

AHV12VPN1KV1MAW

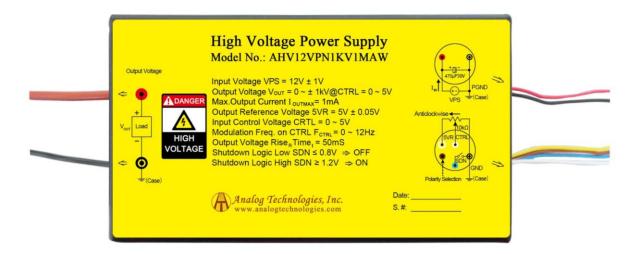


Figure 1. Physical Photo of AHV12VPN1KV1MAW

FEATURES

High precision

Full modulation range on output voltage

Positive and negative voltage output

Linear regulation

Shutdown

APPLICATIONS

This power module, AHV12VPN1KV1MAW, is designed for achieving DC-DC conversion from low voltage to high voltage. High voltage power supply is widely used in industry, agriculture, national defense, scientific research and other fields including: X-ray machine high voltage power supply, laser high voltage power supply, spectral analysis high voltage power supply, etc. They are widely applied in ion beam deposition, ion beam assisted deposition, electron beam evaporation, electron beam welding, ion source, DC reactive magnetron sputtering, glass / fabric coating, glow discharge, microwave treatment high voltage capacitance test, CRT monitor test, high voltage cable fault test (PD testing), TWT test, and H-POT test. Particle accelerator, free electron laser, neutron source, cyclotron accelerator, capacitor and inductance pulse generator, Marx high voltage pulse generator, and capacitor charger. Microwave heating, radio amplification, nanotechnology frequency application, electrostatic technology electrospinning application,

preparation of nanofiber, high voltage power supply for nuclear power and other products.

DESCRIPTION

Draw a clear distinction between input lead and output lead: input 12V (red lead), ground electrodes (black lead), regulation wire (white lead), reference voltage 5V (yellow lead), shutdown (blue lead), voltage polarity selection (thin brown lead), and output high-tension cable (thick brown lead).

While regulating the potentiometer, connect the intermediate tap of the potentiometer with white lead, and connect the other two ends to ground (black lead) and reference voltage (yellow lead) respectively. Switch on the power, and regulate the potentiometer to have the required output voltage.

A 2V or higher input voltage is applied to voltage polarity selection, the output voltage is positive; when a 1V or lower input voltage is applied to voltage polarity selection, the output voltage is negative.

AHV12VPN1KV1MAW

SHUTDOWN MODE OPERATION

A logic low <0.8V or a 0V on the SDN pin will turn the device off. When SDN is in logic high >1.2V or left

unconnected, the product is working well.

Make sure the circuit is insulated perfectly, especially between the high voltage output and the surroundings so as to avoid electronic shock.

SPECIFICATIONS

Table 1. Characteristics. $T_A = 25 \, \text{C}$, unless otherwise noted

Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit/Note
Input Voltage		VPS		11	12	13	V
Quiescent Input Current		$I_{\rm INQQ}$	$I_{OUT} = 0mA$	40	50	60	mA
Full Load Input Current		I _{INFLD}	$I_{OUT} = 1.0 \text{mA}$	120	150	180	mA
Input Voltage	Input Voltage Regulation Ratio		$V_{VPS} = 11V \sim 13V$		0.1		%
Output Voltage		$V_{ m OUT}$	$I_{OUT} = 0 \sim 1.0 \text{mA}$	-1000	0	1000	V
Maximum (Maximum Output Current		$V_{VPS} = 11V \sim 13V$			1.0	mA
Stability of Ro	Stability of Reference Voltage		−20 ~ 50°C	4.95	5	5.05	V
Load					1		mΩ
Regulation Mode				0 ~ 5V or 10k potentiometer			
Control Input vs. Output Linearity		$\Delta V_{REF}/\Delta V_{OUT}$			< 0.2		%
Load Regulation Rate			$I_{OUT} = 0 \sim 1.0 \text{mA}$		≤0.05		%
Instantaneous Short Circuit Current		I_{SC}			< 500		mA
Shutdown Supply Current		I_{SHDN}				15	mA
Shutdown Logic Input Current		I_{LOGIC}				3	uA
Shutdown Logic Low		V_{INL}				0.8	V
Shutdown	Shutdown Logic High			1.2			V
Full Load	Full Load Efficiency				≥70		%
Temperatur	Temperature Coefficient		−20 ~ 50°C		< 0.01		%/°C
T: D:0	Short Time Drift				< 0.5		%/ min
Time Drift	Long Time Drift				<1		%/h
Output Voltage Temperature Stability			−20 ~ 50°C		<±1		%
Operating Te	Operating Temperature Range			-20		50	°C
Storage Tem	Storage Temperature Range			-55		100	°C
External Dimensions				140×100×55		mm	
	Weight				800		g
W					1.77		lbs
					28.22		Oz

TESTING DATA

High voltage power supply testing data (Test condition: the load is $1m\Omega$)

