A5G35S004N Airfast RF Power GaN Transistor

Rev. 4 — November 2022

This RF power GaN transistor is designed for cellular base station applications covering the frequency range of 3300 to 4300 MHz.

3500 MHz

Typical Single-Carrier W-CDMA Reference Circuit Performance:
 V_{DD} = 48 Vdc, I_{DQ} = 12 mA, P_{out} = 24.5 dBm Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.⁽¹⁾

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
3400 MHz	19.3	19.5	9.9	-38.7
3500 MHz	19.4	20.0	9.7	-40.3
3600 MHz	18.8	20.4	9.4	-42.1

1. All data measured in reference circuit with device soldered to printed circuit board.

3700-4000 MHz

 Typical Single-Carrier W-CDMA Reference Circuit Performance: V_{DD} = 48 Vdc, I_{DQ} = 10 mA, P_{out} = 28 dBm Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.⁽¹⁾

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
3700 MHz	18.3	22.5	8.4	-35.2
3800 MHz	18.8	25.2	8.5	-38.6
3900 MHz	18.1	23.8	8.5	-41.2
4000 MHz	17.2	21.6	8.6	-42.4

1. All data measured in reference circuit with device soldered to printed circuit board.

4100–4300 MHz

Typical Single-Carrier W-CDMA Reference Circuit Performance: V_{DD} = 48 Vdc, I_{DQ} = 10 mA, P_{out} = 28 dBm Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.⁽¹⁾

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
4100 MHz	17.6	26.5	7.6	-33.2
4200 MHz	17.2	26.5	7.8	-36.2
4300 MHz	16.5	26.5	7.9	-38.3

1. All data measured in reference circuit with device soldered to printed circuit board.

Features

- · High terminal impedances for optimal broadband performance
- Designed for low complexity linearization systems
- Universal broadband driver
- Optimized for massive MIMO active antenna systems for 5G base stations

3300–4300 MHz, 24.5 dBm Avg., 48 V AIRFAST RF POWER GaN TRANSISTOR

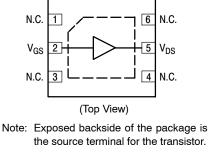


Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	125	Vdc
Gate-Source Voltage	V _{GS}	—16 , 0	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum Forward Gate Current @ T _C = 25°C	I _{GMAX}	0.74	mA
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-55 to +150	°C
Maximum Channel Temperature	T _{CH}	225	°C

Table 2. Recommended Operating Conditions

Characteristic	Symbol	Value	Unit
Operating Voltage	V _{DD}	48	Vdc

Table 3. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance by Infrared Measurement, Active Die Surface-to-Case Case Temperature 113°C, P_D = 1.3 W	R _{θJC} (IR)	8.9 (1)	°C/W
Thermal Resistance by Finite Element Analysis, Channel-to-Case Case Temperature 113°C, P _D = 1.3 W	R _{0CHC} (FEA)	32 (2)	°C/W

Table 4. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	1A
Charge Device Model (per JS-002-2014)	C2A

Table 5. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 6. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics					
Off-State Drain Leakage (V _{DS} = 150 Vdc, V _{GS} = -8 Vdc)	I _{D(BR)}	_	_	0.74	mAdc
On Characteristics					
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 0.74 \text{ mAdc})$	V _{GS(th)}	-4.9	-2.5	-1.9	Vdc
Gate Quiescent Voltage $(V_{DD} = 48 \text{ Vdc}, I_D = 12 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GS(Q)}	-2.78	-2.53	-2.30	Vdc
Gate–Source Leakage Current (V _{DS} = 150 Vdc, V _{GS} = –12 Vdc)	I _{GSS}	-0.74	_	_	mAdc

1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

R_{0CHC} (FEA) must be used for purposes related to reliability and limitations on maximum channel temperature. MTTF may be estimated by the expression MTTF (hours) = 10^[A + B/(T + 273)], where *T* is the channel temperature in degrees Celsius, *A* = -11.1 and *B* = 8366.

