

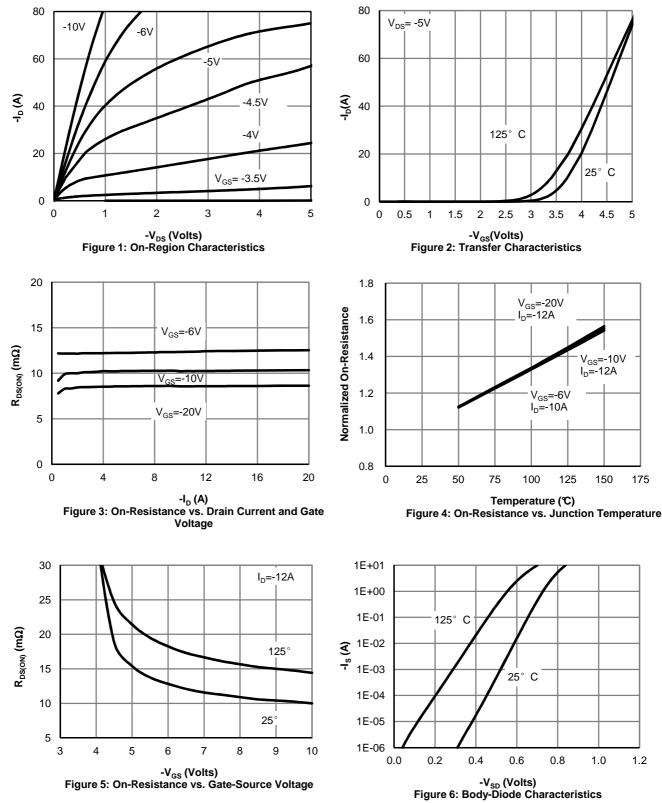
Thermal Characteristics										
Parameter	Symbol	Тур	Max	Units						
Maximum Junction-to-Ambient ^A $t \le 10s$		D	32	40	°C/W					
Maximum Junction-to-Ambient ^A	Steady State	$R_{ extsf{ heta}JA}$	60	75	°C/W					
Maximum Junction-to-Lead ^C	Steady State	$R_{ extsf{ heta}JL}$	17	24	°C/W					

Electrical Characteristics (T_J=25 $^{\circ}$ C unless otherwise noted)

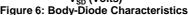
Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC I	PARAMETERS	· · · ·				
BV _{DSS}	Drain-Source Breakdown Voltage	$I_{D} = -250 \mu A, V_{GS} = 0 V$	-30			V
1	Zara Cata Valtaga Drain Current	$V_{DS} = -30V, V_{GS} = 0V$			-1	۸
I _{DSS}	Zero Gate Voltage Drain Current	$T_{\rm J} = 55^{\circ}C$			-5	μA
I _{GSS}	Gate-Body leakage current	$V_{DS} = 0V, V_{GS} = \pm 25V$			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS} I_D = -250 \mu A$	-1.7	-2.3	-3	V
I _{D(ON)}	On state drain current	$V_{GS} = -10V, V_{DS} = -5V$	-60			А
		$V_{GS} = -20V, I_{D} = -12A$		8.5	11	
D	Statia Drain Sauras On Desistance	T_=125℃		11.5	15	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -10V, I_D = -12A$		10	13	mΩ
		$V_{GS} = -6V, I_{D} = -10A$		12.7	17	
g _{FS}	Forward Transconductance	$V_{DS} = -5V, I_{D} = -10A$		21		S
V _{SD}	Diode Forward Voltage	$I_{S} = -1A, V_{GS} = 0V$		-0.7	-1	V
I _S	Maximum Body-Diode Continuous Curre			-3	А	
DYNAMI	C PARAMETERS					
C _{iss}	Input Capacitance			2060	2600	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		370		pF
C _{rss}	Reverse Transfer Capacitance			295		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		2.4	3.6	Ω
SWITCH	ING PARAMETERS					
Q _g	Total Gate Charge			30	39	nC
Q _{gs}	Gate Source Charge	V_{GS} =-10V, V_{DS} =-15V, I_{D} =-12A		4.6		nC
Q _{gd}	Gate Drain Charge			10		nC
t _{D(on)}	Turn-On DelayTime			11		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_{L} =1.25 Ω ,		9.4		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		24		ns
t _f	Turn-Off Fall Time] [12		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-12A, dl/dt=100A/μs		30	40	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-12A, dI/dt=100A/μs		22		nC

