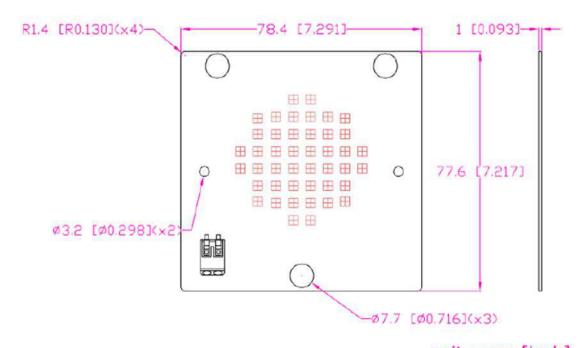

AB-GES-R08236Wxx1N2

Features:

- 3000lm Square light engine
- SimpleDrive® 230V AC drive technology
- Driver on Board structure
- Easily integrated
- **CE Compliance**


Applications:

- Downlight (Diffused type)
- Can Lights
- Wall Sconces
- In Ground Lights
- Spot Lights
- Vandal Proof Lights
- Ceiling Lights

AB-GES-R08236Wxx1N2

Outline Dimensions

unit: mm [inch]

44 LEDs

Notes:

- 1. Terminal block is used and No wire connected.
- 2. Thickness of PCB is 1.0mm
- 3. Tolerance of dimension is ± 0.15 mm
- 4. The Temperature of Tc & LED soldering pad (Ts) need to be lower than 75 °C and the temperature of top of IC needs to be lower than 110 °C^[2].
- 5. There's no thermal tape on the back side of PCB
- 6. IMPORTANT: In order to pass UL1598, add an insulating thermal pad with at least 1.0mm thickness to the module.

AB-GES-R08236Wxx1N2

Characteristics

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Input Voltage	Vin	230	Vac
LED Junction Temperature ^[2]	Tı	115	°C
Storage Temperature	T _{stg}	-40 ~ 100 °C	°C
Operation Temperature	T _{opr}	-40 ~ 45 °C	°C

Proper current rating must be observed to maintain junction temperature below maximum at all time. For this product, we suggest to keep the temperature of Tc point under 75°C, and the temperature of Top IC surface under 115°C. After passing the maximum temperature of IC, the rating current will be lower automatically for protecting the whole circuit.

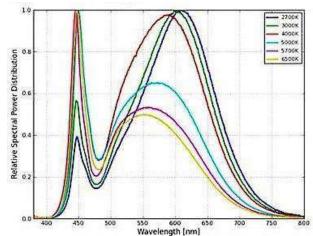
■ Electrical Characteristics, Ta=25°C

Parameter	Symbol	Min.	Max.	Unit
Input Voltage	Vin	210	20	Vac
Input Frequency		50/60		Hz
Power Factor		0.9	0.95	-
Action Junction Temperature of Over temperature protection		1	.40	°C
Flicker % ^[1]		77%		
Flicker Index ^[1]		0.2		

Surge protection is up to 0.5KV

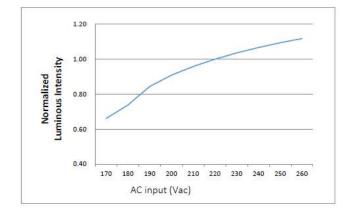
■ Optical Characteristics (V_{in}=220V), Ta=25°C

Model name	A	C Power	(W)	Color Temp	Luminous	Flux(lm)	CRI
Wodel Hame	Min	Тур.	Max	(K)	Min	Тур	
AB-GES-R08236W301N2	32.4	36	39.6	3000K	3300	3600	>80
AB-GES-R08236W401N2	32.4	36	39.6	4000K	3300	3600	>80
AB-GES-R08236W501N2	32.4	36	39.6	5000K	3300	3600	>80

