


# MSCSM170AM058CT6LIAG

# Very Low Stray Inductance Phase Leg SiC MOSFET Power Module

#### **Product Overview**

The MSCSM170AM058CT6LIAG device is a very low stray inductance phase leg 1700 V, 353 A silicon Carbide (SiC) MOSFET power module.



All ratings at  $T_J$  = 25 °C, unless otherwise specified.

Caution: These devices are sensitive to electrostatic discharge. Proper handling procedures must be followed.

#### **Features**

The following are the key features of MSCSM170AM058CT6LIAG device:

- · SiC Power MOSFET
  - Low R<sub>DS(on)</sub>
  - High temperature performance
- · SiC Schottky Diode
  - Zero reverse recovery
  - Zero forward recovery
  - Temperature independent switching behavior
  - Positive temperature coefficient on VF
- · Very low stray inductance
- · Internal thermistor for temperature monitoring
- · M4 and M5 power connectors
- · M2.5 signal connectors
- Aluminum Nitride (AIN) substrate for improved thermal performance

#### **Benefits**

The following are the benefits of MSCSM170AM058CT6LIAG device:

- · High efficiency converter
- · Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- · Low junction-to-case thermal resistance
- · Low profile
- RoHS compliant

#### **Application**

The following are the applications of MSCSM170AM058CT6LIAG device:

- · Welding converters
- · Switched mode power supplies
- · Uninterruptible power supplies
- · EV motor and traction drive

## 1. Electrical Specifications

This section provides the electrical specifications of the MSCSM170AM058CT6LIAG device.

#### 1.1 SiC MOSFET Characteristics (Per SiC MOSFET)

The following table lists the absolute maximum ratings per SiC MOSFET of the MSCSM170AM058CT6LIAG device.

Table 1-1. Absolute Maximum Ratings

| Symbol              | Parameter                  | Parameter                                                                        |      | Unit |
|---------------------|----------------------------|----------------------------------------------------------------------------------|------|------|
| V <sub>DSS</sub>    | Drain-Source voltage       | Drain-Source voltage                                                             |      | V    |
| I <sub>D</sub>      | Continuous drain current   | Continuous drain current $T_C = 25 ^{\circ}\text{C}$ $T_C = 80 ^{\circ}\text{C}$ |      | Α    |
|                     |                            |                                                                                  |      |      |
| I <sub>DM</sub>     | Pulsed drain current       | Pulsed drain current                                                             |      |      |
| V <sub>GS</sub>     | Gate-Source voltage        | Gate-Source voltage                                                              |      | V    |
| R <sub>DS(on)</sub> | Drain-Source ON resistance | Drain-Source ON resistance                                                       |      | mΩ   |
| P <sub>D</sub>      | Power dissipation          | T <sub>C</sub> = 25 °C                                                           | 1642 | W    |

The following table lists the electrical characteristics per SiC MOSFET of the MSCSM170AM058CT6LIAG device.

**Table 1-2. Electrical Characteristics** 

| Symbol              | Characteristic                  | Test Conditions                                 |                        | Min | Тур  | Max | Unit |
|---------------------|---------------------------------|-------------------------------------------------|------------------------|-----|------|-----|------|
| I <sub>DSS</sub>    | Zero gate voltage drain current | V <sub>GS</sub> = 0 V; V <sub>DS</sub> = 1700 V |                        | _   | 60   | 600 | μΑ   |
| R <sub>DS(on)</sub> | Drain-Source on                 | V <sub>GS</sub> = 20 V                          | T <sub>J</sub> = 25 °C | _   | 5.8  | 7.5 | mΩ   |
|                     | resistance                      | stance $I_D = 180 A$ $T_J =$                    |                        | _   | 10.2 | _   |      |
| V <sub>GS(th)</sub> | Gate threshold voltage          | $V_{GS} = V_{DS}$ ; $I_D = 15 \text{ mA}$       |                        | 1.8 | 3.3  | _   | V    |
| I <sub>GSS</sub>    | Gate–Source<br>leakage current  | V <sub>GS</sub> = 20 V; V <sub>DS</sub> = 0 V   |                        | _   | _    | 600 | nA   |

The following table lists the dynamic characteristics per SiC MOSFET of the MSCSM170AM058CT6LIAG device.

