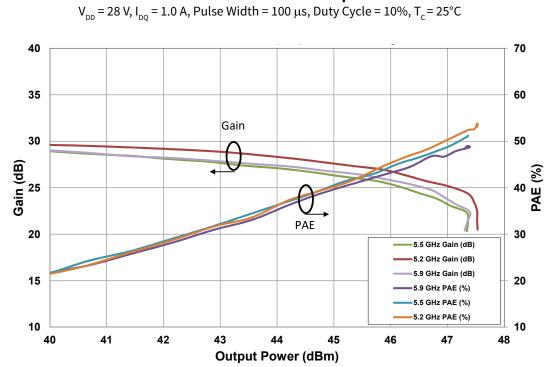
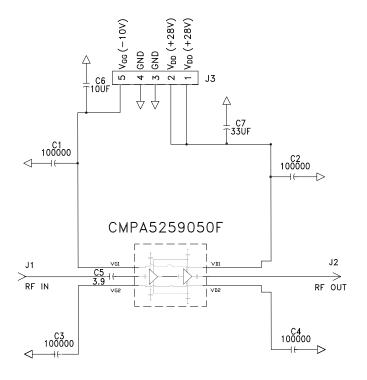


Figure 1. - Gain and Input Return Loss vs. Frequency of the CMPA5259050F Measured in CMPA5259050F-AMP Amplifier Circuit  $V_{DD} = 28 \text{ V}, I_{DO} = 1.0 \text{ A}, T_{C} = 25^{\circ}\text{C}$ 

Figure 2. - Output Power, Gain, and Power Added Efficiency vs. Frequency of the CMPA5259050F Measured in CMPA525050F-AMP Amplifier Circuit  $V_{DD} = 28 \text{ V}, I_{DO} = 1.0 \text{ A}, P_{IN} = 26 \text{ dBm}, Pulse Width = 100 \ \mu\text{s}, Duty Cycle = 10\%, T_c = 25^{\circ}\text{C}$ 






## **Typical Pulsed Performance**

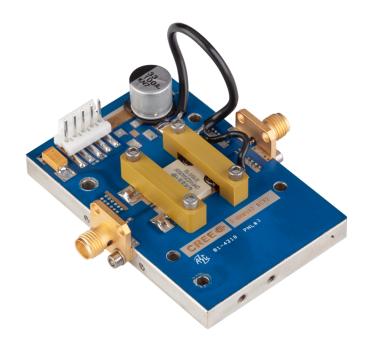




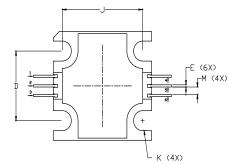
#### CMPA5259050F-TB Demonstration Amplifier Schematic

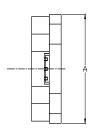


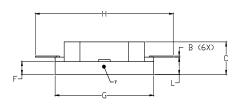
## CMPA5259050F-TB Demonstration Amplifier Circuit Outline

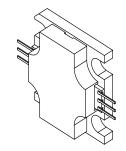






## CMPA5259050F-TB Demonstration Amplifier Circuit Bill of Materials


| Designator     | Description                                                    | Qty |
|----------------|----------------------------------------------------------------|-----|
| C5             | CAP, 3.9pF, +/-0.1pF, 0402, ATC                                | 1   |
| C7             | CAP, 33 UF, 20%, G CASE                                        | 1   |
| C1, C2, C3, C4 | CAP CER 0.1UF 100V 10% X7R 0805                                | 4   |
| C6             | CAP 10UF 16V TANTALUM, 2312                                    | 1   |
|                | PCB, RF35, 10 MIL THK                                          | 1   |
| J1, J2         | CONN, SMA, PANEL MOUNT JACK, FL                                | 2   |
| J3             | HEADER RT>PLZ .1CEN LK 5POS                                    | 1   |
| W1, W2         | WIRE, BLACK, 22 AWG                                            | 2   |
| J4             | CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au<br>PLATED | 1   |
|                |                                                                |     |


