

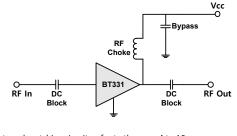
Device Features

- OIP3 = 51.0 dBm @ 1900 MHz
- Gain = 14.0 dB @ 1900 MHz
- Output P1 dB = 33.3 dBm @ 1900 MHz
- Highly Reliable InGaP/GaAs HBT Technology
- RoHS2-compliant SOIC-8 SMT package

YY = Year, WW = Work week,

XX = Wafer Number

Product Description


BeRex's BT331 is a high power and a high dynamic range amplifier in a low cost surface mount package(SOIC-8) with a RoHS2compliant, that incorporates reliable heterojunction-bipolar-transistor (HBT) devices fabricated with InGaP GaAs technology. This device is designed for use where high linearity is required and features high OIP3 and Power with low consumption current (400mA) and requires a few external matching components such as a DC blocking capacitors on the In/Output pin, a bypass capacitor and a RF choke for the out port. All devices are 100% RF/DC tested.

Applications

- Base station Infrastructure/RFID
- Commercial/Industrial/Military wireless system
- Wireless LAN

BeRex

Application Circuits

*External matching circuit: refer to the page 4 to 16.

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

1

Specifications and information are subject to change without notice. BeRex is a trademark of BeRex.

All other trademarks are the property of their respective owners. $\, \mathbb{C}$ 2021 BeRex

XX =

Electrical Specifications

Device performance $_$ measured on a BeRex evaluation board at 25°C, Vc=5V, 50 Ω system.

Parameter	Conditions	Min	Тур	Max	Unit
Operational		700		4000	MHz
Test Frequency			1900		MHz
Gain		12.5	14.0		dB
Input Return Loss			-14.0		dB
Output Return Loss			-11.0		dB
Output IP3	20 dBm/tone,	48.0	51.0		dBm
Output P1dB		32.3	33.3		dBm
WCDMA 1FA ACLR*		22.2	23.2		dBm
WCDMA 4FA ACLR*		21.0	22.0		dBm
Noise Figure			5.0		dB

*ACPR CH Power is measured at 55dBc, ACLR CH Power _ measured at 50dBc.

- ACPR Test set-up: IS-95 CDMA, 9Ch. FWD, +885KHz offset, PAR 9.7dB at 0.01% Prob.

- ACLR Test set-up: 3GPP WCDMA, TM1+64DPCH, +5MHz offset, PAR 10.34 at 0.01% Prob.

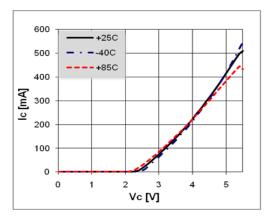
Recommended Operating Conditions

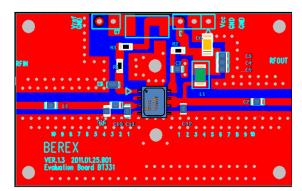
Parameter	Min	Тур	Max	Unit
Bandwidth	700		4000	MHz
I _C @ (Vc = 5V)	340	415	490	mA
V _c	4.75	5.0	5.25	V
R _{TH}		10.0		°C/W
Operating Case Temperature	-40		+85	°C

Electrical specifications are measured at specified test conditions.

Specifications are not guaranteed over all recommended operating conditions.

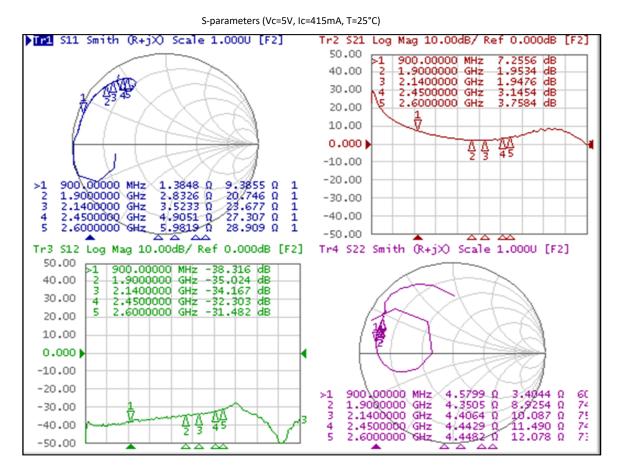
Absolute Maximum Ratings


Parameter	Rating	Unit
Storage Temperature	-55 to +155	°C
Junction Temperature	+170	°C
Supply Voltage	+5.5	v
Supply Current	900	mA
Input RF Power	28	dBm
*Operation of this device above any of these par	ameters may result in permanent	damage.