**Table 1-3. Dynamic Characteristics** 

| Symbol              | Characteristic               | Test Conditions                                                        |                         | Min | Тур  | Max  | Unit |
|---------------------|------------------------------|------------------------------------------------------------------------|-------------------------|-----|------|------|------|
| C <sub>iss</sub>    | Input capacitance            | V <sub>GS</sub> = 0 V                                                  |                         | _   | 19.8 | _    | nF   |
| C <sub>oss</sub>    | Output capacitance           | V <sub>DS</sub> = 1000 V                                               |                         | _   | 0.9  | _    |      |
| C <sub>rss</sub>    | Reverse transfer capacitance | f = 1 MHz                                                              |                         | _   | 0.06 | _    |      |
| Qg                  | Total gate charge            | V <sub>GS</sub> = -5 V/20 V                                            |                         | _   | 1068 | _    | nC   |
| Q <sub>gs</sub>     | Gate-Source charge           | V <sub>Bus</sub> = 850 V                                               |                         | _   | 294  | _    |      |
| Q <sub>gd</sub>     | Gate-Drain charge            | I <sub>D</sub> = 180 A                                                 |                         | _   | 162  | _    |      |
| T <sub>d(on)</sub>  | Turn-on delay time           | T <sub>J</sub> = 150 °C                                                |                         | _   | 41   | _    | ns   |
| T <sub>r</sub>      | Rise time                    | V <sub>GS</sub> = -5 V/20 V                                            |                         | _   | 48   | _    |      |
| T <sub>d(off)</sub> | Turn-off delay time          | V <sub>Bus</sub> = 900 V                                               |                         | _   | 114  | _    |      |
| T <sub>f</sub>      | Fall time                    | $I_D = 300 \text{ A}$<br>$R_G = 0.5 \Omega$                            |                         |     | 30   | _    |      |
| Eon                 | Turn-on energy               | V <sub>GS</sub> = -5 V/20 V                                            | T <sub>J</sub> = 150 °C | _   | 9.4  | _    | mJ   |
| E <sub>off</sub>    | Turn-off energy              | $V_{Bus} = 900 \text{ V}$ $I_{D} = 300 \text{ A}$ $R_{G} = 0.5 \Omega$ | T <sub>J</sub> = 150 °C | _   | 3.1  | _    |      |
| R <sub>Gint</sub>   | Internal gate resistance     |                                                                        |                         | _   | 1.27 | _    | Ω    |
| R <sub>thJC</sub>   | Junction-to-case therm       | nal resistance                                                         |                         | _   | _    | 0.09 | °C/W |

The following table lists the body diode ratings and characteristics per SiC MOSFET of the MSCSM170AM058CT6LIAG device.

Table 1-4. Body Diode Ratings and Characteristics

| Symbol          | Characteristic           | Test Conditions                                                             | Min | Тур | Max | Unit |
|-----------------|--------------------------|-----------------------------------------------------------------------------|-----|-----|-----|------|
| $V_{SD}$        | Diode forward voltage    | V <sub>GS</sub> = 0 V; I <sub>SD</sub> = 180 A                              | _   | 3.7 | _   | V    |
|                 |                          | $V_{GS} = -5 \text{ V}; I_{SD} = 180 \text{ A}$                             | _   | 3.9 | _   |      |
| t <sub>rr</sub> | Reverse recovery time    | I <sub>SD</sub> = 180 A; V <sub>GS</sub> = -5 V                             | _   | 27  | _   | ns   |
| Q <sub>rr</sub> | Reverse recovery charge  | $V_R = 1200 \text{ V}; \text{ di}_F/\text{dt} = 6000 \text{ A/}\mu\text{s}$ | _   | 3.9 | _   | μC   |
| I <sub>rr</sub> | Reverse recovery current |                                                                             | _   | 276 | _   | Α    |

#### 1.2 SiC Diode Ratings and Characteristics (Per SiC Diode)

The following table lists the SiC diode ratings and characteristics of the MSCSM170AM058CT6LIAG device.

