# **4-Bit Bus Switch**

The ON Semiconductor FST3125 is a quad, high performance switch. The device is CMOS TTL compatible when operating between 4 and 5.5 Volts. The device exhibits extremely low  $R_{ON}$  and adds nearly zero propagation delay. The device adds no noise or ground bounce to the system.

The device consists of four independent 1-bit switches with separate Output/Enable ( $\overline{OE}$ ) pins. Port A is connected to Port B when  $\overline{OE}$  is low. If  $\overline{OE}$  is high, the switch is high Z.

### Features

- $R_{ON} < 4 \Omega$  Typical
- Less Than 0.25 ns–Max Delay Through Switch
- Nearly Zero Standby Current
- No Circuit Bounce
- Control Inputs are TTL/CMOS Compatible
- Pin-For-Pin Compatible With QS3125, FST3125, CBT3125
- All Popular Packages: TSSOP-14, SOIC-14
- These are Pb-Free Devices

|                   | 1 | $\mathbf{O}$ | 14 |                    |
|-------------------|---|--------------|----|--------------------|
| 1A —              | 2 |              | 13 | $-\overline{OE}_4$ |
| 1B —              | 3 |              | 12 | — 4A               |
| OE <sub>2</sub> - | 4 |              | 11 | — 4B               |
| 2A —              | 5 |              | 10 | $-\overline{OE}_3$ |
| 2B —              | 6 |              | 9  | — за               |
| GND -             | 7 |              | 8  | — 3B               |
|                   |   |              |    |                    |

Figure 1. Pin Assignment for SOIC and TSSOP



# **ON Semiconductor®**

http://onsemi.com



| G or       | = Pb      | -Free Packa    | ge        |
|------------|-----------|----------------|-----------|
| (Note: Mic | rodot may | y be in either | location) |

| PIN NAMES                                                            |                    |  |  |
|----------------------------------------------------------------------|--------------------|--|--|
| Pin                                                                  | Description        |  |  |
| $\overline{OE}_1, \overline{OE}_2, \overline{OE}_3, \overline{OE}_4$ | Bus Switch Enables |  |  |
| 1A, 2A, 3A, 4A                                                       | Bus A              |  |  |
| 1B, 2B, 3B, 4B                                                       | Bus B              |  |  |
| NC                                                                   | Not Connected      |  |  |

## **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

# FST3125





# TRUTH TABLE

| Inputs | Outputs |
|--------|---------|
| ŌE     | А, В    |
| L      | A = B   |
| Н      | Z       |

# **ORDERING INFORMATION**

| Device Order Number | Package               | Shipping <sup>†</sup>    |
|---------------------|-----------------------|--------------------------|
| FST3125DR2G         | SOIC-14<br>(Pb-Free)  | 2500 Units / Tape & Reel |
| FST3125DTR2G        | TSSOP-14<br>(Pb-Free) | 2500 Units / Tape & Reel |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

# **MAXIMUM RATINGS**

| Symbol               |                                  | Parameter                                                                   | Value                     | Unit |
|----------------------|----------------------------------|-----------------------------------------------------------------------------|---------------------------|------|
| V <sub>CC</sub>      | DC Supply Voltage                |                                                                             | -0.5 to +7.0              | V    |
| VI                   | DC Input Voltage                 |                                                                             | -0.5 to +7.0              | V    |
| Vo                   | DC Output Voltage                |                                                                             | -0.5 to +7.0              | V    |
| Ι <sub>ΙΚ</sub>      | DC Input Diode Current           | V <sub>I</sub> < GND                                                        | - 50                      | mA   |
| I <sub>OK</sub>      | DC Output Diode Current          | V <sub>O</sub> < GND                                                        | - 50                      | mA   |
| ۱ <sub>0</sub>       | DC Output Sink Current           |                                                                             | 128                       | mA   |
| I <sub>CC</sub>      | DC Supply Current per Supply Pin |                                                                             | ±100                      | mA   |
| I <sub>GND</sub>     | DC Ground Current per Ground Pin |                                                                             | ±100                      | mA   |
| T <sub>STG</sub>     | Storage Temperature Range        |                                                                             | -65 to +150               | °C   |
| ΤL                   | Lead Temperature, 1 mm from Case | for 10 Seconds                                                              | 260                       | °C   |
| TJ                   | Junction Temperature Under Bias  |                                                                             | + 150                     | °C   |
| $\theta_{JA}$        | Thermal Resistance (Note 1)      | SOIC<br>TSSOP                                                               | 125<br>170                | °C/W |
| MSL                  | Moisture Sensitivity             |                                                                             | Level 1                   |      |
| F <sub>R</sub>       | Flammability Rating              | Oxygen Index: 28 to 34                                                      | UL 94 V-0 @ 0.125 in      |      |
| V <sub>ESD</sub>     | ESD Withstand Voltage            | Human Body Model (Note 2)<br>Machine Model (Note 3)<br>Charged Device Model | > 4000<br>> 400<br>> 2000 | V    |
| I <sub>Latchup</sub> | Latchup Performance              | Above $V_{CC}$ and Below GND at 85 $^\circ C$ (Note 4)                      | ±100                      | mA   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.