Parameter		Frequency						
	900	1900	2140	2450	2600	3500	MHz	
Gain	19.5	14.0	13.0	12.0	12.1	10.7	dB	
S11	-16.0	-14.0	-15.0	-20.0	-19.0	-20.4	dB	
S22	-11.0	-11.0	-12.0	-10.0	-12.7	-13.0	dB	
OIP3	50.0	51.0	51.0	50.0	47.0	45.8	dBm	
P1dB	31.5	33.3	32.3	31.0	31.2	29.5	dBm	
IS-95C ACPR	23.3	-	-	-	-	-	dBm	
WCDMA ACLR	-	23.3	23.4	21.5	21.5	20.1	dBm	
Noise Figure	4.8	5.0	5.0	5.3	5.4	6.2	dB	

Typical Performance (Vc=5V, Ic=415mA, T=25°C)

BeRex SOIC-8 Evaluation Board


*Dielectric constant _ 4.2 *RF pattern width 52mil *31mil thick FR4 PCB

•website: <u>www.berex.com</u>

BeRex

•email: <u>sales@berex.com</u>

Typical Device Data

S-Parameter

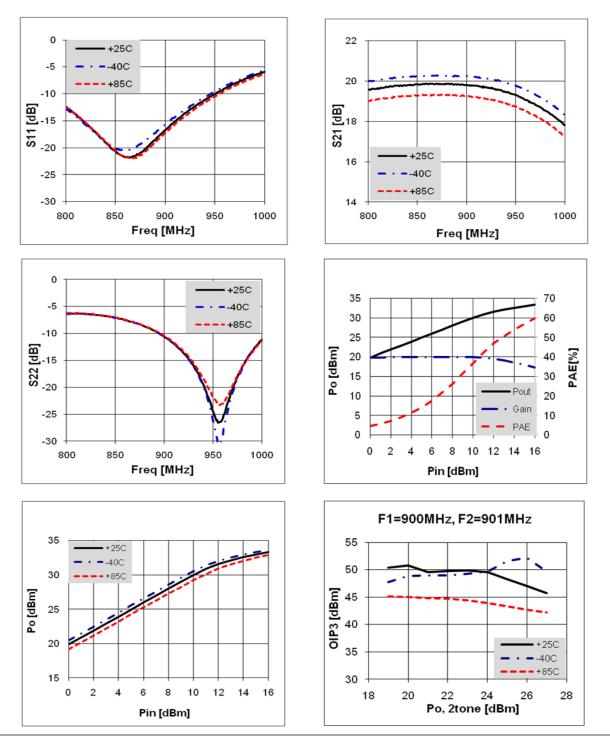
(Vdevice = 5.0V, Icc = 415mA, T = 25 °C, calibrated to device leads)

Freq	S11	S11	S21	S21	S12	S12	S22	S22
[MHz]	[Mag]	[Ang]	[Mag]	[Ang]	[Mag]	[Ang]	[Mag]	[Ang]
100	0.919	-155.332	27.202	171.888	0.011	81.778	0.335	151.426
500	0.949	168.743	4.153	90.122	0.010	35.600	0.805	-179.714
1000	0.941	156.029	2.065	78.875	0.011	47.384	0.833	170.693
1500	0.929	143.815	1.444	71.101	0.016	48.347	0.840	163.704
2000	0.895	131.767	1.226	65.133	0.019	50.235	0.838	158.159
2500	0.847	120.721	1.393	57.189	0.024	47.782	0.839	153.001
3000	0.735	118.042	2.132	32.334	0.024	2.709	0.848	147.516
3500	0.757	125.918	2.326	-38.115	0.007	-11.874	0.904	140.189
4000	0.910	122.065	0.796	-127.288	0.014	66.759	0.495	79.167