Table 1-5. SiC Diode Ratings and Characteristics (Per SiC Diode)

| Symbol            | Characteristic                | Test Conditions                                                      |                         | Min | Тур  | Max  | Unit |
|-------------------|-------------------------------|----------------------------------------------------------------------|-------------------------|-----|------|------|------|
| V <sub>RRM</sub>  | Peak repetitive reverse volta | age                                                                  |                         | _   | _    | 1700 | V    |
| I <sub>RRM</sub>  | Reverse leakage current       | V <sub>R</sub> = 1700 V                                              | T <sub>J</sub> = 25 °C  | _   | 60   | 1200 | μA   |
|                   |                               |                                                                      | T <sub>J</sub> = 175 °C | _   | 900  | _    |      |
| I <sub>F</sub>    | DC forward current            | _                                                                    | T <sub>C</sub> = 125 °C | _   | 180  | _    | Α    |
| V <sub>F</sub>    | Diode forward voltage         | I <sub>F</sub> = 180 A                                               | T <sub>J</sub> = 25 °C  | _   | 1.5  | 1.8  | V    |
|                   |                               |                                                                      | T <sub>J</sub> = 175 °C | _   | 2.3  | _    |      |
| Q <sub>C</sub>    | Total capacitive charge       | V <sub>R</sub> = 900 V                                               |                         | _   | 1380 | _    | nC   |
| С                 | Total capacitance             | f = 1 MHz, $V_R = 600 \text{ V}$<br>f = 1 MHz, $V_R = 900 \text{ V}$ |                         | _   | 1002 | _    | pF   |
|                   |                               |                                                                      |                         | _   | 828  | _    |      |
| R <sub>thJC</sub> | Junction-to-case thermal re   | sistance                                                             |                         | _   | _    | 0.1  | °C/W |

#### 1.3 Thermal and Package Characteristics

The following table lists the thermal and package characteristics of the MSCSM170AM058CT6LIAG device.

Table 1-6. Thermal and Package Characteristics

| Symbol            | Characteristic                                                          |                 |           | Min        | Max                   | Unit |
|-------------------|-------------------------------------------------------------------------|-----------------|-----------|------------|-----------------------|------|
| V <sub>ISOL</sub> | RMS isolation voltage, any terminal to case t = 1 min, 50 Hz/60 Hz      |                 |           | 4000       | _                     | V    |
| T <sub>J</sub>    | Operating junction temperature range                                    |                 |           | <b>-40</b> | 175                   | °C   |
| T <sub>JOP</sub>  | Recommended junction temperature und                                    | er switching co | onditions | -40        | T <sub>Jmax</sub> –25 |      |
| T <sub>STG</sub>  | Storage case temperature                                                |                 |           | -40        | 125                   |      |
| T <sub>C</sub>    | Operating case temperature                                              |                 |           | -40        | 125                   |      |
| Torque            | Mounting torque                                                         | For             | M2.5      | 0.4        | 0.6                   | N.m  |
|                   |                                                                         | terminals       | M4        | 2          | 3                     |      |
|                   | M5                                                                      |                 | M5        | 2          | 3.5                   |      |
|                   |                                                                         | To heatsink     | M6        | 3          | 5                     |      |
| L <sub>DC</sub>   | Module stray inductance between V <sub>Bus</sub> and 0/V <sub>Bus</sub> |                 |           | _          | 3                     | nH   |
| Wt                | Package weight                                                          |                 |           | _          | 320                   | g    |

The following table lists the temperature sensor NTC of the MSCSM170AM058CT6LIAG device.