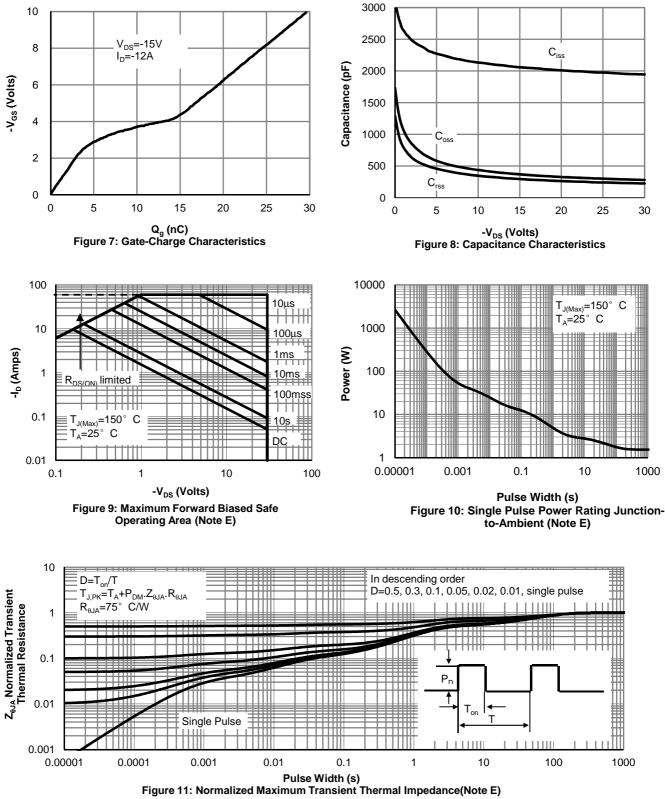
A: The value of R_{eJA} is measured with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}$ C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

C. The R_{BJA} is the sum of the thermal impedence from junction to lead R_{BJL} and lead to ambient.


D. The static characteristics in Figures 1 to 6 are obtained using < 300µs pulses, duty cycle 0.5% max.

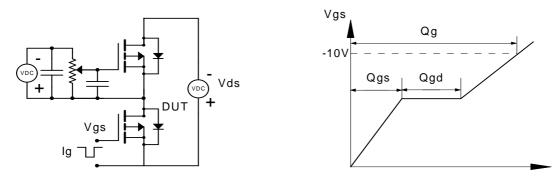
E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C. The SOA curve provides a single pulse rating.

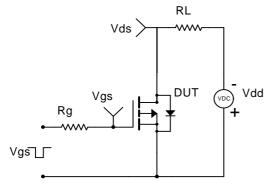

F. The current rating is based on the t \leq 10s thermal resistance rating.

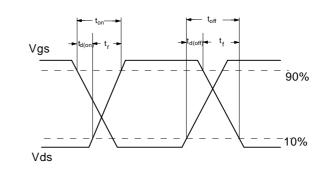

G. E_{AR} and I_{AR} ratings are based on low frequency and duty cycles to keep $T_i=25C$.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

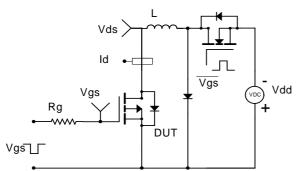
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