BeRex

•website: <u>www.berex.com</u>

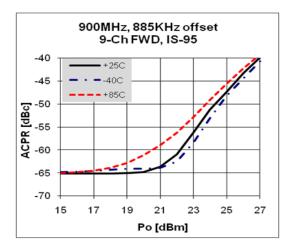
•email: <u>sales@berex.com</u>



Schematic Diagram		BOM		Toler- ance
$RF_{IN} \bigcirc C1 \bigcirc C$	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 L1 L2 R1 R2	0603 0603 0603 0603 1206 0603 0603 0603 0603 1008 0603 0603 0603	100pF 100pF 1nF 1uF 1uF 10uF NC NC 1pF 3.3pF 10pF 8pF 18nH 8.2nH 4.3KΩ 100Ω	+5% +5% +5% +20% +20%
PCB Diagram	112		otice	1370
 PCB: 31mil thick FR4 Distance between the center the shunt Inductor(L2) and the input pin of BT331 <u>6.45 mm</u>. Distance between the center the series cap.(C10) and the input pin of BT331 <u>2.8mm</u>. Distance between the center the shunt cap.(C11) and the input pin of BT331 <u>1.5 mm</u>. Distance between the center the shunt cap.(C12) and the input pin of BT331 <u>1.5 mm</u>. Distance between the center the shunt cap.(C12) and the input pin of BT331 <u>1.5 mm</u>. Distance between the center the shunt cap.(C12) and the input pin of BT331 <u>1.5 mm</u>. Distance between the center the shunt cap.(C12) and the output pin of BT331 <u>8.25 m</u>. WERLS VERLIS 20110125.801 WERTAS WERLIS 20110125.801 WERTAS WERLIS				and the <u>5 mm</u> . enter of the enter of the <u>5 mm</u> . enter of the <u>.25 mm</u> . but ports instabil- e or con-

Application Circuit: 900 MHz

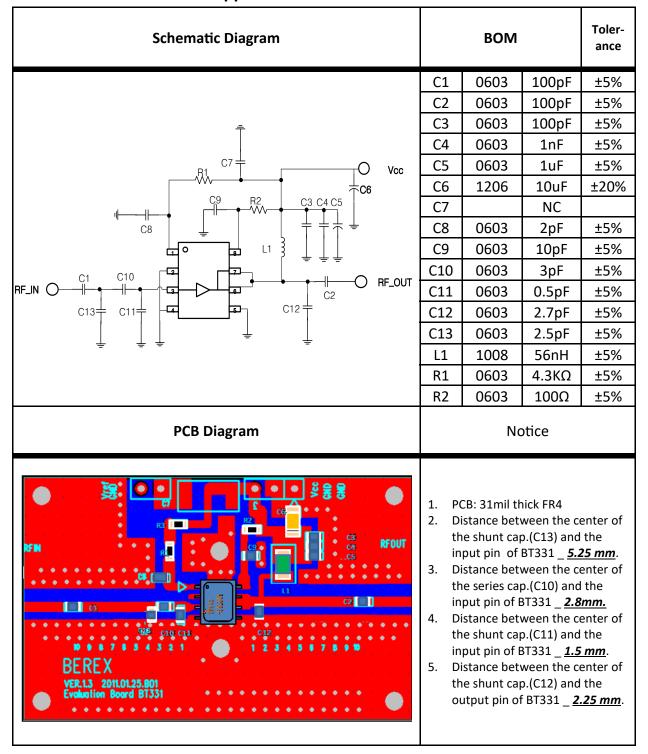
•email: <u>sales@berex.com</u>

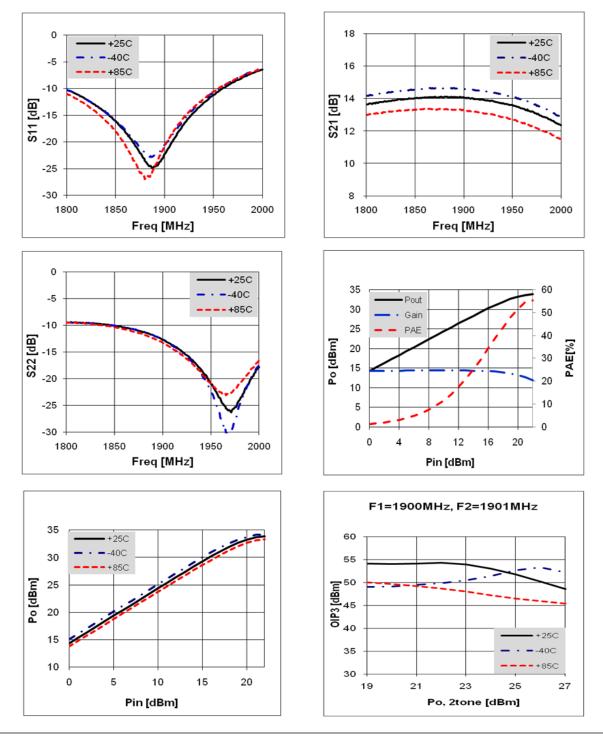

Typical Performance (Vc=5V, lcq=415mA, T=25°C)