Table 1-7. Temperature Sensor NTC

| Symbol                 | Characteristic             |                         | Min | Тур  | Max | Unit |
|------------------------|----------------------------|-------------------------|-----|------|-----|------|
| R <sub>25</sub>        | Resistance at 25 °C        |                         | _   | 50   | _   | kΩ   |
| $\Delta R_{25}/R_{25}$ | _                          | _                       | _   | 5    | _   | %    |
| B <sub>25/85</sub>     | T <sub>25</sub> = 298.15 K | _                       | _   | 3952 | _   | K    |
| ΔΒ/Β                   | _                          | T <sub>C</sub> = 100 °C | _   | 4    | _   | %    |

$$R_{T} = \frac{R_{25}}{\exp\left[B_{25/85}\left(\frac{1}{T_{25}} - \frac{1}{T}\right)\right]}$$
 T: Thermistor temperature R<sub>T</sub>: Thermistor value at T

Note: See APT0406—Using NTC Temperature Sensor Integrated into Power Module for more information.

#### 1.4 Typical SiC MOSFET Performance Curve

This section shows the typical SiC MOSFET performance curves of the MSCSM170AM058CT6LIAG device.

Figure 1-1. Maximum Thermal Impedance

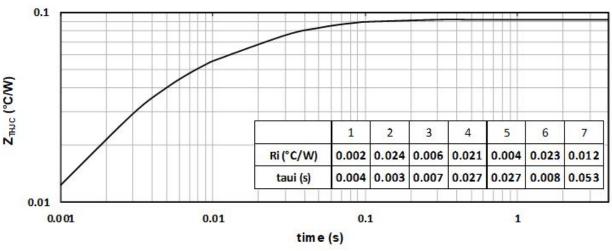



Figure 1-2. Output Characteristics,  $T_J = 25$  °C

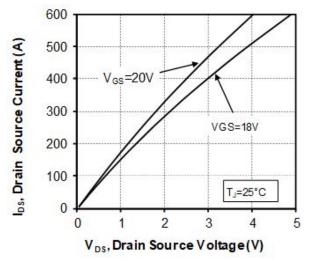



Figure 1-3. Output Characteristics, T<sub>J</sub> = 175 °C

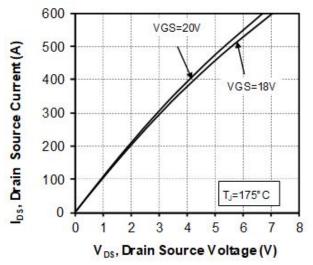



Figure 1-4. Normalized R<sub>DS(on)</sub> vs. Temperature

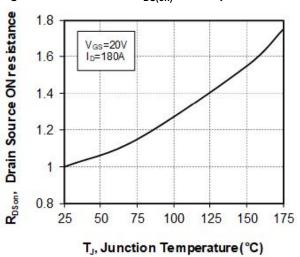



Figure 1-5. Transfer Characteristics

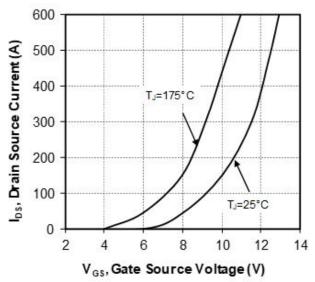



Figure 1-6. Switching Energy vs. Rg

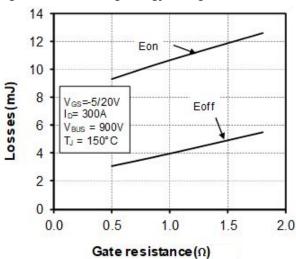



Figure 1-7. Switching Energy vs. Current

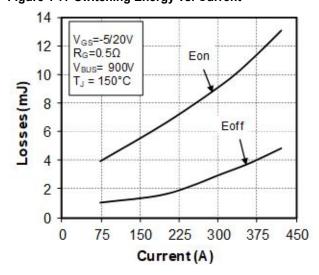



Figure 1-8. Capacitance vs. Drain Source Voltage

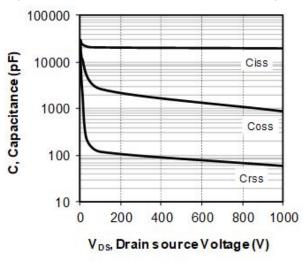
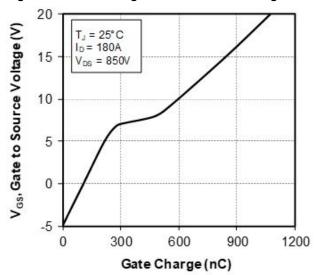