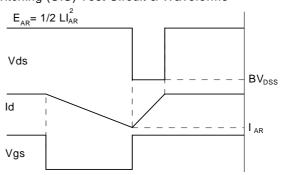


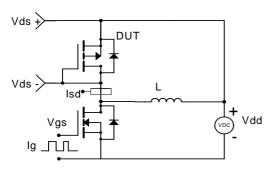

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

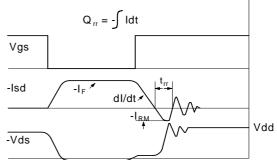


Gate Charge Test Circuit & Waveform

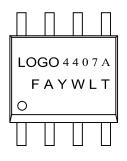



Resistive Switching Test Circuit & Waveforms

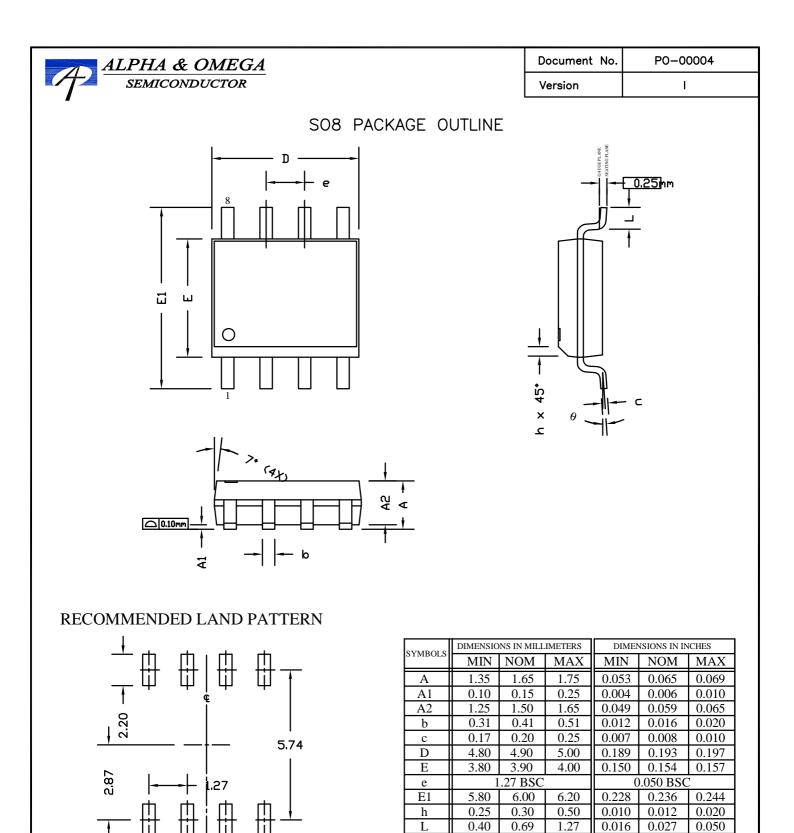



Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms



Document No.	PD-00405
Version	В
Title	AO4407A Marking Description


SO-8 PACKAGE MARKING DESCRIPTION

Green product

NOTE:	
LOGO	- AOS Logo
4407A	- Part number code
F&A	- Assembly location code
Y	- Year code
W	- Week code
L&T	- Assembly lot code

PART NO.	DESCRIPTION	CODE
AO4407A	Green product	4407A
AO4407AL	Green product	4407A

0°

4°

8°

 0°

4°

8°

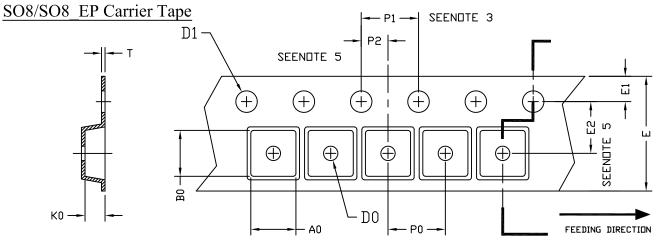
θ

- NOTE
- 1. ALL DIMENSIONS ARE IN MILLMETERS.
- 2. DIMENSIONS ARE INCLUSIVE OF PLATING.
- 3. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.

0.635

MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.

0.80


UNIT: mm

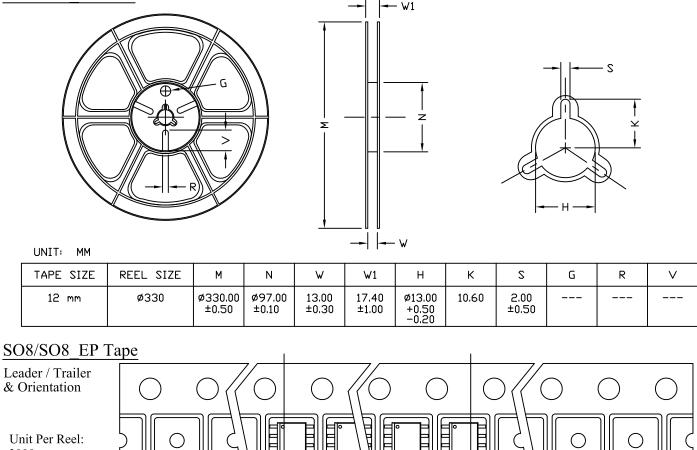
- 4. DIMENSION L IS MEASURED IN GAUGE PLANE.
- 5. CONTROLLING DIMENSION IS MILLIMETER.
- CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