BeRex

•website: www.berex.com

•email: sales@berex.com

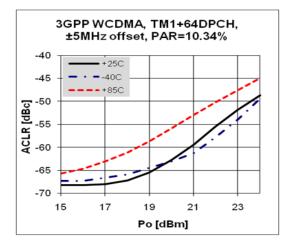


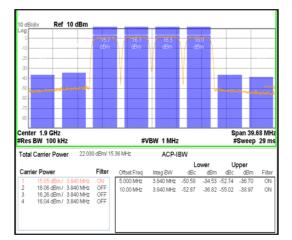


Application Circuit: 1900 MHz

•website: <u>www.berex.com</u>

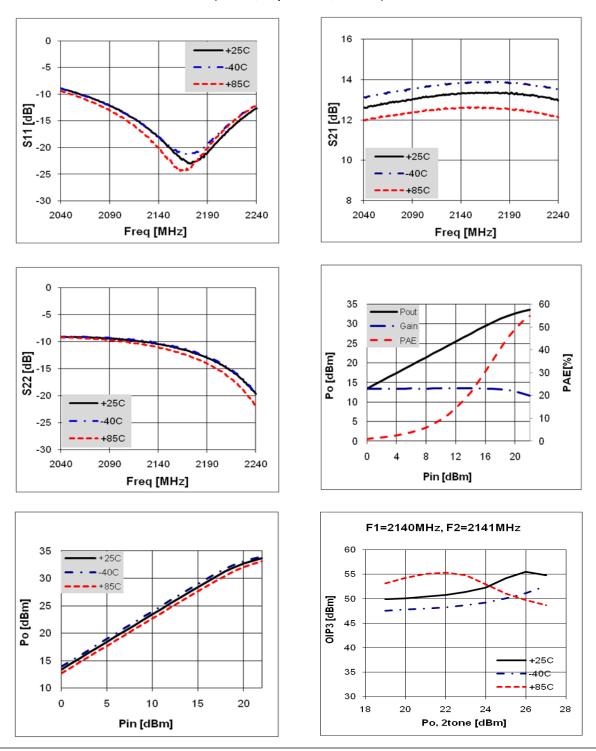
•email: sales@berex.com


Typical Performance (Vc=5V, Icq=415mA, T=25°C)


BeRex


•website: <u>www.berex.com</u>

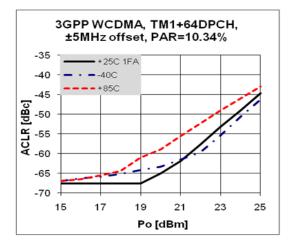
•email: sales@berex.com


Schematic Diagram BOM			Toler- ance	
$RF_{IN} \bigcirc C1 \\ C1$	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 L1 R1 R2	0603 0603 0603 1206 0603 0603 0603 0603 0603 1008 0603	100pF 100pF 1nF 1uF 1uF 10uF NC 5pF NC 1.8pF 0.5pF 2pF 2pF 2pF 22nH 5.6KΩ 100Ω	+5% +5% +5% +20% +20% +20% +5% +5% +5% +5% +5% +5% +5%
PCB Diagram	112		otice	<u> </u>
RFOUT CI CI CI CI CI CI CI CI CI CI	 Di th in 3. Di th in 4. Di th in 5. Di th 	e shunt cap put pin of f stance bet e series cap put pin of f stance bet e shunt cap put pin of f stance bet e shunt cap	hick FR4 ween the co p.(C13) and 3T331 <u>5.2</u> ween the co p.(C10) and 3T331 <u>2.8</u> ween the co p.(C11) and 3T331 <u>1.5</u> ween the co p.(C12) and f BT331 <u>2</u>	the <u>5 mm</u> . enter of the <u>mm.</u> enter of the <u>imm</u> . enter of the

