

4400MHz - 5000MHz

Product Description

The BVA3144 is a digitally controlled variable gain amplifier (DVGA) in a 6mm x 6mm LGA package, with a frequency range of 4400 to 5000 MHz and an operating VDD of 5.0V.

BVA3144 is high performance and high dynamic range makes it ideally suited for use in 5G/LTE wireless infrastructure and other high performance wireless RF applications.

The BVA3144 is an integration of a high performance digital 7bit step attenuator (DSA) that provides a 31.75 dB attenuation range in 0.25 dB steps, and high linearity broadband gain block amplifiers featuring high ACP and P1dB.

The BVA3144 digital control interface supports serial programming of the attenuator, and includes the reference gain (max gain, bypass) state on the Parallel programing .

The BVA3144 is integrated of two gain blocks (AMP1, AMP2), a digital step attenuator (DSA) and high linearity amplifier (AMP3).

Implementation requires only a few external components, such as matching capacitors on the Input and Output pins. (Don't need DC Blocking Capacitor)

Figure 1. Functional Block Diagram

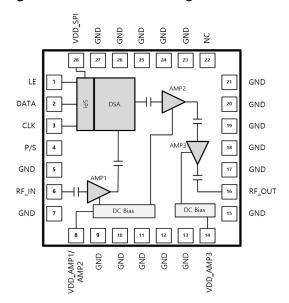


Figure 2. Package Type

28-Pin 6mm x 6mm x 0.95mm LGA

Device Features

- 28-Pin 6mm x 6mm x 0.95mm LGA Package
- Integrated Amp1 + DSA + Amp2 + Amp3
- A Single +5.0V supply
- 4300-5000MHz Frequency Range
- 36.3dB Gain @ 4.65GHz
- 4.0dB Noise Figure at max gain setting @ 4.65GHz
- 26.2dBm Output P1dB @ 4.65GHz
- 41dBm Output IP3 @ 4.65GHz
- ACP at 4.65GHz, 50dBc
 - Pre5G 100MBW (±100MHz offset) ≥ 14.5dBm
 - LTE 20MBW(FDD E-TM3.1, 100RB, \pm 20MHz offset) \geq 16.0dBm
- Attenuation: 0.25 dB step up to 31.75 dB
- Glitch-less attenuation state transitions
- High attenuation accuracy
 ±(0.5dB + 6% x Atten) @ 4.4-5.0GHz
- Programming Interface
 - Serial / Parallel (Bypass Mode)
- Lead-free/RoHS2-compliant SiP LGA SMT Package

Application

- 5G/4G/3G wireless Infrastructure
- Small Cells
- Repeaters

4400MHz - 5000MHz

Table 1. Electrical Specifications¹

Typical Performance Data @ 25° and VDD = 5.0V, ATT=0dB state (Max. gain) unless otherwise noted. (De-embedded PCB and connector Loss)

Parameter		Condition	Min	Тур	Max	Unit
Operational Frequency Range			4400		5000	MHz
Gain		Attenuation = 0dB, at 4650MHz	33.8	36.3	38.8	dB
Attenuation C	Control range	0.25dB step		0 - 31.75		dB
Attenuation S	tep			0.25		dB
Attenuation Accuracy	4.4GHz—5GHz	Any bit or bit combination	-(0.5 +6% of ATT. setting)		+ (0.5 +6% of ATT. setting)	dB
Return loss	Input Return Loss	Attenuation = 0dB		10		dB
Return loss	Output Return Loss	Attenuation = odb		15		ив
Output Power	r for 1dB Compression	Attenuation = 0dB , at 4650MHz		26		dBm
Output Third	Order Intercept Point	Attenuation = 0dB, at 4650MHz	36	41		dBm
Output Illira	Order intercept Foint	Pout= +5dBm/tone \triangle f = 1 MHz.	30			
Noise Figure		Attenuation = 0dB, at 4650MHz		4.0		dB
Switching tim	e	50% CTRL to 90% or 10% RF		275		ns
	(1/22)	DSA	3.3	5	5.5	V
Supply voltage	e (VDD)	АМР	4.85	5	5.15	V
Supply Curren	nt	AMP1+DSA+AMP2+AMP3	270	310	350	mA
Control Interf	ace	Serial mode		8		Bit
		Digital input high	1.17		3.6	V
Control Voltag	ge 	Digital input low	-0.3		0.63	V
Impedance				50		Ω