Figure 1-9. Gate Charge vs. Gate Source Voltage



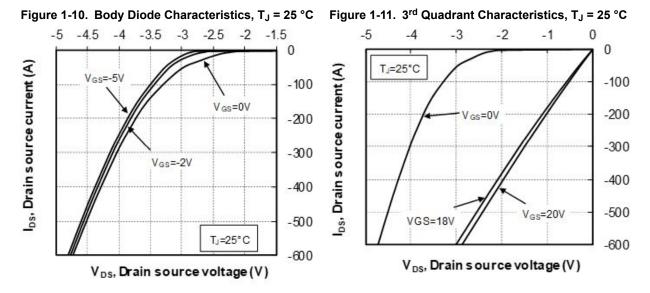
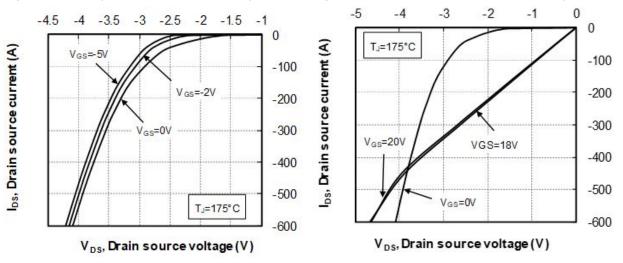




Figure 1-12. Body Diode Characteristics, T<sub>J</sub> = 175 °C Figure 1-13. 3<sup>rd</sup> Quadrant Characteristics, T<sub>J</sub> = 175 °C



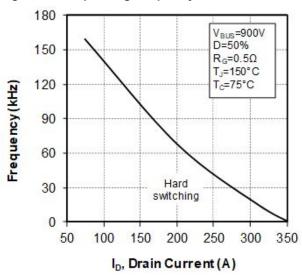



Figure 1-14. Operating Frequency vs Drain Current

#### 1.5 Typical SiC Diode Performance Curves

This section shows the typical SiC diode performance curves of the MSCSM170AM058CT6LIAG device.



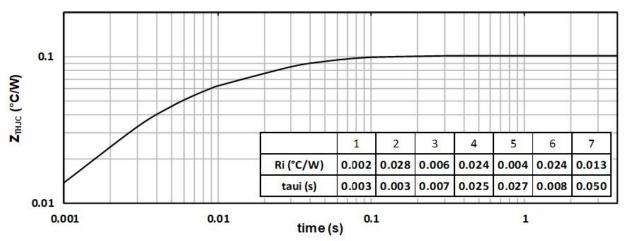



Figure 1-16. Forward Characteristics

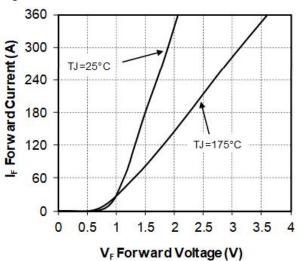
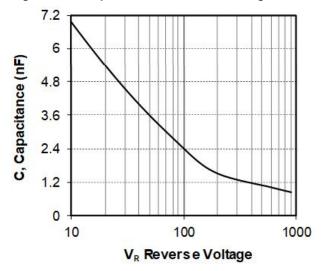
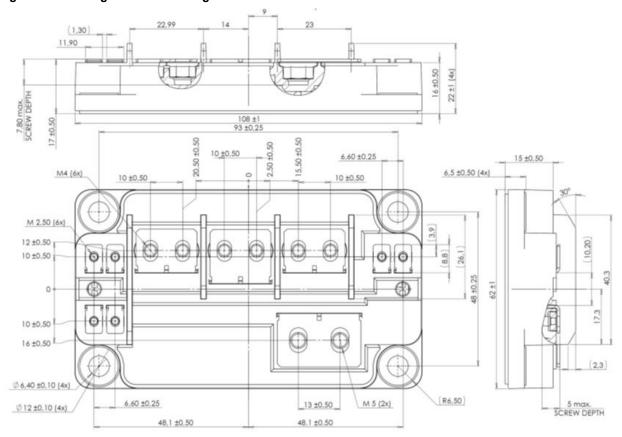