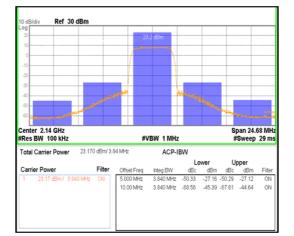
Application Circuit: 2140 MHz

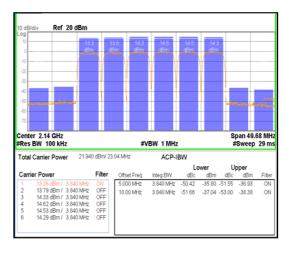
•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

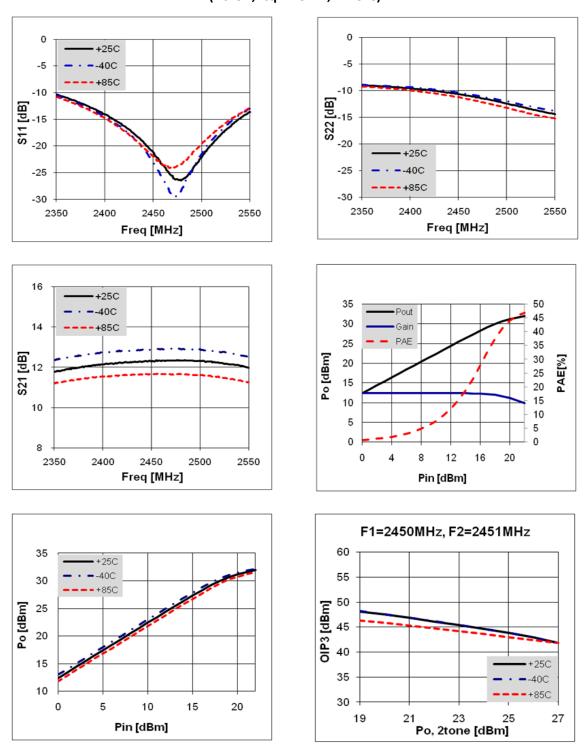



Typical Performance (Vc=5V, Icq=415mA, T=25°C)


BeRex


•email: sales@berex.com

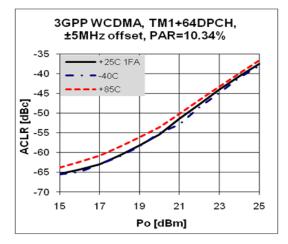
Schematic Diagram	BOM		Toler- ance	
$RF_{IN} \bigcirc C1 \bigcirc C10 \bigcirc C1 \bigcirc C10 \bigcirc C1 \bigcirc C10 \bigcirc C10 \bigcirc C10 \bigcirc C12 \bigcirc C2 \bigcirc C12 $	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 L1 R1 R2	0603 0603 0603 0603 1206 0603 0603 0603 0603 1008 0603 0603	100pF 100pF 1nF 1uF 1uF 10uF NC NC NC 1pF 0.5pF 1.8pF 1pF 5.7nH 5.6KΩ 100Ω	±5% ±5% ±5% ±20% ±20% ±20% ±5% ±5% ±5% ±5% ±5%
PCB Diagram			otice	
KFN KFN KFN KFN KFOUT KFO	 Di th in 3. Di th in 4. Di th th 5. Di th 	e shunt cap put pin of E stance bet e series cap put pin of E stance bet e shunt cap put pin of E stance bet e shunt cap	hick FR4 ween the co p.(C13) and 3T331 <u>6.0</u> ween the co p.(C10) and 3T331 <u>2.8</u> ween the co p.(C11) and 3T331 <u>1.5</u> ween the co p.(C12) and f BT331 <u>2</u>	the m <u>m</u> . enter of the enter of the <u>mm</u> . enter of the