ALPHA & OMEGA SO8/SO8_EP Tape and Reel Data

SEMICONDUCTOR, LTD.

UNIT: MM

PACKAGE	A0	B0	К0	DO	D1	E	E1	E2	P0	P1	P2	Т
SD-8	6.40	5.20	2.10	1.60	1.50	12.00	1.75	5.50	8.00	4.00	2.00	0.25
(12 mm)	±0.10	±0.10	±0.10	±0.10	+0.10	±0.30	±0.10	±0.05	±0.10	±0.10	±0.05	±0.05


SO8/SO8 EP Reel

Unit Per Reel: 3000pcs

TRAILER TAPE

300 mm MIN. DR

75 EMPTY POCKETS

COMPONENTS TAPE

DRIENTATION IN POCKET

LEADER TAPE

500 mm MIN. DR

125 EMPTY POCKETS

AOS Semiconductor Product Reliability Report

AO4407A, rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

www.aosmd.com

This AOS product reliability report summarizes the qualification result for AO4407A. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO4407A passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation

I. Product Description:

The AO4407A uses advanced trench technology to provide excellent $R_{DS(ON)}$, and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as a load switch or in PWM applications.

- RoHS Compliant

- Halogen Free

Detailed information refers to datasheet.

II. Die / Package Information:

	AO4407A
Process	Standard sub-micron
	Low voltage P channel
Package Type	SO8
Lead Frame	Cu
Die Attach	Ад Ероху
Bonding	Cu wire
Mold Material	Epoxy resin with silica filler
MSL (moisture sensitive level)	Level 1 based on J-STD-020

Note * based on information provided by assembler and mold compound supplier

III. Result of Reliability Stress for AO4407A

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures	Standard
MSL Precondition	168hr 85℃ /85%RH +3 cycle reflow@260℃	-	29 lots	3575pcs	0	JESD22- A113
НТСВ	Temp = 150 °c, Vgs=100% of Vgsmax	168hrs 500 hrs 1000 hrs	4 lots	308pcs 77pcs / lot	0	JESD22- A108
HTRB	Temp = 150 °c, Vds=80% of Vdsmax	168hrs 500 hrs 1000 hrs	4 lots	308pcs 77pcs / lot	0	JESD22- A108
HAST	130 +/- 2°c, 85%RH, 33.3 psi, Vgs = 100% of Vgs max	100 hrs	16 lots (Note A*)	880pcs 55 pcs / lot	0	JESD22- A110
Pressure Pot	121°c, 29.7psi, RH=100%	96 hrs	20 lots (Note A*)	1100pcs 55 pcs / lot	0	JESD22- A102
Temperature Cycle	-65°c to 150°c, air to air	250 / 500 cycles	29 lots (Note A*)	1595pcs 55 pcs / lot	0	JESD22- A104

Note A: The reliability data presents total available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 6 MTTF = 19828 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AO4407A). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $Chi^2 x \ 10^9 / [2 (N) (H) (Af)] = 1.83 x \ 10^9 / [2x (2x4x77x1000) x258] = 6$ MTTF = $10^9 / FIT = 1.74 x \ 10^8 hrs = 19828$ years

 Chi^2 = Chi Squared Distribution, determined by the number of failures and confidence interval N = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C) Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)] Acceleration Factor ratio list:

7100010141									
	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C		
Af	258	87	32	13	5.64	2.59	1		

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u = The use junction temperature in degree (Kelvin), K = C+273.16

 $\mathbf{K} = \text{Boltzmann's constant}, 8.617164 \text{ X } 10^{-5} \text{eV} / \text{K}$