## CMPA5259050F-AMP Demonstration Amplifier Circuit




### Product Dimensions CMPA5259050F (Package Type – 440219)



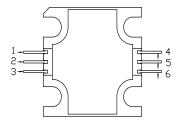






NOT TO SCALE

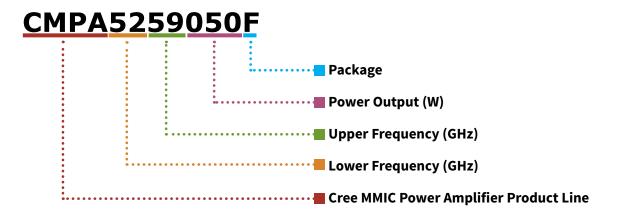
NDTES


1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION. 5. ALL PLATED SURFACES ARE NI/AU


|     | INC   | HES   | MILLIM | ETERS |
|-----|-------|-------|--------|-------|
| DIM | MIN   | MAX   | MIN    | MAX   |
| A   | 0.495 | 0.505 | 12.57  | 12.82 |
| В   | 0.003 | 0.005 | 0.076  | 0.127 |
| С   | 0.140 | 0.160 | 3.56   | 4.06  |
| D   | 0.315 | 0.325 | 8.00   | 8.25  |
| E   | 0.008 | 0.012 | 0.204  | 0.304 |
| F   | 0.055 | 0.065 | 1.40   | 1.65  |
| G   | 0.495 | 0.505 | 12.57  | 12.82 |
| Н   | 0.695 | 0.705 | 17.65  | 17.91 |
| J   | 0.403 | 0.413 | 10.24  | 10.49 |
| K   | ø.    | 092   | 2.3    | 34    |
| L   | 0.075 | 0.085 | 1.905  | 2.159 |
| М   | 0.032 | 0.040 | 0.82   | 1.02  |



| PIN | Function          |
|-----|-------------------|
| 1   | Gate bias         |
| 2   | RF <sub>IN</sub>  |
| 3   | Gate bias         |
| 4   | Drain bias        |
| 5   | RF <sub>out</sub> |
| 6   | Drain bias        |
| 7   | Source            |
|     |                   |

8

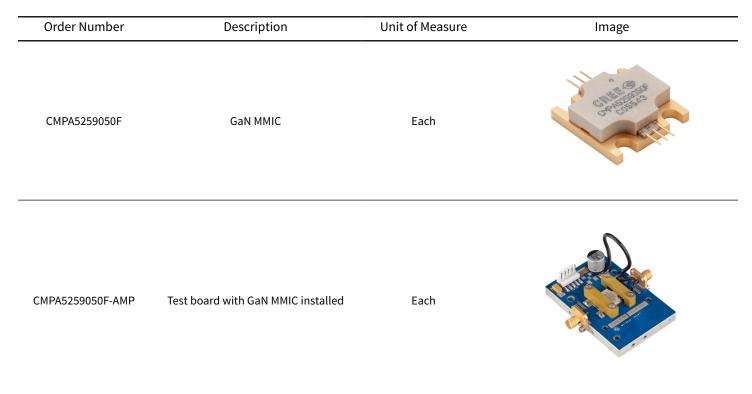
#### **Part Number System**



| Value  | Units            |
|--------|------------------|
| 4.9    | GHz              |
| 5.9    | GHz              |
| 50     | W                |
| Flange | -                |
|        | 4.9<br>5.9<br>50 |

#### Table 1.

**Note<sup>1</sup>:** Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.


| Code Value                     |
|--------------------------------|
| 0                              |
| 1                              |
| 2                              |
| 3                              |
| 4                              |
| 5                              |
| 6                              |
| 7                              |
| 8                              |
| 9                              |
| 1A = 10.0 GHz<br>2H = 27.0 GHz |
|                                |







## **Product Ordering Information**





For more information, please contact:

4600 Silicon Drive Durham, North Carolina, USA 27703 www.wolfspeed.com/rf

Sales Contact rfsales@cree.com

#### Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. Cree products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

© 2018-2020 Cree, Inc. All rights reserved. Wolfspeed® and the Wolfspeed logo are registered trademarks of Cree, Inc.