4400MHz - 5000MHz

Table 2. Typical RF Performance¹

Parameter	Frequency Unit					
Frequency	4450	4650	4950	MHz		
Gain	36	36.3	35.8	dB		
S11	-8	-10	-14	dB		
S22	-15.5	-16	-18	dB		
OIP3 ²	41	41	40	dBm		
P1dB	26.8	26.1	25.9	dBm		
LTE20M ACP ³	63	64	62	dBc		
Pre5G 100M ACP ⁴	57	56.5	56	dBc		
N.F	3.8	4	4.2	dB		

¹ Device performance _ measured on a BeRex evaluation board at 25°C, Vcc=+5.0V, 50 Ω system. measure on Evaluation Board De-embedded PCB and Connector Loss.

Table 3. Absolute Maximum Ratings¹

Parameter	Min	Тур	Max	Unit
Supply Voltage(VCC)	-0.3		5.5	٧
Supply Current			580	mA
Digital input voltage	-0.3		3.6	V
Maximum input power			+20	dBm
Storage Temperature	-55		+150	℃

¹ Operation of this device above any of these parameters may result in permanent damage.

Table 4. Recommended Operating Conditions¹

Parameter	Min	Тур	Max	Unit
Bandwidth	4400		5000	MHz
Supply Voltage(VCC)	4.85	5	5.15	V
Operating Temperature	-40		+105	°C
Thermal Resistance (θ _{JC})		21.77		°C/W

¹ Operation of this device above any of these parameters may result in permanent damage.

 $^{^{\}rm 2}$ OIP3 $_$ measured with two tones at an output of $\,$ +5 dBm per tone separated by 1 MHz.

³LTE set-up: 3GPP LTE, FDD E-TM3.1, 20MHz BW, ±20MHz offset, PAR 9.81 at 0.01% Prob. Output power 7dBm. Applied the Noise correlation function of Instrument.

⁴5G set-up: 3GPP Pre5G, 100MHz BW, ±100MHz offset. Output Power 7dBm. Applied the Noise correlation function of Instrument.

4400MHz - 5000MHz

Programming mode

Serial / Parallel (Bypass) Selection

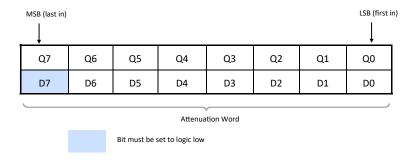
Either a Serial or Parallel interface can be used to control the P/S Pin. The P/S bit provides the selection, with P/S = HIGH or floating selecting the Serial interface and P/S = LOW selecting the Parallel interface (Bypass Mode, Max Gain State).

Serial Interface

The Serial interface is an 8-bit Serial-In, Parallel-Out shift register buffered by a transparent latch. The 8-bits make up the Attenuation Word that controls the DSA. Figure 4 illustrates an example timing diagram for programming a state.

The Serial interface is controlled using three CMOS compatible signals: SI, Clock (CLK) and LE. The SI and CLK inputs allow data to be serially entered into the shift register. Serial data is clocked in LSB first.

The shift register must be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data into the DSA. The Attenuation Word truth table is listed in Table 5. A programming example of the serial register is illustrated in Figure 3. The Serial timing diagram is illustrated in Figure 4.


Table 5. Serial Attenuation word Truth Table

		Attenuation							
D7 (MSB)	D6	D5	D4	D3	D2	D1	D0 (LSB)	setting	
L	L	L	L	L	L	L	L	Max. Gain	
L	L	ш	L	L	ш	ш	Н	0.25 dB	
L	L	ш	L	L	ш	Η	L	0.5 dB	
L	L	L	L	L	Н	L	L	1 dB	
L	L	L	L	Н	L	L	L	2 dB	
L	L	L	Н	L	L	L	L	4 dB	
L	L	Н	L	L	L	L	L	8 dB	
L	Н	L	L	L	L	L	L	16 dB	
L	Н	Н	Н	Н	Н	Н	Н	31.75 dB	