Application Circuit: 2450 MHz

BeRex

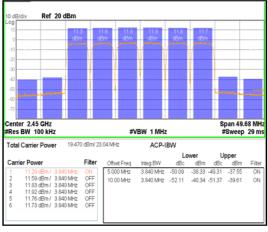
•website: <u>www.berex.com</u>

•email: sales@berex.com

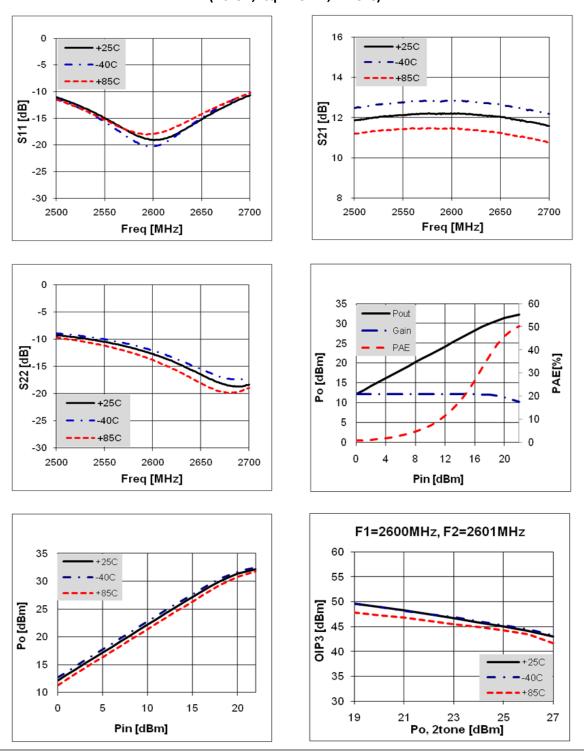

Typical Performance (Vc=5V, Icq=415mA, T=25°C)


BeRex

•email: sales@berex.com



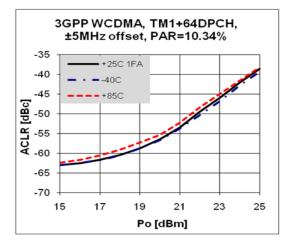
BT331



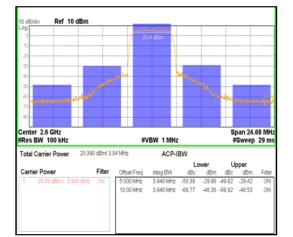
Schematic Diagram	BOM		Toler- ance	
$RF_{IN} \bigcirc C1 \bigcirc C$	C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 L1 R1 R2	0603 0603 0603 1206 0603 0603 0603 0603 0603 1008 0603	100pF 100pF 1nF 1uF 1uF 10uF 5pF 2.5pF 2.5pF 1pF 0.5pF 1.8pF 1pF 5.7nH 5.6KΩ 100Ω	+5% +5% +5% +20% +20% +20% +5% +5% +5% +5% +5% +5% +5% +5%
PCB Diagram			otice	L
KFIN RFIN	 Di th in 3. Di th in 4. Di th in 5. Di th 	e shunt cap put pin of E stance bet e series cap put pin of E stance bet e shunt cap put pin of E stance bet e shunt cap	nick FR4 ween the c p.(C13) and 3T331 _ <u>5.2</u> ween the c p.(C10) and 3T331 _ <u>2.8</u> ween the c p.(C11) and 3T331 _ <u>1.5</u> ween the c p.(C12) and f BT331 _ <u>1</u>	the the enter of the enter of the <u>mm</u> . enter of the