Figure 1-17. Capacitance vs. Reverse Voltage




## 2. Package Specifications

The following section shows the package specification of the MSCSM170AM058CT6LIAG device.

#### 2.1 Package Outline

The following figure shows the package outline drawing of the MSCSM170AM058CT6LIAG device. The dimensions in the following figure are in millimeters.

Figure 2-1. Package Outline Drawing



Note: See AN1911—Mounting Instructions for SP6 Low Inductance Power Module for more information.

## MSCSM170AM058CT6LIAG

**Revision History** 

# 3. Revision History

| Revision | Date    | Description                                     |
|----------|---------|-------------------------------------------------|
| Α        | 04/2021 | This is the first publication of this document. |

## The Microchip Website

Microchip provides online support via our website at <a href="www.microchip.com/">www.microchip.com/</a>. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
  guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

#### **Product Change Notification Service**

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

#### **Customer Support**

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

## Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal
  conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
  of the Microchip devices. We believe that these methods require using the Microchip products in a manner
  outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code
  protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
  protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly
  evolving. We at Microchip are committed to continuously improving the code protection features of our products.
  Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act.
  If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
  for relief under that Act.

#### **Legal Notice**

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

#### **Trademarks**

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-8054-9

# **Quality Management System**

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.



# **Worldwide Sales and Service**

| AMERICAS                  | ASIA/PACIFIC          | ASIA/PACIFIC            | EUROPE                |
|---------------------------|-----------------------|-------------------------|-----------------------|
| Corporate Office          | Australia - Sydney    | India - Bangalore       | Austria - Wels        |
| 2355 West Chandler Blvd.  | Tel: 61-2-9868-6733   | Tel: 91-80-3090-4444    | Tel: 43-7242-2244-39  |
| Chandler, AZ 85224-6199   | China - Beijing       | India - New Delhi       | Fax: 43-7242-2244-393 |
| Tel: 480-792-7200         | Tel: 86-10-8569-7000  | Tel: 91-11-4160-8631    | Denmark - Copenhagen  |
| Fax: 480-792-7277         | China - Chengdu       | India - Pune            | Tel: 45-4485-5910     |
| Technical Support:        | Tel: 86-28-8665-5511  | Tel: 91-20-4121-0141    | Fax: 45-4485-2829     |
| www.microchip.com/support | China - Chongqing     | Japan - Osaka           | Finland - Espoo       |
| Web Address:              | Tel: 86-23-8980-9588  | Tel: 81-6-6152-7160     | Tel: 358-9-4520-820   |
| www.microchip.com         | China - Dongguan      | Japan - Tokyo           | France - Paris        |
| Atlanta                   | Tel: 86-769-8702-9880 | Tel: 81-3-6880- 3770    | Tel: 33-1-69-53-63-20 |
| Duluth, GA                | China - Guangzhou     | Korea - Daegu           | Fax: 33-1-69-30-90-79 |
| Tel: 678-957-9614         | Tel: 86-20-8755-8029  | Tel: 82-53-744-4301     | Germany - Garching    |
| Fax: 678-957-1455         | China - Hangzhou      | Korea - Seoul           | Tel: 49-8931-9700     |
| Austin, TX                | Tel: 86-571-8792-8115 | Tel: 82-2-554-7200      | Germany - Haan        |
| Tel: 512-257-3370         | China - Hong Kong SAR | Malaysia - Kuala Lumpur | Tel: 49-2129-3766400  |