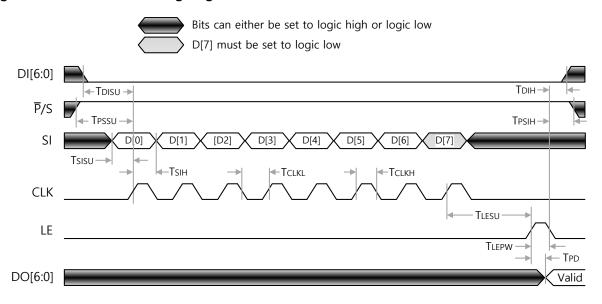
Power-up Control Settings

The BVA3144 will always initialize to the maximum attenuation setting (Atten=31.75dB) on power-up for the Serial mode and will remain in this setting until the user latches in the next programming word.

Figure 3. Serial Register Map

The attenuation word is derived directly from the value of the attenuation state. To find the attenuation word, multiply the value of the state by four, then convert to binary.

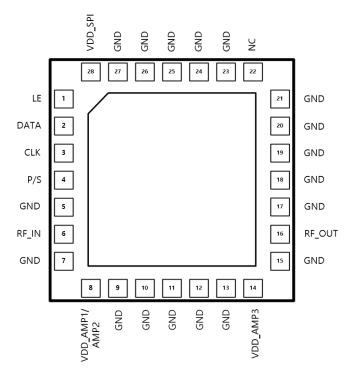
For example, to program the 12.5dB state;


 $4 \times 12.5 = 50$ $50 \rightarrow 00110010$

Serial Input: 00110010

4400MHz - 5000MHz

Figure 4. Serial Interface Timing Diagram


Table 6. Serial Interface AC Characteristics

VDD= 5.0V with DSA only, -40°C \leq TA \leq 105°C, unless otherwise specified

Symbol	Parameter	Min	Max	Unit
F CLK	Serial data clock frequency		10	MHz
Тськн	Serial clock HIGH time	30		ns
TCLKL	Serial clock LOW time	30		ns
TLESU	Last Serial clock rising edge setup time to Latch Enable rising edge	10		ns
TLEPW	Latch Enable minimum pulse width	30		ns
T sisu	Serial data setup time	10		ns
T SIH	Serial data hold time	10		ns
T DISU	Parallel data setup time	100		ns
T DIH	Parallel data hold time	100		ns
T PSSU	Parallel / Serial setup time	100		ns
T PSIH	Parallel / Serial hold time	100		ns
T ASU	Address setup time	100		ns
Тан	Address hold time	100		ns
T PD	Digital register delay (internal)		10	ns

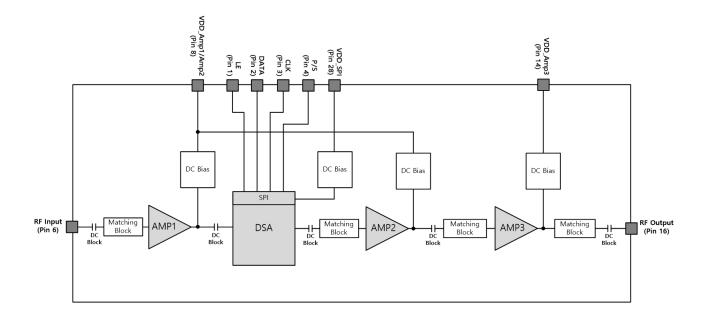
4400MHz - 5000MHz

Figure 5. Pin Configuration

Table 7. Pin Description

Pin	Pin name	Description
1	LE ¹	Serial Latch Enable Input. When LE is high, latch is clear and content of SPI control the attenuator. When LE is low, data in SPI is latched.
2	DATA	Serial Data Input. The data and clock pins allow the data to be entered serially into SPI and is independent of Latch state.
3	CLK	Serial Clock Input.
4	P/S	The P/S bit provides this selection, P/S=Low selecting the Parallel Interface which is the Max. Gain state (Bypass Mode, ATT=0dB) and either P/S=High selecting or floating for the Serial Interface.
6	RF IN	RF Input, matched to 50 ohm. Internally DC blocked.
8	VDD_AMP1/AMP2	Supply Voltage to AMP1 and AMP2. This pin is connected internally to bypass capacitors followed by inductor inside the module.
14	VDD_AMP3	Supply Voltage to AMP3. This pin is connected internally to bypass capacitors followed by inductor inside the module.
16	RF OUT	RF output, matched to 50 ohm. Internally DC blocked.
22	N/C	No connect or open. This pin is not connected.
28	VDD_SPI	SPI and DSA DC supply. This pin is connected to bypass capacitor internally.
5, 7, 9-13, 15 17-21,23-27	GND	RF/DC Ground
Backside Pad	GND	RF/DC Ground