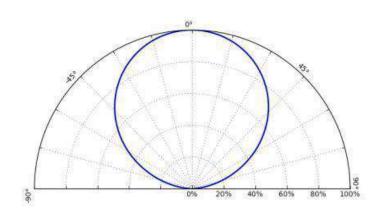

- Correlated color Temperature is derived from the CIE 1931Chromaticity diagram.
- The luminous flux tolerance is ± 10%.
- This CRI value tolerance is ± 2.
- Calibration accuracy of CIEx and CIEy: ±0.007;
- Calibration error CCT 3000K ±175K; 4000K ±300K; 6500K ±400K

■Thermal Resistance, Ta=25°C

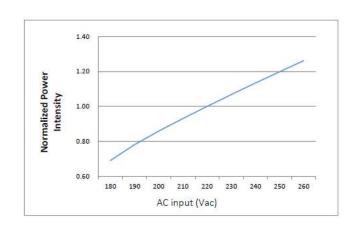
Part	Min.	Тур.	Max.	Unit
LED		12		°C/W
IC	15		20	°C/W


AB-GES-R08236Wxx1N2

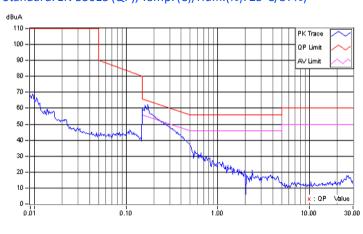
■ Relative Spectrum of Emission (Ta=25°C, Test current=60mA)



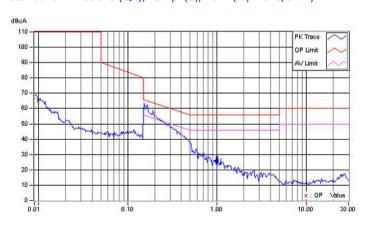
■ Relative power distribution vs. Input voltage


(Ta=25°C)

■ Radiation Pattern (Tj=25 ºC)

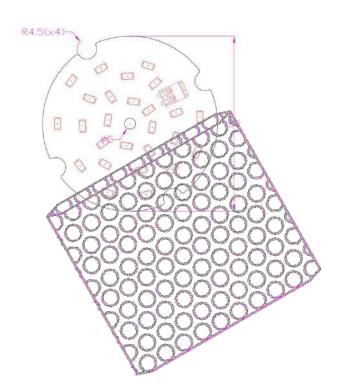


■ Relative luminous output vs. Input voltage (Ta=25°C)


■ Conduction Testing^[3] 1 (220Vac/60Hz)

Standard: EN 55015 (QP), Temp. (C)/Hum.(%): 25°C/57%)

■ Conduction Testing^[3] 2 (220Vac/60Hz)


Standard: EN 55015 (QP), Temp. (C)/Hum.(%): 25°C/57%)

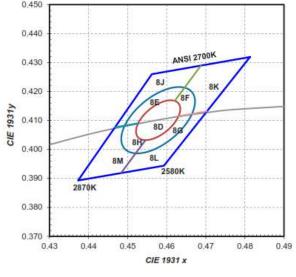
AB-GES-R08236Wxx1N2

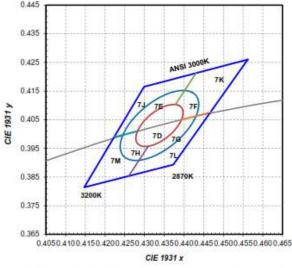
Packaging

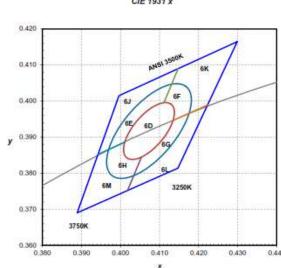
1. ESD bubble bag.