I. A 2V or higher input voltage is applied to voltage polarity selection, the output voltage is positive.

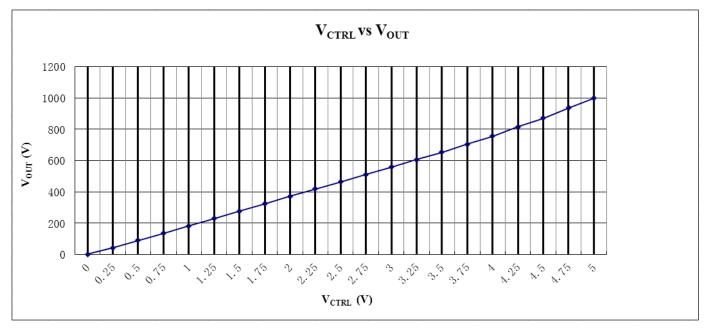


Figure 2. V_{CTRL} vs. V_{OUT}

II. When a 1V or lower input voltage is applied to voltage polarity selection, the output voltage is negative.

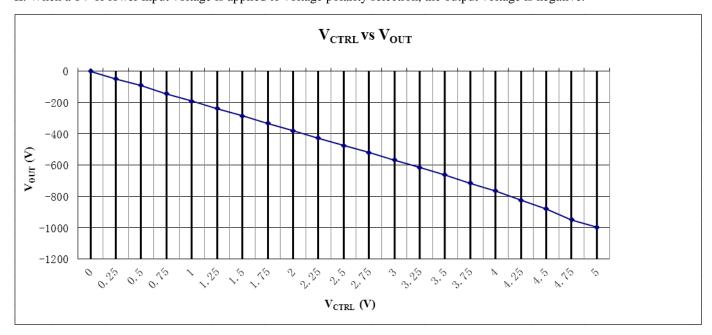


Figure 3. V_{CTRL} vs. V_{OUT}

THE CONNECTION DIAGRAM OF MODULE'S PERIPHERAL CIRCUIT

The leads colors in the figures below are identical with those in the physical AHV12VPN1KV1MAW.

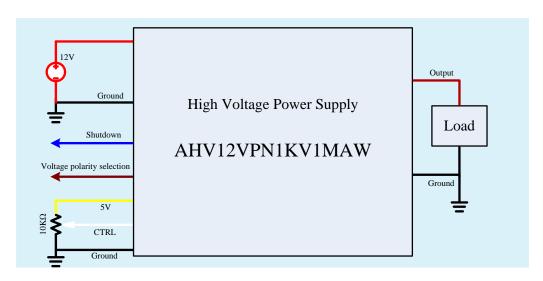


Figure 4. Control by External Signal Source

A 2V or higher input voltage is applied to voltage polarity selection, the output voltage is positive; when a 1V or lower input voltage is applied to voltage polarity selection, the output voltage is negative.

BLOCK DIAGRAM

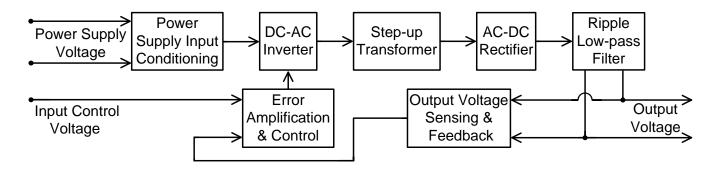


Figure 5. Block Diagram

NAMING INSTRUCTIONS

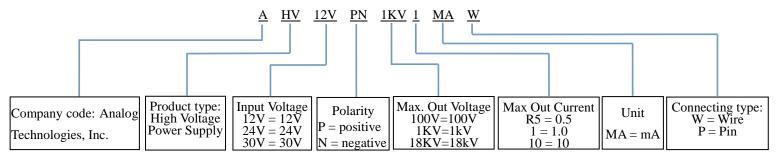


Figure 6. Naming Rules of AHV12VPN1KV1MAW

DIMENSIONS

I. Dimension of the leads.

Figure 7. Leads of AHV12VPN1KV1MAW

Leads	Diameter (mm)	Length (mm)	
Thick brown lead	4.5	120	
Yellow, red, blue, black and white leads	1.5	23	

II. Dimension of AHV12VPN1KV1MAW.

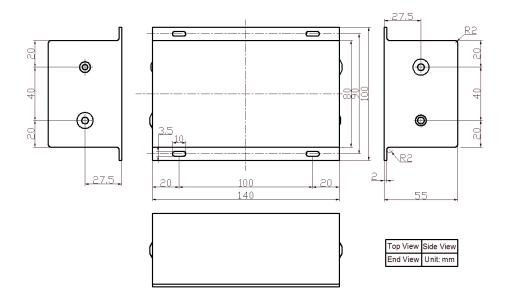


Figure 8. Dimensions for AHV12VPN1KV1MAW

High Voltage Power Supply

AHV12VPN1KV1MAW

PRICES

Quantity (pcs)	1~9	10~49	50~99	≥100
AHV12VPN1KV1MAW	\$199	\$189	\$179	\$169

NOTICE

- ATI warrants performance of its products for one year to the specifications applicable at the time of sale, except for those being damaged by excessive abuse. Products found not meeting the specifications within one year from the date of sale can be exchanged free of charge.
- 2. ATI reserves the right to make changes to its products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.
- 3. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. Testing and other quality control techniques are utilized to the extent ATI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
- 4. Customers are responsible for their applications using ATI components. In order to minimize risks associated with the customers' applications, adequate design and operating safeguards must be provided by the customers to minimize inherent or procedural hazards. ATI assumes no liability for applications assistance or customer product design.
- 5. ATI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of ATI covering or relating to any combination, machine, or process in which such products or services might be or are used. ATI's publication of information regarding any third party's products or services does not constitute ATI's approval, warranty or endorsement thereof.
- 6. IP (Intellectual Property) Ownership: ATI retains the ownership of full rights for special technologies and/or techniques embedded in its products, the designs for mechanics, optics, plus all modifications, improvements, and inventions made by ATI for its products and/or projects.