Note: 1. LE must be Pulled-up to 1.17V — 3.6V to use the Bypass Mode when P/S = Low (Bypass mode, ATT=0dB)

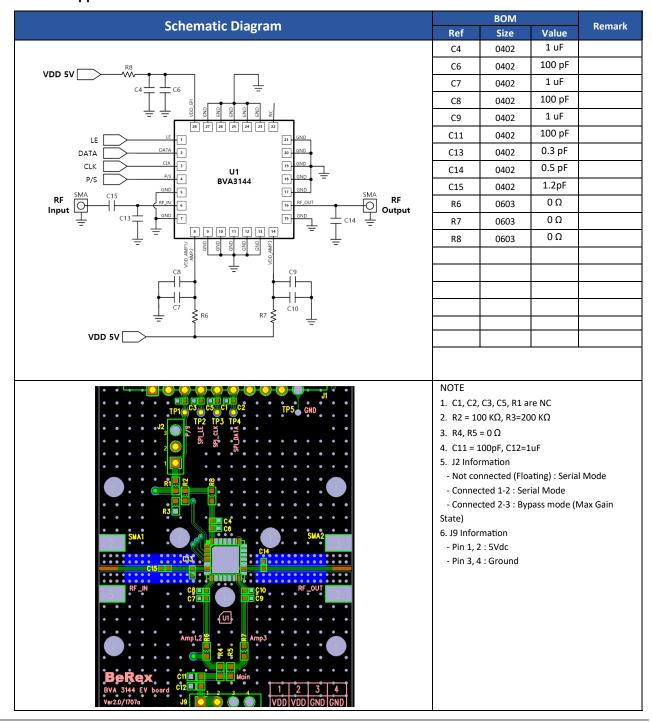


4400MHz - 5000MHz

Figure 6. Internal Function Block Diagram

The BVA3144 is integrated of two gain block (AMP1, AMP2), a digital step attenuator (DSA) and high linearity amplifier (AMP3). Additionally, the BVA3144 includes an internal bias and RF matching circuits to improve the RF performance at 4.4GHz - 5.0GHz.

The Internal structure of the Package is shown below.



4400MHz - 5000MHz

Typical RF Performance Plot - BVA3144 EVK - PCB

Typical Performance Data @ 25°and VDD = 5.0V unless otherwise noted and RF Circuit

Table 8. Application Circuit

Rev. 1.2

4400MHz - 5000MHz

Typical RF Performance Plot - BVA3144 EVK

Typical Performance Data @ 25° and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Table 9. Typical Performance: 4650MHz

parameter		Typical Values		Units
Frequency	4650	4650	4650	MHz
VDD	4.85	5	5.15	Vdc
Current	290	310	330	mA
Gain	36.2	36.3	36.4	dB
\$11	-10	-10	-10	dB
S22	-16	-16	-16	dB
OIP31	40	41	41.5	dBm
P1dB	25.8	26.1	26.3	dBm
Noise Figure	4.1	4.1	4.1	dB
LTE20MHz ACP ²	63.5	64	64.5	dBc
Pre5G 100MHz ACP ³	56.5	56.5	56.6	dBc

 $^{^{1}\}textsc{OIP3}\xspace$ measured with two tones at an output of 5 dBm per tone separated by 1 MHz.

Figure 7. Gain vs Frequency @Max Gain state

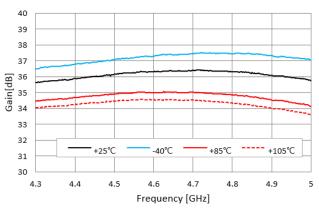


Figure 8. Gain vs Frequency @Min Gain state

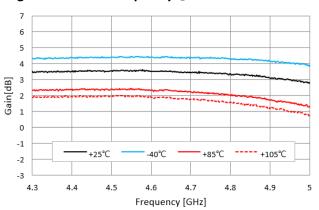


Figure 9. Gain vs VDD @Max Gain state

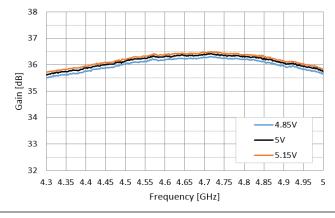
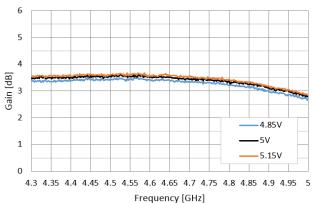