(continued)

Table 6. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit	
Functional Tests ⁽¹⁾ (In NXP Production Test Fixture, 50 ohm system) V_{DD} = 48 Vdc, I_{DQ} = 12 mA, P_{out} = 24.5 dBm Avg., f = 3500 MHz, 1-tone CW.						
Power Gain	G _{ps}	15.5	16.9	19.5	dB	
Drain Efficiency	η _D	16.0	19.0	—	%	
Pout @ 6 dB Compression Point	P6dB	35.0	37.0		dBm	

Wideband Ruggedness ⁽²⁾ (In NXP Reference Circuit, 50 ohm system) I_{DQ} = 12 mA, f = 3500 MHz, Additive White Gaussian Noise (AWGN) with 10 dB PAR

No Device Degradation

ISBW of 400 MHz at 55 Vdc, 0.58 W Avg. Modulated Output Power
(3 dB Input Overdrive from 0.28 W Avg. Modulated Output Power)

Typical Performance ⁽²⁾ (In NXP Reference Circuit, 50 ohm system) V_{DD} = 48 Vdc, I_{DQ} = 12 mA, 3400–3600 MHz Bandwidth

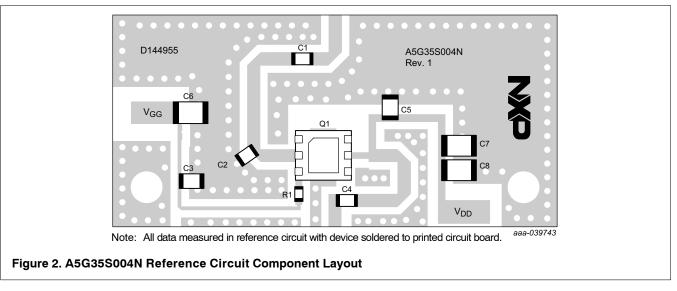
	· D3				
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	_	300		MHz
Gain Flatness in 200 MHz Bandwidth @ P _{out} = 24.5 dBm Avg.	G _F	_	0.74	_	dB
Fast CW, 27 ms Sweep					
P _{out} @ 6 dB Compression Point	P6dB	—	4.6	_	W
AM/PM (Maximum value measured at the P6dB compression point across the 3400–3600 MHz bandwidth)	Φ	—	-16	—	0
Gain Variation over Temperature (-40°C to +85°C)	ΔG		0.032		dB/°C
Output Power Variation over Temperature (-40°C to +85°C)	∆P6dB	_	0.007	_	dB/°C

Table 7. Ordering Information

Device	Tape and Reel Information	Package
A5G35S004NT6	T6 Suffix = 5,000 Units, 12 mm Tape Width, 13-inch Reel	DFN 4.5 × 4