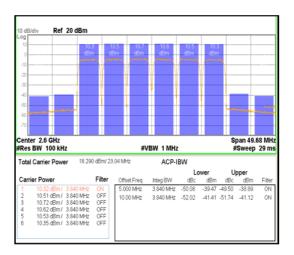
Application Circuit: 2600 MHz

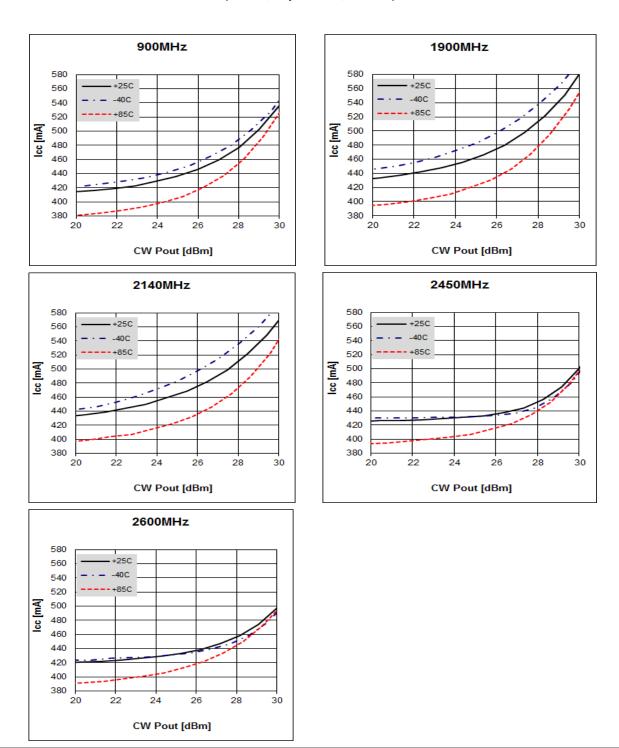
•email: <u>sales@berex.com</u>



Typical Performance (Vc=5V, Icq=415mA, T=25°C)


•website: <u>www.berex.com</u>


•email: sales@berex.com

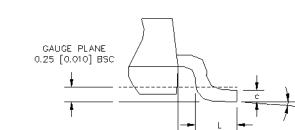


Typical Performance (Pout vs. lcc) (Vc=5V, lcq=415mA, T=25°C)

BeRex

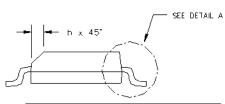
•website: <u>www.berex.com</u>

•email: sales@berex.com

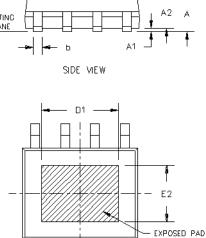


Ø

700-4000 MHz 1.5~2.0W Power Amplifier


D E1 Е e TOP VIEW ŧ. A2 А SEATING PLANE

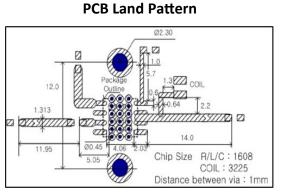
Package Outline Dimension


DETAIL A

L1

	DIMENSION IN INCHES			DIME	NSION IN	I MM
SYM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.056	0.058	0.061	1,42	1,47	1,55
A1	0.001	0.004	0.005	0,025	0.102	0.127
A2	0.051	0.054	0.057	1,30	1,37	1,45
Ь	0.014	0.016	0.020	0.36	0,41	0.51
с	0.007	0.008	0.010	0.18	0.20	0.25
D	0,191	0,193	0,195	4.85	4.90	4,95
E1	0.151	0.153	0.155	384	3.89	3.94
E	0.234	0.240	0,244	5.94	6,10	6.20
e		0.050		1.27		
L	0.020	0.027	0.032	0.51	0.69	0.81
L1	0.042	0.044	0.046	1,07	1.12	1,17
Ø	0.	-	8.	0"	-	8.
h	0.011	0.015	0.019	0.28	0.38	0,48
D1	0.120	-	0,130	3.05	-	3, 30
E2	0.085	-	0 095	2.16	-	2.41

NOTES: 1. DIMENSION D DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. DIMENSION EI DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. 2. COPLANARITY APPLIES TO THE TERMINALS. COPLANARITY SHALL NOT EXCEED 0.003" [0.08 mm] T DASED EROM JEDEC MS-012 VARIATION AA.

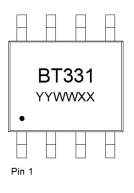

BOTTOM VIEW

BeRex

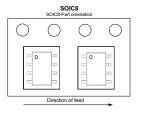
•email: sales@berex.com

Suggested PCB Land Pattern and PAD Layout

Note : All dimension are in millimeters


PCB lay out _ on BeRex website

PCB Mounting



Package Marking

Tape & Reel

YY = Year, WW = Working Week, XX = Wafer No.

Packaging information:

Tape Width (mm): 12 Reel Size (inches): 7 Device Cavity Pitch (mm): 8 Devices Per Reel: 1000

Lead plating finish

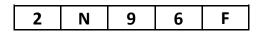
100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

•email: sales@berex.com

MSL / ESD Rating

ESD Rating:	Class 0A
Value:	Passes <125V
Test:	Human Body Model (HBM)
Standard:	JEDEC Standard JS-001-2017
MSL Rating:	Level 3 at +260°C convection reflow
Standard:	JEDEC Standard J-STD-020



Proper ESD procedures should be followed when handling this device.

RoHS Compliance

This part is compliant with Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU. This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