Figure 10. Gain vs VDD @Min Gain state

BeRex •website: www.berex.com

•email: sales@berex.com

² LTE set-up: 3GPP LTE, FDD E-TM3.1, 20MHz BW, ±20MHz offset, PAR 9.81 at 0.01% Prob. Output Power 7dBm. Applied the Noise correlation function of Instrument.

³ Pre5G set-up: 3GPP Pre5G, 100MHz BW, ±100MHz offset. Output Power 7dBm. Applied the Noise correlation function of Instrument.

4400MHz - 5000MHz

Typical RF Performance Plot - BVA3144 EVK

Typical Performance Data @ 25° and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 11. Input Return Loss vs Frequency
@Max Gain State

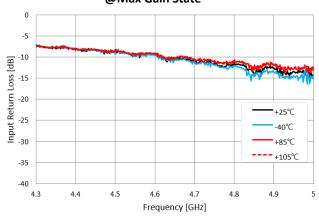


Figure 12. Input Return Loss vs Frequency
@Min Gain State

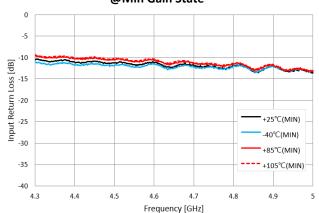


Figure 13. Output Return Loss vs Frequency

@Max Gain State

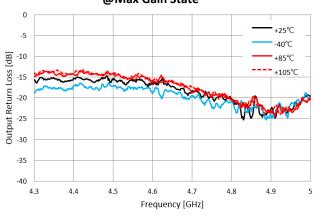


Figure 14. Output Return Loss vs Frequency

@Min Gain State

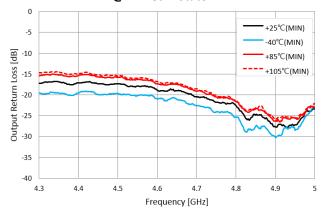


Figure 15. Gain vs Attenuation Settings

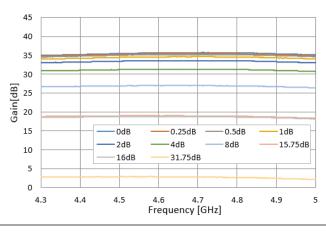
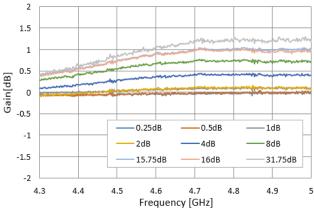



Figure 16. Attenuation Error vs Frequency

BeRex

•website: www.berex.com

•email: sales@berex.com

4400MHz - 5000MHz

Typical RF Performance Plot - BVA3144 EVK

Typical Performance Data @ 25° and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 17. Attenuation Error vs Temp vs Attenuation Settings @ 4650MHz