Tested to EIA/JESD22-A114-A.
 Tested to EIA/JESD22-A115-A.

4. Tested to EIA/JESD78.

# **RECOMMENDED OPERATING CONDITIONS**

| Symbol              |                                    | Parameter                          | Min    | Max     | Unit |
|---------------------|------------------------------------|------------------------------------|--------|---------|------|
| V <sub>CC</sub>     | Supply Voltage                     | Operating, Data Retention Only     | 4.0    | 5.5     | V    |
| VI                  | Input Voltage                      | (Note )                            | 0      | 5.5     | V    |
| Vo                  | Output Voltage                     | (HIGH or LOW State)                | 0      | 5.5     | V    |
| T <sub>A</sub>      | Operating Free-Air Temperature     |                                    | -55    | +125    | °C   |
| $\Delta t/\Delta V$ | Input Transition Rise or Fall Rate | Switch Control Input<br>Switch I/O | 0<br>0 | 5<br>DC | ns/V |

5. Unused control inputs may not be left open. All control inputs must be tied to a high- or low-logic input voltage level.

# **DC ELECTRICAL CHARACTERISTICS**

|                 |                                       |                                                     | V <sub>CC</sub> | $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ |      |      |      |
|-----------------|---------------------------------------|-----------------------------------------------------|-----------------|------------------------------------------------|------|------|------|
| Symbol          | Parameter                             | Conditions                                          | (V)             | Min                                            | Тур* | Max  | Unit |
| V <sub>IK</sub> | Clamp Diode Resistance                | I <sub>IN</sub> = -18mA                             | 4.5             |                                                |      | -1.2 | V    |
| V <sub>IH</sub> | High-Level Input Voltage              |                                                     | 4.0 to 5.5      | 2.0                                            |      |      | V    |
| V <sub>IL</sub> | Low-Level Input Voltage               |                                                     | 4.0 to 5.5      |                                                |      | 0.8  | V    |
| Ι <sub>Ι</sub>  | Input Leakage Current                 | $0 \leq V_{IN} \leq 5.5 V$                          | 5.5             |                                                |      | ±1.0 | μA   |
| I <sub>OZ</sub> | OFF-STATE Leakage Current             | $0 \le A, B \le V_{CC}$                             | 5.5             |                                                |      | ±1.0 | μA   |
| R <sub>ON</sub> | Switch On Resistance (Note 6)         | $V_{IN} = 0 V, I_{IN} = 64 mA$                      | 4.5             |                                                | 4    | 7    | Ω    |
|                 |                                       | $V_{IN} = 0 V, I_{IN} = 30 mA$                      | 4.5             |                                                | 4    | 7    |      |
|                 |                                       | $V_{IN} = 2.4 \text{ V}, I_{IN} = 15 \text{ mA}$    | 4.5             |                                                | 8    | 15   |      |
|                 |                                       | $V_{IN} = 2.4 \text{ V}, I_{IN} = 15 \text{ mA}$    | 4.0             |                                                | 11   | 20   |      |
| I <sub>CC</sub> | Quiescent Supply Current              | $V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$             | 5.5             |                                                |      | 3    | μΑ   |
| $\Delta I_{CC}$ | Increase In I <sub>CC</sub> per Input | One input at 3.4 V, Other inputs at $V_{CC}$ or GND | 5.5             |                                                |      | 2.5  | mA   |

\*Typical values are at  $V_{CC} = 5.0$  V and  $T_A = 25^{\circ}$ C. 6. Measured by the voltage drop between A and B pins at the indicated current through the switch.

# **AC ELECTRICAL CHARACTERISTICS**

|                                        |                                   |                                                         |         | Limits                |              |                   |       |      |
|----------------------------------------|-----------------------------------|---------------------------------------------------------|---------|-----------------------|--------------|-------------------|-------|------|
|                                        |                                   |                                                         |         | Т                     | A = −55°C te | o +125°C          |       |      |
|                                        |                                   |                                                         |         | V <sub>CC</sub> = 4.5 | 5 to 5.5 V   | V <sub>CC</sub> = | 4.0 V |      |
| Symbol                                 | Parameter                         | Conditions                                              | Figures | Min                   | Max          | Min               | Max   | Unit |
| t <sub>PHL</sub> ,<br>t <sub>PLH</sub> | Prop Delay Bus to Bus<br>(Note 7) | V <sub>I</sub> = OPEN                                   | 3 and 4 |                       | 0.25         |                   | 0.25  | ns   |
| t <sub>PZH</sub> ,<br>t <sub>PZL</sub> | Output Enable Time                | $V_I = 7 V$ for $t_{PZL}$<br>$V_I = OPEN$ for $t_{PZH}$ | 3 and 5 | 1.0                   | 5.0          |                   | 5.5   | ns   |
| t <sub>PHZ</sub> ,<br>t <sub>PLZ</sub> | Output Disable Time               |                                                         | 3 and 5 | 1.5                   | 5.3          |                   | 5.6   | ns   |