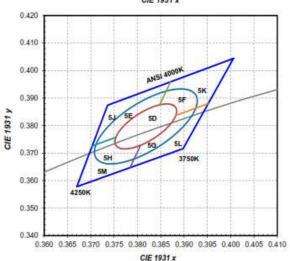
2 items per bag

1 Box = 100 PCS (about 2 Kgs)

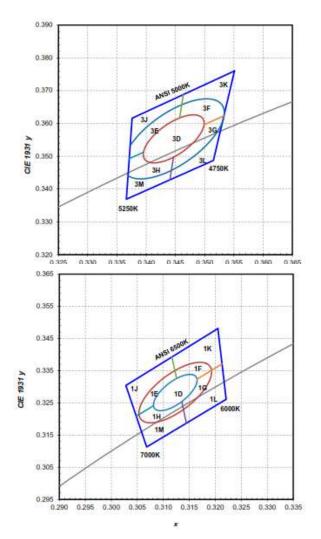

AB-GES-R08236Wxx1N2

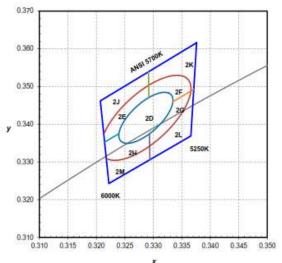

Color Bin Code


Color region stays within Macadam "3-Step" ellipse from the chromaticity center. The chromaticity center refers to ANSI C78.377:2008.


Please refer to ANSI C78.377 for the chromaticity center.

СС	Steps	С	С	a	b	theta
2700K	3	0.4578	0.4101	0.00810	0.00420	53.7
3000K	3	0.4338	0.4030	0.00834	0.00408	53.2
3500K	3	0.4073	0.3917	0.00927	0.00414	54.0
4000K	3	0.3818	0.3797	0.00939	0.00402	53.7
5000K	3	0.3447	0.3553	0.00822	0.00354	59.6
5700K	3	0.3287	0.3417	0.00746	0.00320	59.0
6500K	3	0.3123	0.3282	0.00669	0.00285	58.5
.450			\neg	0.445		
,440				0.435		



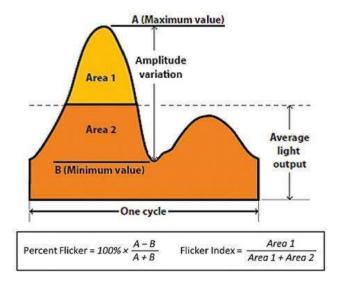


AB-GES-R08236Wxx1N2

AB-GES-R08236Wxx1N2

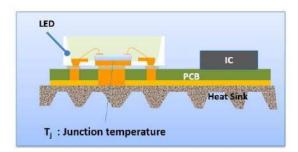
AC Module Flicker

Flicker for AC driven LED modules can be measured in two different manners, Percent and Index.


Percent - Older more common metric that measures peak to peak amplitude. No other attributes of the AC wave are taken into account. Measurements of percent range from 0%-100%

AC Module Flicker	100%
Any LED system with Electrolytic Capacitor	2%-90%

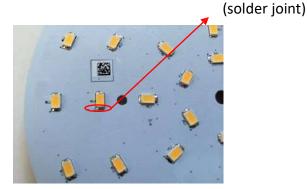
Index - A metric defined by the IES (Illuminating Engineering Society) that measures the shape, duty cycle, and peak to peak amplitude. This is a true measure of eye response to flicker. Measurement of index range form 1-1.0.


AC Module Index	<.3
Any LED system with Electrolytic Capacitor	.02~.2

Graph showing measurement differences

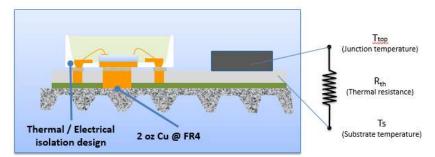
Junction Temperature (T_1) & Solder Point Temperature (T_S)

Junction Temperature is the most important factor of LED. Different life performance will be impacted by different junction temperature.


If the thermal dissipation is good enough, the junction temperature will be lower and the lifetime performance will be better.

If the junction temperature is higher than 120°C, the LED will deteriorate quickly.

How to monitor the junction temperature?


You need to measure the T_S point.

A solder point temperature is a temperature at the measurable point nearest to the junction. Typically this point is at the solder joint.