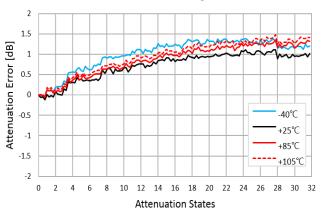


Figure 18. Attenuation Error vs Frequency vs Attenuation Settings

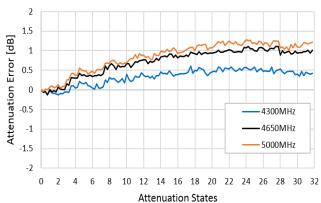


Figure 19. OIP3 vs Frequency vs Output Power
ATT=0dB (Max Gain), 1MHz interval

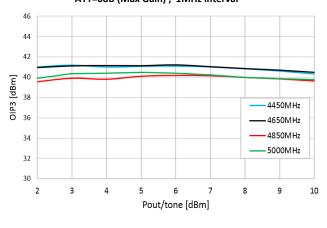


Figure 20. OIP3 vs Frequency vs Output Power
ATT = 15dB, 1MHz interval

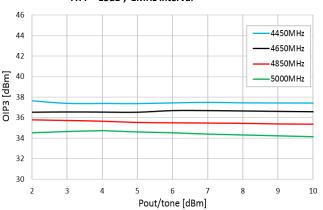


Figure 21. OIP3 vs VDD vs Output Power

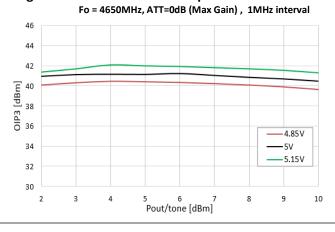
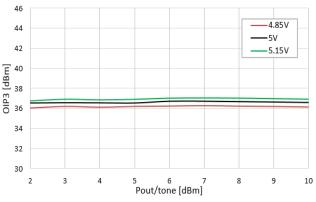



Figure 22. OIP3 vs VDD vs Output Power Fo = 4650MHz, ATT=15dB, 1MHz interval

BeRex •website: www.berex.com

•email: sales@berex.com

4400MHz - 5000MHz

Typical RF Performance Plot - BVA3144 EVK

Typical Performance Data @ 25°and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 23. OIP3 vs Temp. vs Output Power

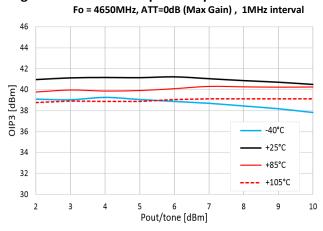


Figure 24. Pin-Pout-Gain (OP1dB)
@ 4650MHz

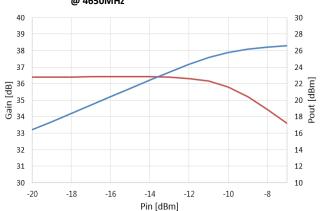


Figure 25. OP1dB vs Temp vs Frequency

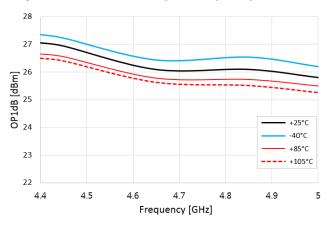


Figure 26. OP1dB vs VDD vs Frequency

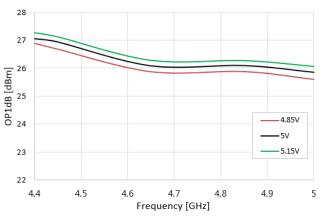


Figure 27. ACP vs Frequency vs Pout
ATT=0dB (Max Gain), Pre5G 100MBW

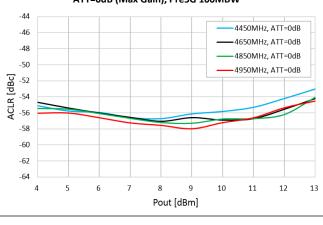
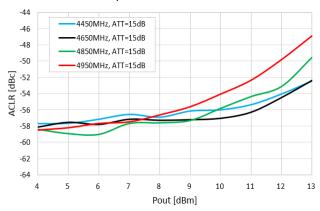



Figure 28. ACP vs Frequency vs Pout
ATT=15dB, Pre5G 100MBW

BeRex •website: www.berex.com

•email: sales@berex.com

4400MHz - 5000MHz

Typical RF Performance Plot - BVA3144 EVK

Typical Performance Data @ 25° and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 29. ACP vs VDD vs Pout

F0=4650MHz, ATT=0dB (Max Gain), Pre5G 100MBW -44 -46 4.85V -48 •5V -50 -5.15V ACLR [dBc] -52 -54 -56 -58 -60 -62 Pout [dBm]