1. Part internally input matched.

2. All data measured in reference circuit with device soldered to printed circuit board.

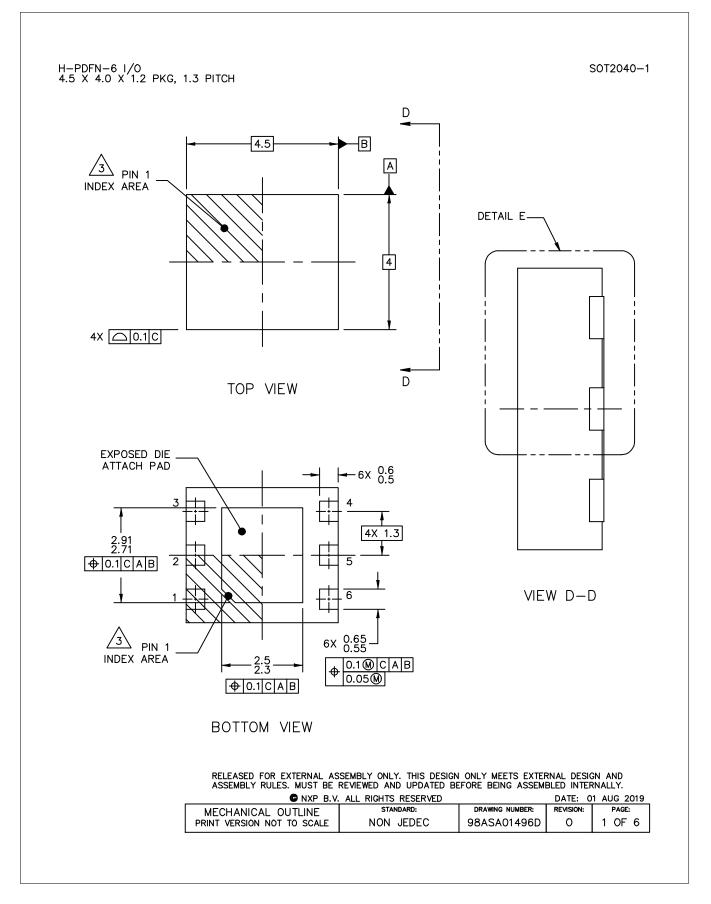

Correct Biasing Sequence for GaN Depletion Mode Transistors

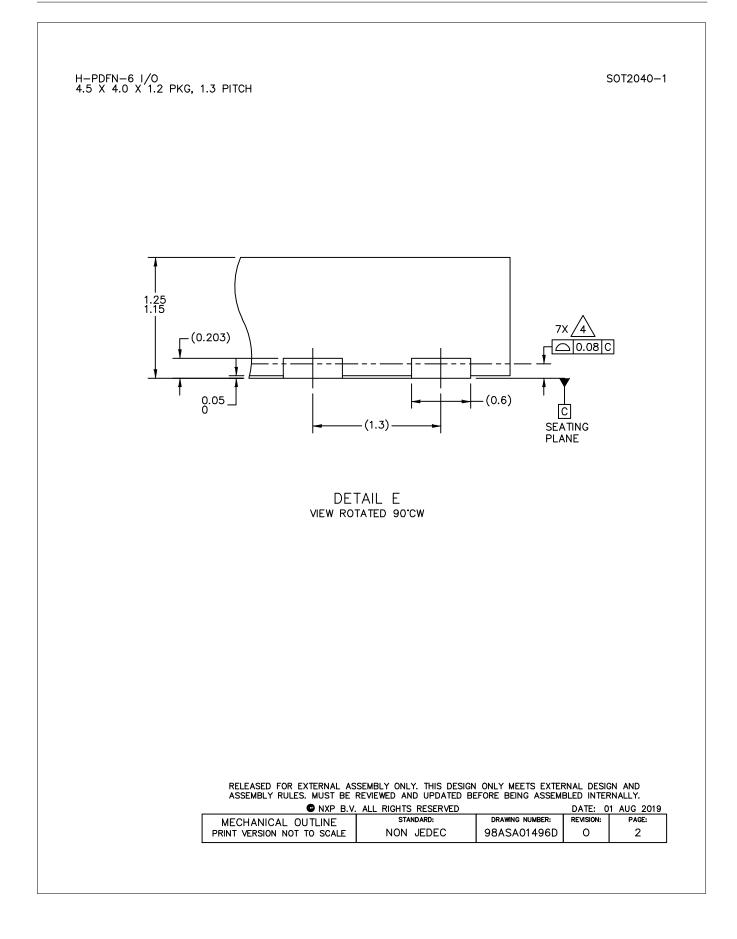
Turning the device ON

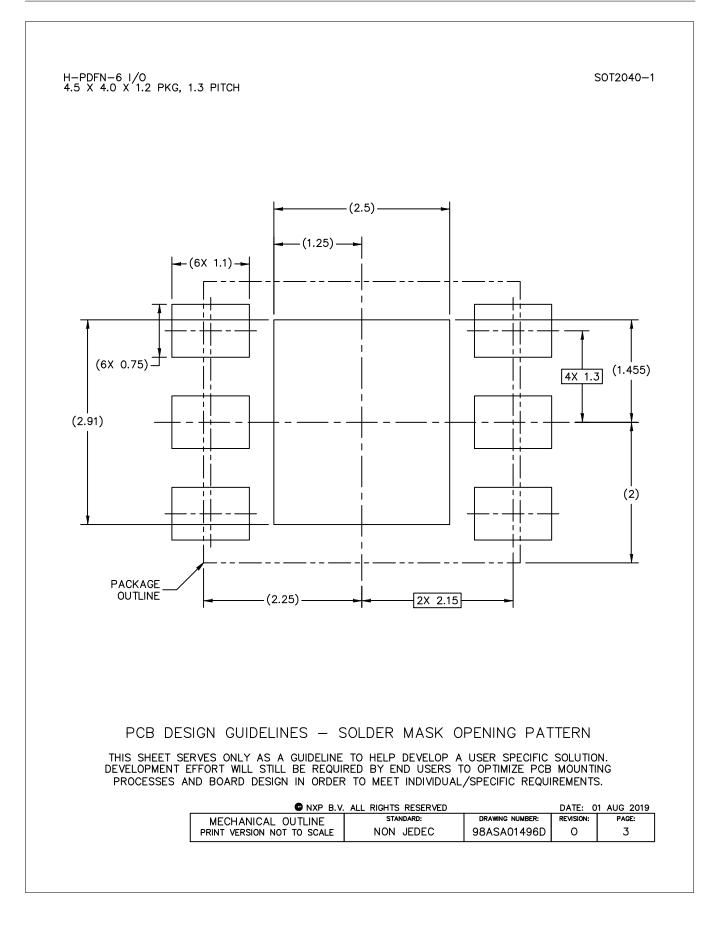
- 1. Set V_{GS} to the pinch–off voltage, typically –5 V.
- 2. Turn on V_{DS} to nominal supply voltage (+48 V).
- 3. Increase V_{GS} until I_{DS} current is attained.
- 4. Apply RF input power to desired level.