| Boston                    | Tel: 852-2943-5100    | Tel: 60-3-7651-7906     | Germany - Heilbronn   |
| Westborough, MA           | China - Nanjing       | Malaysia - Penang       | Tel: 49-7131-72400    |
| Tel: 774-760-0087         | Tel: 86-25-8473-2460  | Tel: 60-4-227-8870      | Germany - Karlsruhe   |
| Fax: 774-760-0088         | China - Qingdao       | Philippines - Manila    | Tel: 49-721-625370    |
| Chicago                   | Tel: 86-532-8502-7355 | Tel: 63-2-634-9065      | Germany - Munich      |
| Itasca, IL                | China - Shanghai      | Singapore               | Tel: 49-89-627-144-0  |
| Tel: 630-285-0071         | Tel: 86-21-3326-8000  | Tel: 65-6334-8870       | Fax: 49-89-627-144-44 |
| Fax: 630-285-0075         | China - Shenyang      | Taiwan - Hsin Chu       | Germany - Rosenheim   |
| Dallas                    | Tel: 86-24-2334-2829  | Tel: 886-3-577-8366     | Tel: 49-8031-354-560  |
| Addison, TX               | China - Shenzhen      | Taiwan - Kaohsiung      | Israel - Ra'anana     |
| Tel: 972-818-7423         | Tel: 86-755-8864-2200 | Tel: 886-7-213-7830     | Tel: 972-9-744-7705   |
| Fax: 972-818-2924         | China - Suzhou        | Taiwan - Taipei         | Italy - Milan         |
| Detroit                   | Tel: 86-186-6233-1526 | Tel: 886-2-2508-8600    | Tel: 39-0331-742611   |
| Novi, MI                  | China - Wuhan         | Thailand - Bangkok      | Fax: 39-0331-466781   |
| Tel: 248-848-4000         | Tel: 86-27-5980-5300  | Tel: 66-2-694-1351      | Italy - Padova        |
| Houston, TX               | China - Xian          | Vietnam - Ho Chi Minh   | Tel: 39-049-7625286   |
| Tel: 281-894-5983         | Tel: 86-29-8833-7252  | Tel: 84-28-5448-2100    | Netherlands - Drunen  |
| Indianapolis              | China - Xiamen        |                         | Tel: 31-416-690399    |
| Noblesville, IN           | Tel: 86-592-2388138   |                         | Fax: 31-416-690340    |
| Tel: 317-773-8323         | China - Zhuhai        |                         | Norway - Trondheim    |
| Fax: 317-773-5453         | Tel: 86-756-3210040   |                         | Tel: 47-72884388      |
| Tel: 317-536-2380         | 15 55 155 52 155 15   |                         | Poland - Warsaw       |
| Los Angeles               |                       |                         | Tel: 48-22-3325737    |
| Mission Viejo, CA         |                       |                         | Romania - Bucharest   |
| Tel: 949-462-9523         |                       |                         | Tel: 40-21-407-87-50  |
| Fax: 949-462-9608         |                       |                         | Spain - Madrid        |
| Tel: 951-273-7800         |                       |                         | Tel: 34-91-708-08-90  |
| Raleigh, NC               |                       |                         | Fax: 34-91-708-08-91  |
| Tel: 919-844-7510         |                       |                         | Sweden - Gothenberg   |
| New York, NY              |                       |                         | Tel: 46-31-704-60-40  |
| Tel: 631-435-6000         |                       |                         | Sweden - Stockholm    |
| San Jose, CA              |                       |                         | Tel: 46-8-5090-4654   |
| Tel: 408-735-9110         |                       |                         | UK - Wokingham        |
| Tel: 408-436-4270         |                       |                         | Tel: 44-118-921-5800  |
| Canada - Toronto          |                       |                         | Fax: 44-118-921-5820  |
| Tel: 905-695-1980         |                       |                         | 1 da. 77-110-321-3020 |
| Fax: 905-695-2078         |                       |                         |                       |
| I ax. 300-030-20/0        |                       |                         |                       |