Figure 30. ACP vs VDD vs Pout F0=4650MHz, ATT=15dB, Pre5G 100MBW

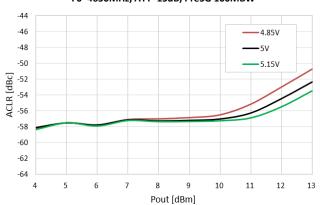


Figure 31. ACP vs Temp. vs Pout

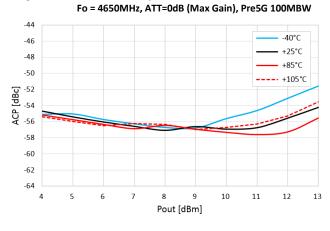
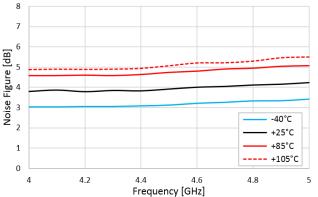



Figure 32. Noise Figure vs Temp vs Frequency

@ Max Gain State

4400MHz - 5000MHz

Typical RF Performance Plot - BVA3144 EVK

Typical Performance Data @ 25°and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 33. ACP Plot

@ 4650MHz, 7dBm, Pre5G 100MBW

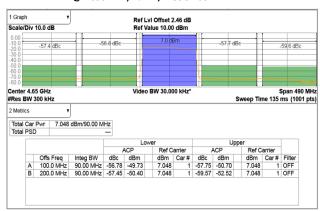
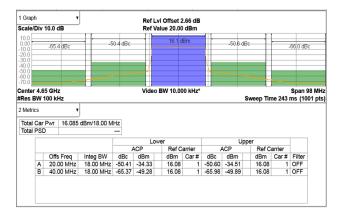



Figure 34. ACP Plot
@ 4650MHz, 50dBc, Pre5G 100MBW

Figure 35. ACP Plot

@ 4650MHz, 50dBc, LTE20MHz (E-TM1.1 100RB)

4400MHz - 5000MHz

Figure 36. Evaluation Board Schematic

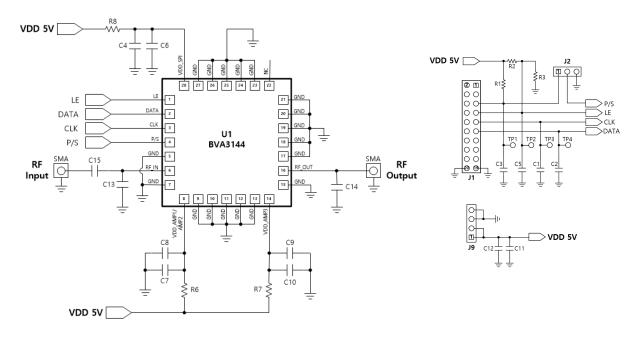
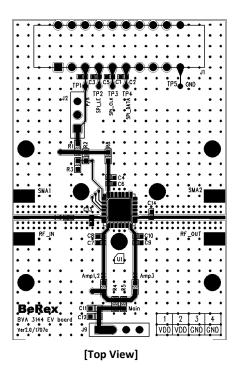


Table 10. Bill of material


No.	Ref. Number	Value	Description	Manufacturer				
1	R2	100ΚΩ	Resistor, 0603, Chip, 5%	KOA Speer				
2	R3	200ΚΩ	Resistor, 0603, Chip, 5%	KOA Speer				
3	R6	Ω0	Jumper Resistor, 0603, Chip	KOA Speer				
4	R7	0Ω	Jumper Resistor, 0603, Chip	KOA Speer				
5	R8	Ω0	Jumper Resistor, 0603, Chip	KOA Speer				
6	C4	100nF	Capacitor, 0402, Chip, 5%	Murata				
7	C6	100pF	Capacitor, 0402, Chip, 5%	Murata				
8	C7	100nF	Capacitor, 0402, Chip, 5%	Murata				
9	C8	100pF	Capacitor, 0402, Chip, 5%	Murata				
10	C9	100pF	Capacitor, 0402, Chip, 5%	Murata				
11	C10	100nF	Capacitor, 0402, Chip, 5%	Murata				
12	C11	1uF	Capacitor, 0603, Chip, 5%	Murata				
13	C12	1nF	Capacitor, 0603, Chip, 5%	Murata				
14	C13	0.3pF	Capacitor, 0402, Chip, ±0.1pF	Murata				
15	C14	0.5pF	Capacitor, 0402, Chip, ±0.1pF	Murata				
16	C15	1.2pF	Capacitor, 0402, Chip, ±0.2pF	Murata				
17	SMA1	SMA	SMA(F) Connector, PCB Mount, PSF-S01-007	Gigalane				
18	SAM2	SMA	SMA(F) Connector, PCB Mount, PSF-S01-007	Gigalane				
19	J1	20pin	Receptacle Connector, 5-532955-3, Female,RT/A Dual	AMP Connectors				
20	J2	3pin	2.54mm Breakaway Male Header, Straight, Black					
21	J9	4pin	2.54mm Breakaway Male Header, Straight, Black					
22	R1,C1,C2,C3,C5	NC	Not connected					