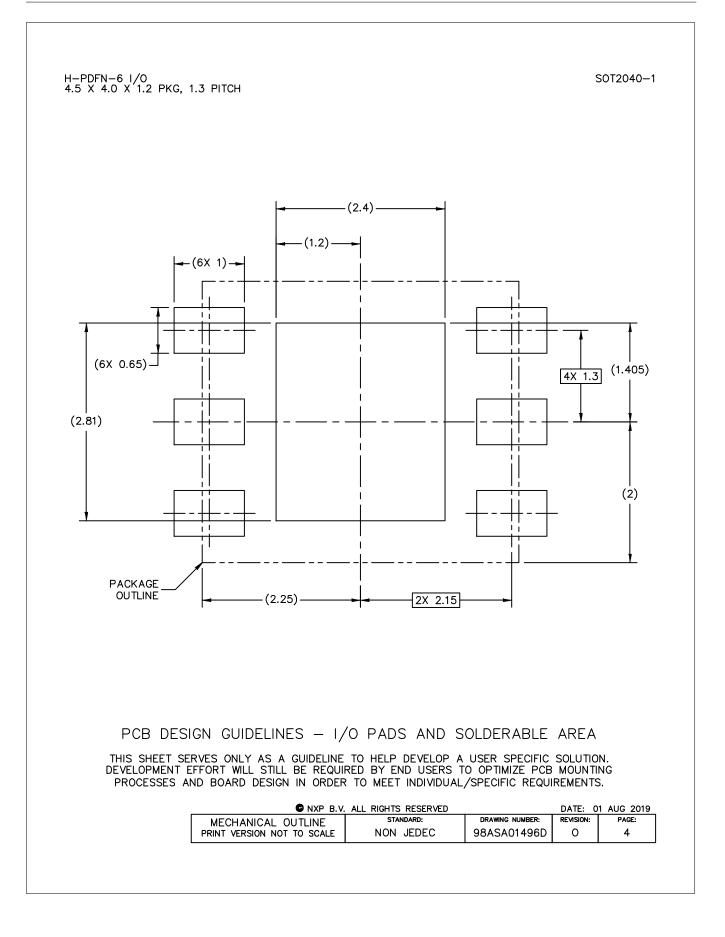
Turning the device OFF

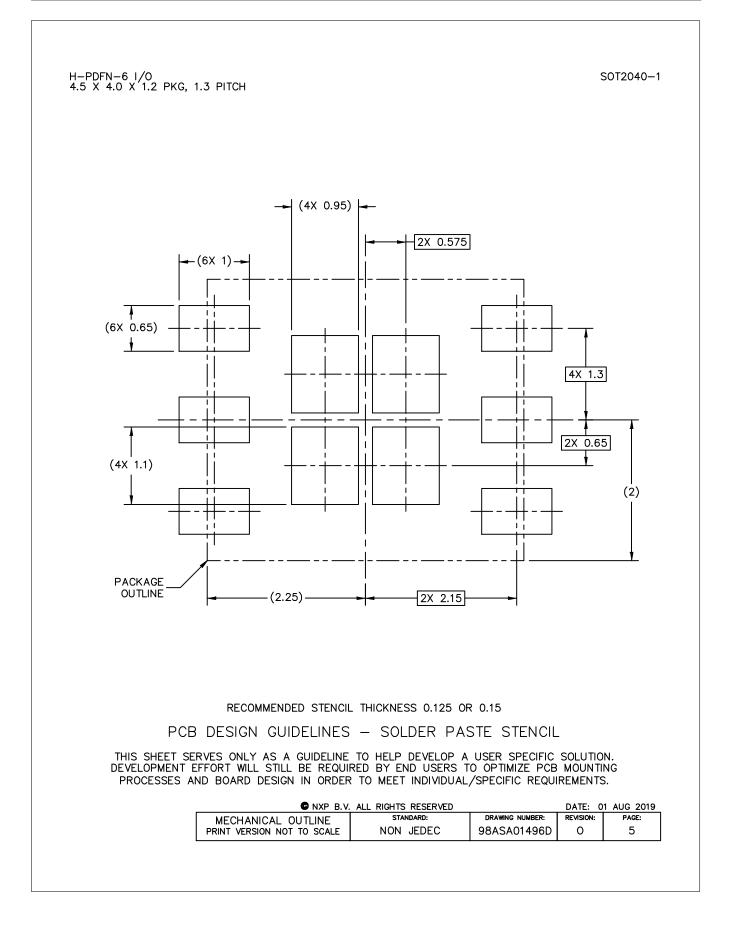
- 1. Turn RF power off.
- 2. Reduce V_{GS} down to the pinch-off voltage, typically -5 V.
- 3. Adjust drain voltage V_{DS} to 0 V. Allow adequate time for drain voltage to reduce to 0 V from external drain capacitors.
- 4. Turn off V_{GS}.


Table 8. A5G35S004N Reference Circuit Component Designations and Values


Part	Description	Part Number	Manufacturer
C1, C3, C4, C5	10 pF Chip Capacitor 600S100JT250XT		ATC
C2	1.6 pF Chip Capacitor	600S1R6BT250XT	ATC
C6, C7, C8	4.7 μF Chip Capacitor	GRM55ER72A475KA01B	Murata
Q1	RF Power GaN Transistor	A5G35S004N	NXP
R1	10 Ω, 1/10 W Chip Resistor	CRCW060310R0FKEA	Vishay
PCB	Rogers RO4350B , 0.020″, ϵ_r = 3.66	D144955	MTL




Figure 3. Product Marking


Package Information

H-PDFN-6 I/O 4.5 X 4.0 X 1.2 PKG, 1.3 PITCH

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- $\sqrt{3.}$ PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG.

MECHANICAL OUTLINE STANDARD: DRAWING NUMBER: REVISION: PAGE:	SNXP B.V. ALL RIGHTS RESERVED DATE: 01 AUG 201				
PRINT VERSION NOT TO SCALE NON JEDEC 90ASAUT490D 0 0	MECHANICAL OUTLINE PRINT VERSION NOT TO SCALE	standard: NON JEDEC	drawing number: 98ASA01496D	REVISION:	PAGE: 6

A5G35S004N Airfast RF Power GaN Transistor, Rev. 4, November 2022

SOT2040-1

Product Documentation, Software and Tools

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Software

.s2p File

Development Tools

Printed Circuit Boards

Revision History

The following table summarizes revisions to this document.

Revision	Date	Description	
0	Dec. 2020	Initial release of data sheet	
1	Jan. 2021	 Table 1, Maximum Ratings: updated operating voltage for complete data sheet standardization, p. 2 Table 2, Recommended Operating Conditions: added to data sheet, p. 2 	
2	Jan. 2022	Table 6, DC On Characteristics, V _{GS(th):} Min, Typ and Max values updated to match production test value p. 2	
3	July 2022	Table 6, DC On Characteristics, V _{GS(Q)} : Min, Typ and Max values updated to match production test v p. 2	
4	Nov. 2022	 Table 1, Maximum Ratings: Gate–Source Voltage: updated –8, 0 to –16, 0 Vdc, p. 2 Table 4, ESD Protection Characteristics, Human Body Model: updated to reflect test data, p. 2 General updates made to align data sheet to current standard 	

How to Reach Us

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© NXP B.V. 2020–2022

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: November 2022 Document identifier: A5G35S004N