7. This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

# CAPACITANCE (Note 8)

| Symbol          | Parameter                     | Conditions                      | Тур | Max | Unit |
|-----------------|-------------------------------|---------------------------------|-----|-----|------|
| C <sub>IN</sub> | Control Pin Input Capacitance | V <sub>CC</sub> = 5.0 V         | 3   |     | pF   |
| CI/O            | Input/Output Capacitance      | $V_{CC}, \overline{OE} = 5.0 V$ | 5   |     | pF   |

8.  $T_A = +25^{\circ}C$ , f = 1 MHz, Capacitance is characterized but not tested.

#### AC Loading and Waveforms



NOTES:

1. Input driven by 50  $\Omega$  source terminated in 50  $\Omega.$  2. CL includes load and stray capacitance. \*CL = 50 pF









Figure 5. Enable/Disable Delays

# DUSEM

0.068

0.019

0.344

0.244



DIMENSIONS: MILLIMETERS

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

# **STYLES ON PAGE 2**

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

#### SOIC-14 CASE 751A-03 ISSUE L

### DATE 03 FEB 2016

| STYLE 1:<br>PIN 1. COMMON CATHODE<br>2. ANODE/CATHODE<br>3. ANODE/CATHODE<br>4. NO CONNECTION<br>5. ANODE/CATHODE<br>6. NO CONNECTION<br>7. ANODE/CATHODE<br>8. ANODE/CATHODE<br>10. NO CONNECTION<br>11. ANODE/CATHODE<br>12. ANODE/CATHODE<br>13. NO CONNECTION<br>14. COMMON ANODE   | STYLE 2:<br>CANCELLED                                                                                                                                                                                   | STYLE 3:<br>PIN 1. NO CONNECTION<br>2. ANODE<br>3. ANODE<br>4. NO CONNECTION<br>5. ANODE<br>6. NO CONNECTION<br>7. ANODE<br>8. ANODE<br>9. ANODE<br>10. NO CONNECTION<br>11. ANODE<br>12. ANODE<br>13. NO CONNECTION<br>14. COMMON CATHODE                                              | STYLE 4:<br>PIN 1. NO CONNECTION<br>2. CATHODE<br>3. CATHODE<br>4. NO CONNECTION<br>5. CATHODE<br>6. NO CONNECTION<br>7. CATHODE<br>8. CATHODE<br>9. CATHODE<br>10. NO CONNECTION<br>11. CATHODE<br>12. CATHODE<br>13. NO CONNECTION<br>14. COMMON ANODE                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STYLE 5:<br>PIN 1. COMMON CATHODE<br>2. ANODE/CATHODE<br>3. ANODE/CATHODE<br>4. ANODE/CATHODE<br>5. ANODE/CATHODE<br>6. NO CONNECTION<br>7. COMMON CATHODE<br>8. COMMON CATHODE<br>10. ANODE/CATHODE<br>11. ANODE/CATHODE<br>12. ANODE/CATHODE<br>13. NO CONNECTION<br>14. COMMON ANODE | STYLE 6:<br>PIN 1. CATHODE<br>2. CATHODE<br>3. CATHODE<br>4. CATHODE<br>5. CATHODE<br>6. CATHODE<br>7. CATHODE<br>8. ANODE<br>9. ANODE<br>10. ANODE<br>11. ANODE<br>12. ANODE<br>13. ANODE<br>14. ANODE | STYLE 7:<br>PIN 1. ANODE/CATHODE<br>2. COMMON ANODE<br>3. COMMON CATHODE<br>4. ANODE/CATHODE<br>5. ANODE/CATHODE<br>6. ANODE/CATHODE<br>7. ANODE/CATHODE<br>8. ANODE/CATHODE<br>10. ANODE/CATHODE<br>11. COMMON CATHODE<br>12. COMMON CATHODE<br>13. ANODE/CATHODE<br>14. ANODE/CATHODE | STYLE 8:<br>PIN 1. COMMON CATHODE<br>2. ANODE/CATHODE<br>3. ANODE/CATHODE<br>4. NO CONNECTION<br>5. ANODE/CATHODE<br>6. ANODE/CATHODE<br>7. COMMON ANODE<br>8. COMMON ANODE<br>9. ANODE/CATHODE<br>10. ANODE/CATHODE<br>11. NO CONNECTION<br>12. ANODE/CATHODE<br>13. ANODE/CATHODE<br>14. COMMON CATHODE |

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Reposito<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SOIC-14 NB  |                                                                                                                                                                                  | PAGE 2 OF 2 |  |
|                  |             |                                                                                                                                                                                  |             |  |

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>