BeRex •website: www.berex.com

●email: sales@berex.com

Figure 37. Evaluation Board Layout

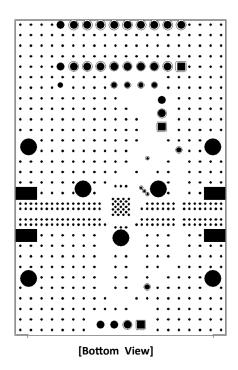
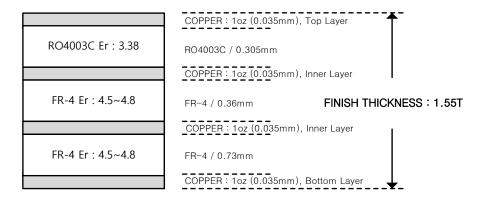
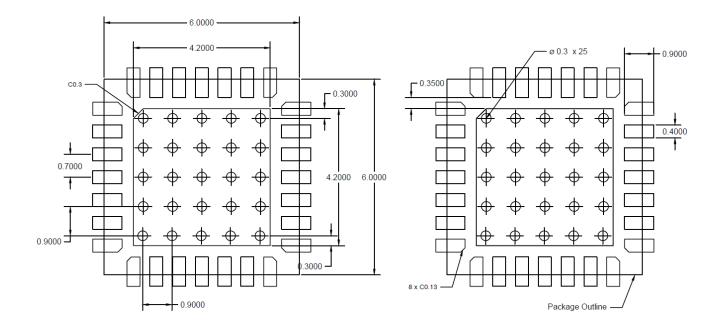




Figure 38. Evaluation Board PCB Layer Information

4400MHz - 5000MHz

Figure 39. Suggested PCB Land Pattern and PAD Layout

4400MHz - 5000MHz

Figure 40. Packing Outline Dimension

Notes

- 1. All dimensions are in millimeters. Angles are in degrees
- 2. Dimension and tolerancing conform to ASME Y14.5M-1994.

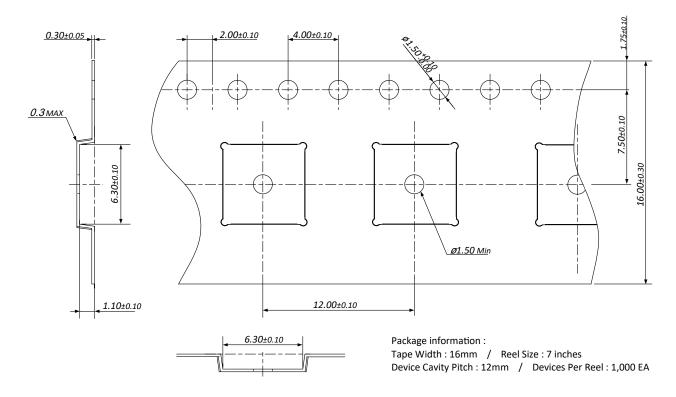
Figure 41. Package Marking Information

YY = Year

WW = Working Week

XXX = Wafer Lot Number

BeRex


•website: www.berex.com

•email: sales@berex.com

4400MHz - 5000MHz

Figure 42. Tape and Reel

4400MHz - 5000MHz

Lead Plating Finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating: Class1C

Value: Passes > 1000V

Test: Human Body Model (HBM)
Standard: JEDEC Standard JS-001-2017

ESD Rating : ClassC3

Value: Passes > 1000V

Test: Charged Device Model (CDM) Standard: JEDEC Standard JESD22-C101F

MSL Rating: MSL3 at +260°C convection reflow

Standard: JEDEC Standard J-STD-020

Proper ESD procedures should be followed when handling the device.

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO GAGE Code:

2	N	9	6	F
---	---	---	---	---

BeRex •website: www.berex.com •email: sales@berex.com