You can use the high-temperature thermal conductivity glue (Such as SatlonD-3/606...etc.) to fix the thermal couple to the solder joint then measure the temperature. Once you got the T_S temperature measurement data, you can calculate the junction temperature based on the measurement data of the Ts. The details of the calculation method are shown in the following page:

Calculate the Junction temperature of LED

$$T_{j,LED} = T_s + R_{th} * P_D$$

The junction temperature should be calculated by the Substrate temperature (Ts) and the thermal resistance of Substrate (Rth).

Examples:

What is the T_i of LED (Rth= 12 °C/W) at 40°C?

Ts=40°C, LED PD=0.5W, LED Rth= 12 °C/W (typical)

 $T_{j,LED}$ = 40 + 0.5*12 = 46°C (Normal $T_{j,LED}$ limitation is 110°C)

Calculate the Junction temperature of IC

$$T_{j,IC} = T_s + R_{th,IC} * P_D$$

The junction temperature should be calculated by the Substrate temperature (Ts) and the Thermal resistance of Substrate (Rth)

IC	IC power consumption	Rth,ic
	AC input	
	100V-220V	15

Thermal resistance of IC under different AC input

Examples:

What is the T_J of IC (Rth= 15 °C/W) at 40°C?

 $T_s=40$ °C, IC PD=1.68W, IC Rth= 15 °C/W (minimum)

 $T_{i IC} = 40 + 1.68*15 = 65.2$ °C (Normal $T_{i IC}$ limitation is 110°C)

AB-GES-R08236Wxx1N2

Installation Instructions

Installation:

- 1. Remove the protective paper on the back side of AC LED module
- 2. Adjust the AC LED module to the desired position
- 3. Using a screw driver, attach the AC LED module
- 4. Select the proper wire

If a connector is going to be used with the AC Module, please follow the instructions below

	WAGO	ВЈВ
Photo	OQ.	
Conductor size	Solid: 0.2-0.75mm ²	Solid: 0.34-0.75mm ²
	Fine stranded:	
	0.2-0.75mm ²	
Conductor size	18-24	18-24
(AWG)		

Connector spec summary

Reference Information

- [1] Flicker information, please refer to page 8.
- [2] Junction Temperature (Tj) & Ts Point information please refer to page 9.
- [3] The primary goal of **EMC testing** is to identify the sources of electromagnetic energy emitted from an electronic device in an effort to reduce potential interference to other equipment, as well as determine the susceptibility of the equipment from electromagnetic energy emitted from other electronic devices nearby.

Warranty

American Bright Optoelectronics Corp., warrants that its AC LED MODULES will be free from defects in material and workmanship from the date of manufacture by American Bright Optoelectronics Corp. for a period of 5 years (LED light generation module case temperature(s) not to exceed 75°C, IC temperature(s) not to exceed 110°C). The AC LED MODULES consists of a LED lighting components and the driver circuit (collectively, the "Power circuit"). This limited warranty only applies when the American Bright Optoelectronics Corp. LED module is properly connected and installed on the luminaire; operated within the electrical values recommended by American Bright Optoelectronics Corp.; and used in situations approved for the application and in the environmental conditions (temperature, humidity) within the normal specified operating range of the system.

This warranty is further conditioned upon proper storage, installation, use and maintenance. This warranty is not applicable to any Product which is not installed and operated in accordance with the current edition of The National Electric Code (NEC), the Standards for Safety of Underwriters' Laboratory, Inc. (UL), the Standards for the American National Standards Institute (ANSI), and with American Bright Optoelectronics Corp.'s instructions and guidelines for the Product. This warranty is not applicable to any Product or component subjected to abnormal stresses and operating conditions. Replacement of the American Bright Optoelectronics Corp. Product with LED components of other manufacturers will void the entire warranty.

THE WARRANTIES AND REMEDIES SET FORTH HEREIN ARE EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER, EXPRESS OR IMPLIED, INCLUDING ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND ALL WARRANTIES ARISING FROM COURSE OF DEALING OR USAGE OR TRADE. Purchaser's exclusive remedy, for any nonconformity or defect in any product shall be only those explicitly set forth herein.